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Abstract

This paper proposes a method to decompose any n-state stochastic system into m r-state
component stochastic systems.

The basic tool in our method is a partition with substitution property which exists on the
set of states of the interconnected stochastic system. Using our method it is mainly shown that
there exists a relationship among n, m and r, and for one outer input, some specific number of
transition matrices are assigned to each component.

1. Imtroduction

On the decomposition theory of stochastic systems (or automata), since Bacon (1)
first applied the concept of substitution property (SP) which was introduced by
Hartmanis and Stearns (2, 3) for deterministic case, several papers are appeared (4-8).

For automorphism groups of stochastic systems, an iterative decomposition of
Giorgadze and Safiulina (7) is avairable, however, when we investigate the decom-
position for any stochastic system the concept of SP plays very important role.

A partition with SP on the set of states dose not always exist for any transition
matrix. To improve such weak point Fujimoto and Fukao (4) suggested a idea of state
splitting. After that, based on the concept of state splitting Paz(5) gave a result that
it is possible to decompose any n-state stochastic system into interconnected n-1 two-
state stochastic systems. Moreover, extending the idea of Paz, Kikuchi and Fujino (8)
suggested that any stochastic system is decomposable into some interconnected g-state
r-neighbor component stochastic systems, in which some of transition matrices may
be pseud stochastic matrices.

Furthermore, based on the SP, authors (10) gave a new method to decompose any
n-state stochastic system into m 2-state component stochastic systems, and using the
method some interesting results were shown.

In this paper, we propose a method that any n-state stochastic system can be de-
compose into m r-state component stochastic systems. Basic idea of our method is a
partition with SP which exists on the set of states of the interconnected stochastic
system. Using our method it is mainly shown that there exists a relationship among
n, m, and r, and for one outer input, some specific number of transition matrices are
assigned to each component.
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Fig. 1 Interconnection of stochastic systems.

2. Preliminary

The stochastic system is defined as follows.

(Definition 1) A stochastic system is a three-tuple A=[S, 2, {4(0)}], where S is a
finite set of states, X is a finite set of inputs and {A(o)} (6 € 2) is a finite set of stochastic
matrices.

If, at time ¢, the system is in a state s; € S and receives an input ¢ € X, then it moves
to a state s;eS with probability a; ;(¢), where A(o)=[a; ;(6)]. Thus A(s) is an
|S|-dimensional stochastic matrix, where |U| denotes the number of element in a set U.
(Definition 2) A component stochastic system is defined as follows.

ADO =[S} Ex ST xS2x - x S x S+ x ... x §", {A(o, s}, s2,..., 571, sit?

ii—-1° iy 2

st )] (Ifism, mz22)

im—1

where Si is a finite set of states, T x S'x S2x - x Si=1 x Sit! x ... x Sm"=S2 is a finite
set of inputs and {A9(o, s}, s?,...,si7!, si* s )} (o, sb, sE,..., siTd, sifL
s™ _ )€ S82) is a finite set of stochastic matrices which designates the transition structure
of AW,

The component stochastic system A is interconnected with all other component
stochastic systems, so the transition matrix of A() is determined by a input ¢ and all of
the neighboring states. From now on, to distinguish from the inputs as the neighboring
states, o is called an outer input. And for simplicity we often say component instead
of component stochastic system.

(Definition 3) A stochastic system which is interconnected with m r-state components
AV AP and A is defined as B=[Z, X, {B(0)}], where Z=S'xS8%2x ... x S™,
IS =r (1=£i<m) and

B(o)=[b,,,(0)] O0=u, v=rm—1) (1)
. o ‘
bu’v(a)=k1;[1a£’;?jk(6, stost,., sk, sk, ST ). (2)

Here, b, (o) designates the transition probability such that if, at time ¢, the system
B is in a state z, € Z and receives an outer input ¢ then it moves to a state z,e Z. z,=
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(s}, s?,...,sm) and z,=(s}, s},,...,s7 ) are m dimenional vectors, where (u),o=
(iyip- vm),, ®i0=(j1j2:"Jm)r and ( ), denotes g-adic number.
(Definition 4) When a state of stochastic system B is z;((i),o=(i1i"*-i,),), for each
k (1<k<m), i,e{0, 1,...,r—1}), a probability from a state s}, to s}y in the com-
ponent A™, for a outer input o, is denoted by h{*(i, ~j,) (9).
(Definition 5) A partition IT on a set K is defined as follows.

