Observation of the State Vector of a Discrete-Time
Linear System from the Actual Output Data

By Yasuhiro KAwAzoOE*
(Received April 13, 1978)

Abstract
The observation of the state vector of a discrete-time linear deterministic system is con-
sidered under the assumption of complete observability.
The entire state vector is determined exactly from observations of the actual outputs in
px measurement points where p, is the observability index. The main result shows that the
. important concept of the observability index in the field of the modern control theory is easily
obtained from the simple ordinary algebraic operation. '

L Introductmn ST

The Luenberger observer in the case of determmlstlc measurements [1] and the
Kalman filter in the case of noisy measurements [2] ate well known methods for system
state estimation. In the deterministic system, the Luenberger observer permits deter-
mination of unknown state variables via an (n —m)-dimensional observer which is called
minimal observer, where n is the dlmcnsmn of the state vector and m is the dlmensmn
of the measurement vector.

This paper considers about observing the state vector of a- discrete-time deter-
ministic linear time-invariant system under the mild assumption of well known complete
observability. It is shown how the.available system inputs and outputs may be used
to determine the system state vector. The results show that the exact determination
of the state vector is possible from the actual output vectors of the same number as the
observability index, although this concept has been developed by the pole configurations
of the observer.

The organization of this paper is as follows. The problem statement is given in
Section II. In Section II1, the canonical transformation is introduced, and in Section
IV, the equation for the unknown state vector is developed. Section V is devoted to
conclusions. '

II. Problem Statement
Consider a discrete-time linear time-invariant system

Xy 1= AX,+ By, (1)
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where

X is an n x 1 state vector

u is a rx 1 input vector

A is an n x n system matrix
B is an n x r input matrix.

The observation of this system is governed by

Ye=Cx, (2)
where

y is an m x 1 observation vector
C is an m x n observation matrix.

It is assumed that the initial state x, is unknown and the dimension of the ob-
servation m is less than or equal to n. The fundamental assumption imposed on this
system is that of complete system observability, namely the n x m observability matrix,

[CT, (CA),..., (CA"~1)T]
has rank n where T denotes the transpose; -
rank [CT, (CA)T,..., (CA* )T]=n 3)

We assume for simplicity in forming the canonical transformation described in
Section III that the columns of C are linearly independent. The purpose of this paper
is to determine the entire state vector in Eq. (1) from the output data in Eq. (2).

III. Canonical Transformation

Define the observation matrix is

C=|C] : (4)
ct
where each CT is an n-dimensional row vector.

The first step in the development of a canonical form is the selection of n linearly
independent vector from the following vector sequences [3]:

CI, CTA, CTA2,.

CI, CiA, CI42...
©)

------------------------
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If the new column vector is linearly independent of all the previously selected
column vectors, retain it and otherwise omit it from selection. This selection procedure
terminates when n linearly independent column vectors are found.

Arranging the n column vectors, the matrix P is defined as follows

P=[CT, CTA,...,CTAP~1,

CI, CIA,..., CIAP*1,

Cr ChA,..., CrAP—1]7 (6)

where p,’s, i=1, 2,..., m are referred to as observability subindices, which satisfy

pi=n (7

s

1

from the assumption of observability condition.

We consider the same canonical form as applied in the works of [4] and [5]. A
change of coordinates from state x to w defined by

w=Px (8)

transforms the system Eq. (1) and (2) to
Wiy =PW,+ Gy, , )
Yi=Hw, ‘ (10)

In Eq. (9) and (10), ¢, G and H are given as follows:
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where, @, i, j=1, 2,...,mis the p ; X 1 matrix defined as

=8l ¢ 8] (12)
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g1
G'=PB=Ag',2‘, S ay
o |
tolo 1O
=CP'=| 11O (14)
O O o

IV. Determination of State Vector
Stacking up outputs of Eq. (10), the following equations are obtained.
. Yi«=Hw,
Yir1=H®wW, +HGu, S
: L (15)
Yk+z=H‘p'Wk+Hj§0 216 MR

According to Eq. (15), the following construction is obtained for representation
of the ith element of y, as y;, and the ith row vector of H as h;.

