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Abstract

For the case of four or more poles, we propose a recursive procedure not using the dynamic
programmming technique. Then in a certain proposed algorithm we derive an explicit ex-
pression for the number of moves of disks as a function of N disks and m poles. In this
‘algorithm the number of moves decreases monotoneously in terms of m but its limiting value is
3rleg:N1 glthough 2N—+1 is the minimum number of moves for m=N-+1. So we give a modified
algorithm and its associated recurrence equation for the number of moves. This equation is
solved numerically since it is difficult to derive the explicit expression for its solution. This
result shows that the modified algorithm is near optimal.

1. Introduction

A study on programs or algorithms for the traditional Tower of Hanoi puzzle
may be considered to become an appropriate object in the fields of the artificial intelli-
gence and the complexity of algorithms. Some would say that this problem is
traditional and already settled. However, as far as the authors know, little attention
is paid to storage spaces and computation steps on executing this problem by computers.
We focus attention on this point.

In next section, we discuss the case of four or more poles. This case is considered
in [1] where the minimum number of moves of N disks for N <64 is computed by the
dynamic programming technique and the implicit expression for the number is given
as an exterpolation of this result without proof. Furthermore, for the case of six or
more poles, the implicit expression for the number of minimum moves is also given as
a conjecture from the foregoing result. In [2], the minimum number of moves for
the case of four poles is also computed by the dynamic programming technique. Since
these studies depend on the dynamic programming technique, one might be afraid that
tremendous memories and computation steps need in order to perform moves of disks
by computer for a large number of disks. Hence, we propose a recursive program not
using the dynamic programming technique. Then in a certain proposed algorithm
we derive an explicit expression for the number of moves of disks as a function of N
disks and m poles. In this algorithm the number of moves decreases monotonously
in terms of m but its limiting value is 3Mes2N1, However, for large N, 3Mesz¥1 s
much greater than the minimum number of moves 2N +1 for m=zN+1. So we give
a modified algorithm and its associated recurrence equation for the number of moves.
This recurrence equation is solved numerically since it is difficult to derive the explicit
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expression for its solution. This result shows that the modified algorithm is near
optimal. -

2. Tower of Hanoi with four or more poles

We consider the general problem: Given m poles with N disks stacked in de-
creasing order of size on pole P,. Move the N disks one at a time from one pole to
another, never putting a larger one on a smaller one, and eventually transferring the
N disks from P, to P,, in steps as small as possible.

Let (N, m) denote the minimum number of steps (moves of disks). Consider the
following algorithm: First, take n, disks from the top on P, and by using m poles
construct a tower consisting of them on some pole (denoted P,) except P,. Next,
transfer the remaining N —n, disks on P to P, by using m—1 poles except P,, and
then the n, disks on P, to P,, by using m poles, completing a final tower.

From the above algorithm, we have

20(ny, m)+o(N—n,, m—1)=a(N, m).
Similarly, we have
20(ny, m)+a(ny—n,, m—1)=a(n,, m).
In general, we have
20(n;, m)+o(n;_—n, m—1)=0(n;_, m) izl, ny=N (1)
Therefore, we have
Zia(n, m)+2=ta(n;_ —n;, m—1)221a(n;_,, m) izl, ng=N (2)

Summing up (2) from i=1 to g, we have
(g, m)+ 3. 27a(n,_ — i, m—1)Za(N, m) 3)
i=1

If we put n;_; —n;=d for 1<i<q, then N—n,=qd. If n,=0, that is, N is divided by
q (or d), N=gqd and
(2*—=1Da(d, m—1)=(27—1)a(N/q, m—1)= (N, m) (4)

Using (4) successively, we have

(29 —=1)o(N/q,, m—1)=0(N, m) if N is divided by g¢,.

(22—1)o(N/q,q9,, m—2)=a(N/q,, m—1) if N is divided by q,q,.

(20m-4—1)O(N/qy Qs DZON/q1 Gz, 5 if N is divided by g, .

(2%m-3=1)a(N/qy*Gm-3, )Z0(N/q1 @2, 4) if N is divided by q;-*+¢,,- 3.