={II;|II,cK, rxq — II,nII,=¢, UIl;=K}

Now, we give the most important definition for the decomposition of stochastic
system in this paper.
(Definition 6) For a stochastic system A=[S, X, {A(0)}], a partition IT={II;|1=<
i<1} on the state set S is said to have the substitution property (SP) if and only if it
satisfies the following condition;
for each I1,, IT, and each outer input o € 2, if s;, s; € I}, then
a; (o)= a; (o). 3
I afo)= T a0 3
(Definition 7) Let A=[S, X, {4(6)}] be a stochastic system and I[I={I;|1si=st}
be a partition with SP.
(7.1) A*=[S*, %, {A*(0)}] is called a system merged with the partition II, where
S*={Il,, I,,..., I1,} and for each i, j (1=, j=<1)
ri@= 3 al0)  (Sell) 4

srell

It must be noted that, for each g, v(s,, s, € I,), since II is satisfied with SP,

Z au f(o-)_ 2 a, f(o-)
syellj syell j
(7.2) A(o)=[a;(0)] (1<i<|S|, 1< j<1) is a matrix merged with partition I1, where
a”(a)— Z al f(a)
(Definition 8) Stochastlc systems A, =[S, Z, {4,(6)}] and A,=[S,, Z, {A,(0)}] are
isomorphic if there exists a one to one mapping f between S; and S,, and for any
S;, S;€8,,0€2

ali,j(o.)=a2f(i),f(j)(a)‘ (5)

In the following definition, we give a decomposability of a stochastic system.
(Definition 9) Let A=[S, Z, {4(c)}] be a stochastic system and B=[Z, X, {B(0)}]
be a stochastic system interconnected by components AV, A?,... and 4, and on
the set Z=S1xS2x-.-x S™, let there be a partition IT with SP. And let B* be a
stochastic system merged with II. Then, A4 is said to be decomposable into inter-
connected component stochastic systems A, 4®,... and A, if 4 if isomorphic to
B* and |Si|<|S] for each i (1Si<m).

In the decomposition of stochastic systems, if the theory of decomposition is
established for only one outer input, then for other inputs it is entirely the same as that
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one. So, in the subsequence section, we discuss for only one outer input ¢ and for
simplicity, we often use the notations a; ;, b, ;, b;,;, etc instead of a; j(0), b; ;(0),
b; ;(0), etc.

3. Partition /I* and Decomposition of Stochastic Systems

For each u(0<u<rm"'—1), we define the transition matrix of a component
A® (1 £v < m) as follows.

A (e, p,)=[al}} (0= jsr-1) (6)

ivagse

We now give a following lemma concerning with a partition on Z.
(Lemma 1) Let IT={II}]1<i<t}(¢>r) be a partition on Zand n,=(b; 1, b; 5,...,
b;,.) be an i-th row of the matrix B(¢)=[b; ;(6)] (0Si<r"—1, 1<j<t). Then,
for any stochastic vector ¢=(c,, c,,..., ¢,), there exist solutions a;:'y (I1Zv=Em,
0=j=r—1) of aequation n;=conly if t<m(r—1)+1. Where (i),o=(i,i;i,),.

=(s! 2 -1 +1 =(i.i- i .7 ;
where p, = (s}, s7,,..., s}71, s} o STy and (w)yo=C(i1is..dy_(iyrierip),-

Proof. For each v(1<v<m)

r—1

ZO a;,,\‘,l,vj =1, where (uv)lo = (iliZ' “ly—qlyey 'im)r
j=

and il;i,jzicj;_l-
j=1 j=1

From this, finding at most m(r—1) unknown quantities a;:'y (0=v=m, 05j<r-2)
reduce to solve the equations as follows.