Y1,k hT ' 0
Yi,k+1 | hio® ‘ ' h{Gu,
: : :Pl"l .
V1, k+ps-1 h ori-1 hi Zo QJG“k+p1~2~j
: = : W, + : (16)
Ymsk h, 0
Ym,k+1 hL® hlGu,
. : :pm_z . )
Y, ket pm—1 hLrm=1 hl _=ZO PIGuy, ), 2

It is easily shown that the coefficient matrix of w, in Eq. (16) is the n x n identity
matrix according to the relation between Eq. (11) and Eq. (14). Then w, is represented
as o o

1 Y,k 0 ]
Yi,k+1 h{G“k ‘
: : ]

: 2
We=1 Y1,k+pi-1 | — h{j§)¢16_!uk+m—2—j I (17)
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Ym,k 0
Vm k41 hTGu,
Tl’m_z .

Eq. (10) indicates that the following m elements of w, vector are obtained directly
from the observation of y,.

Wik Y1,k

Wy k = | Y2,k (18)
L M')vm_1+1.k _ym,k

where w,, is defined as the ith element of w, and
i . »
vi=3p, i=1,2,....m ‘ 19
Jj=1 : )
where v, is equal to 0 and v,, means n from Eq. (7).

Eliminating the directly observed element of the state vector w, of Eq. (18) from
Eq. (17), the (n— m) dimensional unknown state vector is given by -

" ‘ ' BT
Wi,k W Yi,k+1 hiGu,
Tm—z ) :
Wyik Vi, k+pi—1 hi _zb‘p’G“Hm-Z—j
J:
T
Wyit2,k = Vaxsr . | = hiGu (20)
T,
Wy 142,k Vm,k+1 hGu
T'p 2
Wy, k o Ymktpm—1 \hm _20 ¢JGuk+Pm"2_f
m e v v

 Defining the observability index as py,

o  pu=max{py, Pz.-eer P}’ @
Eq. (2) is expressed as o

Wik Y1, k4pi-1 4p, U

Mo | = | Yaepims | = | A2 || B @)

Vi, k Yo, ket po—1 4pn Wt ppr=2

where
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Wy +2,k
Wy k= | Wyt |, for i=1,2,...,m (23)
wv.;,k
Yik+1
Yikipi—1= Vi k+2 , for i=1,2,...,m (24)
Vi, k+pi—1/
Gvioi+1 O ]
4p;= Gvi-1+2 | pi—1 (25)
gv¢..1+p¢-1 """ Jviog+1 JI

(va—l)r, for i=1,2,....m

The available data for the determination of the unknown state sub-vector Wy k
are the outputs from the kth time point to the (k+ p,— 1)th time point for i=1, 2,...,
m.

Therefore, p, measurement time points are required to determine the value of the
state vector and within this interval n elements of the observed output vector are availa-
ble for the determination of the entire state vector. After observing outputs at p,,
sequential time points, all we have to do in order to determine the unknown state vector
is to calculate the (n — m)-dimensional vector in Eq. (22), which m elements of the state
vector are directly obtained as the observed outputs shown in Eq. (18).

Finally the original state x, is given by

X, =P lw,. | (26)

V. Conclusion

The determination of the state vector of a discrete-time linear system is revisited
by the simple algebraic approach under the assumption of complete observability.

It has been shown that the entire state vector, including its initial, present and future
values, is exactly obtained by the n elements of the observed output with Py Measure-
ment time points using the canonical transformation. This concepts is demonstrated
by selecting the special values of poles of observer, i.e. the pole configurations.

. References

[1] D. G. Luenberger, “Observing the state of a linear system,” IEEE Trans. Military Elec-
tronics, Vol. MIL-8, pp. 74-88, Apr. 1964. _

[2] R.E. Kalman, “A new approach to linear filtering and prediction theory,” I. of Basic
Engrg., Trans. ASME, Series D, Vol. 82, pp. 35-45, March 1960.



Observation of the State Vector of a Discrete-Time Linear System 171

[3] D.G. Luenberger, “Canonical forms for linear multivariable system,” IEEE Trans. Automat.
Contr., Vol. AC-12, pp. 290-293, June 1967.

[4] R.N.Lobbia and G. N. Saridis, “On-line identification of multivariable stochastic feedback
systems,” 1972 JACC, pp. 802-810.

[5] J.C.Chow, *On the structural identification and parameter estimation in linear multivariable
dynamic systems,” 1973 JACC, pp. 620-626.