Therefore, we have
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(29 —=1) (22— 1) (24> = Do(N/q145***Gm-3, ) Z (N, m)
if N is divided by g+ q,,-3-
Finally, we have
(291 =1)(292 = 1)--- (2% -3 =) QN1 tm-2 — 1) 2 6(N, m)
if N is divided by g{--qn-3- 5
If NY/(m=2) is an integer, we put q,=g,="+-=¢,-3=NY™"2_ Then (5) becomes
@ —1ym2 2 (N, m) (6)
In general, we have
QN DT _fym=2>6(N, m)  for m—2<log, N
3Moe2N>g(N, m)  for m—2=log, N (7)

where [x] is the least integer equal to or more than x.
The following properties hold.
(1) lim (2Nil(""'2) — ])m—Z — NZlogZz N1.38629

(2) (2N _[ym=2 decreases monotonously in terms of m (2 3).
The proof is in the Appendix.

It is easily shown that o(N, m)=2N—1 for m2N+1. Table 1 shows the com-
parison of N21°82 with 2N—1. From the property (2) and Table 1 it seems to be
able to conclude the goodness of the above algorithm. But we want to make the
number of moves become 2N —1 for m=N+1. From (1) to (5), ny=N—N1"1/(m=2)
=N(1—N-1/0m2)  We will modify n; so that n;=1 for m=N+1. To do so,
we choose ny=|N(1—N-1/0m=2 f N~1/(N=1) _1)| 4 | =| N(N"V®-D - N~ m=2) ] +1.
Now, we introduce a modified algorithm in which the number of moves becomes
2N—1 for m=N+1.

Table 1. The comparison of N21°&2 with 2N—1.

N N2g2/[2N—1)

10 1.28097
20 1.63133
50 2.2889%4
100 2.97668
200 3.88086
500 5.52074
1000 7.21217

Algorithm. A recursive algorithm for the Tower of Hanoi with three or more poles,
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not using the dynamic programming technique.

Input. The number of disks N, the number of poles m >3 and the set of poles {1, 2,...,
m}.

Output. The sequence of moves of disks which are given by pairs of poles. (i, )
means ‘from pole i to pole j’.

Method. The algorithm consists of a procedure call, HANOI(N, m), in which a
procedure MOVE(n, m, i, j, S) is used. The procedure MOVE(n, m, i, j, S) gives
the sequence of moves of n disks on the top of pole i to pole j, using no poles of
the set S.

procedure HANOI (N, m)
begin

MOVE(N, m, 1, m, @)
end

procedure MOVE (n, m, i, j, S)
begin
if m—|S|=3 then return HANOI(n); where the pole numbers 1, 2, and 3 in
HANOI(n) is renamed by i, j, and k, respectively, (ke {1, 2,..., m}—{S U {i, i,
and |S| denotes the number of elements of S;
else
begin
if n=1 then return print (i, j);
else
if n+1<m~|S| then return
print (i, k); MOVE(n—1, m, i, j, SU {k}); print (k, j);
where ke {1, 2,..., m}—{SU {i, j}};
else
P+ [n(n~V®=1 _ p=1/m=2-1SD) | 4 1;
return MOVE (p, m, i, k, S);
MOVEm—p, m, i, j, SU {k});
MOVE (p, m, k, j, S);
where ke {1, 2,..., m}—{SU {i, j}} and [x] is the largest
integer equal to or less than x;
end
end

procedure HANOI(N)
begin
te1;
while <2V do
AK(t, a, k);
i {((—D"*N+3)(k—1)/2} mod 3+1
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je{((=1D)**¥+3)k/2} mod 3+1
print (i, j)
te—t+1

end

procedure AK(t, a, k)
begin
if ¢ is odd then return a « 1 and k « (t+1)/2;
else |
begin
if t=2 then return a <2 and k « 1;
else ‘ ,
' if (1—2)/2 is odd then AK(t/4, p, q);
return a « p+2 and k « q;
else return a « 2 and k « (t+2)/4;
end
end

Let f(IN, m) be the number of moves of disks in HANOI(N, m). Then we readily
have the following equation.

f(N, 3)=2N-1,
for m=4
2N —1 for N+1<m
J(N, m)=

2f(n, m;)+ f(N—n, m—1)  for N+1>m where (8)
. n=|[N(N-V®-1) _ N~1/m=2)| 41

The values of f(N, m) derived by numerically solving the recurrence equation (12)
are shown in Table 2 in which the values in parenthesis are given or conjectured in