Bi,l =
bi,z-.-=cz (7)
Bi,,_.l =c, 4

Thus, obviously (7) has solutions for any ¢ only if t<m@r—1)+1. Q.E.D.

From Lemma 1 following theorem is easily derived. The proof is ommited here.
(Theorem 1) For each k(k>m(r—1)+1), there exists some k-state stochastic system
which is impossible to realize by interconnected stochastic system with m r-state com-
ponents.

In the subsequent discussion, for each k(r<k<m(r—1)+1) any k-state stochasitc
system is decomposable into m r-state component stochastic systems.

Firstly we introduce a partition II* on the set of states Z={z,, z,,..., Zm_,} as
follows.

r={I1gisr+t (Ists(m—-1) (r—1) (8)

where for any z,, z(z,€Il}, z,€II}) p<y if and only if u<v. And for each k(1<

ksm-—1), when (k—1) (r—1)+1=t=<k(r—1)
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rm—t

, if =) (r—-D+1=isH(r—1), (1=5t5k)
[Tl =¢ [r—{t—(k=1) (r=D}Jrm=*1, if i=k(r—1)+1 €))
prk=1l it k(r—1D)+2ZiSr+t
For example, in the case of r=3 and m=3,

IM'={{zg, Z1,-.» Zg}s {Z9» Z105+++> Z173> {2185 Z10--> 223}
{2245 225, Z26}} >

IT12={{zg, Z1,---5 Zg}> {Zos Z10s---s Z17)> {Z18> Z19> Z20}}>
{2215 2225 Z23}s {2245 Z25, Z26}) s

IB={{zg, zy,...» Zg}> {Zos Z10s+++> Z17}> {Z185 Z105 Z20} >
{Z21> 222> 223} {2245 225}, {Z26}},

IT*={{zg, 21> Zg}» {Zos Z105--+» Z17}> {Z185 Z195 Z20} >
{221, 222> Z23}> {224}, {225}, {2263}

And let P=m—log,, |II%.|.

Then concerning the partition IT*, we obtain the result as follows
(Theorem 2) Let B=[Z, X, {B(s)}] be a interconnected stochastic system which is
obtained from m r-state component A, A@ ... A Then, B(c)=[b; (0)] (0Zi=
rm—1, 1 < j<|MI*|) which is the matrix merged with the partition IT* is dependent on
P components and independent on m — P components.

Proof. A transition probability such that the interconnected stochastic system
enters a state z; from z,((i);0=(i1iz i) ()10=C(j1J2 " jm), and for each k(1=k=m)
lk,]kE{O, 1,..., i"—l}) '

b ;= T1 h{(i,~j,) (10)
v=1

Let n;=(b; ,, bi 55, b;,+.) be an i-th row of the matrix B(¢). Then for ITje IT* such
that [IT5| =tr"*(1<t<r—1, 1£k=<m), we can put
(1) in the case of t=1

Z(r—-1,...,r—l,a,r~1,..<,r—1)r} (Ifasr-1)

(2) in the case of tx1

k-1 m—k
= {230 771,0,0,, 00

Z(r—],...,r— 1,0r—1,..r—1)r»

Z(r=1,0r=1.1,0,...,0)r,...5
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Zr=1,r—=1,6—1,0,...,0)r,...5
Zr=1,r—1,t=1,r—=1,..,r— 1),}
So the transition probability from a state z; € Z to all states in IT5 is

S RO~ DB iy~ r—1)

Jk+1sJk+2,50,JmE

A (g ~r = DA (i~ ) A (g g ~y) -
B (i~ jn) i =1 (11)
= ROy ~r = DAP i~ r— 1)
M

Jk+1sJk+2s000sJmE

hgk—l)(l’k_l ~p— 1){h£k)(ik~o)+h(ik)(ik~ D+ +

P ( ~ 1= 1)V (g ~ i) B (G~ o) 5 if tx1

, where M={0, 1,...,r—1}
It follows from for each v(k+1=v=m)

jveM
that
Z h£k+l)(ik+l~jk+l)'"h$m)(im~jm)=1 (13)

Ji+1sdk+2s s JmeM

Thus, it is easily seen from (11) and (12) that b, ; is dependent on the components
AD AP 0 A® and independent on AK+D ... A In |13 =trm*, k is the largest
when i=r+71, namely |IIZ, |=r""P?. From this, B(c) is dependent on P components
AW AP AP and independent on m — P components. Q.E.D.