[1].
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Table 2. The values of f (V, m) (The values in parenthesis are given or conjectured

in [1D.
m
\ 4 5 6
N

2 3( 3) 3¢ 3) 3¢ 3)
3 5( 5) 5( 5) S 5( 5
4 9( 9) 7( 7 7C
5 13 ( 13) 11 ( 11) 9( 9
10 57¢( 49) 35( 31) 29 ( 29)
20 353 ( 289) 127¢  111) 89 (  89)
30 1153 ( 1025) 303(  271) 185 ( 169)
40 2945 ( 2817) 559 (  si1) 313 ( 289)
50 6913 ( 6657) . 943 (  831) 473 ( 449)
60 15361 ( 14337) 1471 ( 1279) 697 ( 629)
100 176129 ( 172033) 5855 (  4863) 2017 ( 1729)
200 15204353 ( 14680065) 53887 ( 36863) 10257 ( 7297)
300 478150657 (385875969) 251903 ( 143359) 30305 (19457)
500 2478079 (1015807) 131905 (68097)
7 10 -20

3C 3 3¢ 3 3¢ 3

5 9% SC 9 5 9%

7C D 7C N TC D

9( 9 9( 9 9( 9

27( 27) 21( 2D 19( 19)

75(  67) 61( 61) 41( 4)

143 ( 143) 101 ( 101) 81 ( 81)

231 ( 223) 157 ( 141) 121 ( 121)

343 ( 303) 225 ( 201) 161 ( 161)

471 ( 415) 297 ( 281) 201 ( 201)

1215 ( 1055) 637 ( 601) 361 ( 361)

4863 ( 3839) 1953 (1681) 993 ( 801)

11647 ( 8575) 3897 (3281) 1741 (1601)

38095 (23807) 9425 (6361) 3441 (3201)

Table 2 shows that our result is not optimal but near optimal for m=4 and 5. We
will consider that our result is also near optimal for all m>6 if the Brousseau’s con-
jecture is true.

3. Conclusion

We have investigated the Tower of Hanoi with four or more poles and have given
a near optimal recursive algorithm not using the dynamic programming technique.
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Appendix
(1) I o ]im(zNil(m-z)'__I)m;2=N210g2

m- xR

Proof. Put m—2=m’ and N'm =x. Then m’=log, N/log,x and x—1 (m'
—00). Therefore,

(N1 {ym = (2% — 1)1/10g2 ¥)loga N
Put log, x=X, i.e. x=23‘. Then X -0 (x—1). Therefore,
(25— s = (227~ 1)!1¥ = f(X)
log f(X)=log(2** = 1)/X 9)
}(i_r)lz)logf(X) =}1(i-rg 22%log2-2¥1log2/(2?* —1)=2-(log 2)*

Thus
}IKin(llf (X)=exp(2(log2)?) Q.E.D.

Therefore, we have

lim 2N/ — 1ym~2 =exp (2(log 2)? log, N)=N?1cs2

m—oo

(2) (V™ _1ym=2 decreases monotonously in terms of m (=3).

Proof. To show that the statement is true, it is sufficient to show that log (22" —1)/
X in equation (9) increases monotonously in terms of X for X >0.
Let put

F(x)=log(2*" —1)/x
We will show that dF (x)/dx =0 for x>0.
dF (x)/dx=[x22" 2%(log 2)> — (22" — 1) log (2% — 1)}/[x2(2** — 1)] (10)

Since the dominator of (10) is positive for x>0, it suffices to show that the denominator
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of (10) is nonnegative. Let it be F,(x).
dF,(x)/dx =22"2%(log 2)*[x2*(log 2)? + x log 2 — log (22" — 1)]
F;3(x)=x2*(log2)*+ x log2 —log (22" ~1)
dF3(x)/dx={(2?" - 1)x2*(log 2)* + [(22* — 1) — 2* log 2] log 2} /(22" — 1)
Fiux)=(22"—1)—2~1log?2
=22"—1—-log2?"
dF,(x)[d2¥"=1-2"2">0  (x>0)
Fy0)=1-log2>0

Therefore, Fu(x)>0(x>0). Then dF;(x)/dx>0 (x>0). Since F;(0)=0, F4(x)>0
(x>0). Then dF,(x)/dx>0. Since F5(0)=0, F,(x)>0 (x>0). Q.E.D.