Furthermore, concerning each row of matrix B(¢) we can show the following
theorem.
(Theorem 3) Let n,=(b; 1, b;5,..., b;,..) be an i-th row of the matrix B(o)=[b, ,(o)]
O=<isrm—1,1<j=<r+7). Then, there exist the components A, A2 4(m
such that for any stochastic vector e=(cy, ¢5,..., ¢, 1)

Ni=c (14)
Proof. Let

r—1 r—1
(1 5]y He]) = (=l 7 =2, P2

rm—-k’_“’ rm-—k, arm—(k+1)’,rm—(k+1),”" rm—(k+1)) (15)

r—1 ra

, where 1Sa<r—1, 1Sfksm—1, k(r—1)+r—a+1=|II"
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Then, from (12) we get the following equations

— vyl — vyl h — 1
Bi,1—xo’ Bi,Z"xla"-a bi,_1=x7_,

Ei,r=xrl—1x(2)a 5i,r+1 =X;_1X%5-- 0 Ei,2(r—1)=‘xrl'—1x3—2

5i,(k—1)(r—1)+1=xr1— ~xk2ixE,. ., Bi,k(r—1)=xr1—1 xkZixk,
Bi,k(r-1)+1:xrl—l"'xf—l(xléﬂ+x’1‘+1+"'+x§i%
Ei,k(r—1)+2=x}—1"'xf—~1x§+ls---a Ei,k(r—1)+r~a+1=x s Xf_y xkH] (16)

where h{"(i,~i,)=x} (1=v=m,0%i,,j,sr—1).

And from

T oxr=1 (1=v=k+1) (17)

i=0
k(r=1)+r—d+1

>  ¢=1, where c¢;=b

i,js
we obtain the solutions of (16) as follows.

'f: Cp— — i . .
BT ke, i 25psk, 05jr-2
1— > 4
i=1
{ vy _Ckr=1)+1
X= kG=1) (18)
l_ z Ci

i=1

k+1 . Sk(r=1)+j+2 . . T T
Xatj = ooy . M 0Sjsr—2-o,

1I- 3 ¢
i=1

, Where X=xkt!1 4+ xk+1 4 ... 4 xktl
In (18), when a denominator is zero the solution is arbitrary, and x/_,(1=uzk+1)
are easily derived from (17) and (18). Also xEr1, xkt xktl are arbitrary real

number (non zero less than 1) such that Z x¥*1=X., Thus, for any stochastic vector
i=0

¢, the solutions of n;=e¢, namely, the components A1), A .. AMAMALvLEk)is
unique) always exist. Q.E.D.

Furthermore, we get the following theorem.
(Theorem 4) In the matrix B(o)=[b; ;] (0=i, j<rm—1),if i=i’ then for any j, j/(0< j,
j’Srm—1) b;; and b; ; are independent.

Proof, b; ., b;. ;- can be denote as follows.

i,jo Yi’,j’

1,uy p2,u3 ... MslUm
b; TR v i F s va B, vom
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. — 1u1 Zuz m,um’ |
bt',J =L v Ay e Qg T im

Now let ()o=C(iyis i)y (IN)1o=(1i5i}),. If ixi’, for at least one k(1Lk<m)
ipxi,. It follows from this and (6) that for each k(1<k<m) u,>u} or p,=p,.
Thus, it is easily seen that if i=i’, b, ; and b, ; are independent. Q.E.D.

From Theorem 4, following theorem is easily derived. So the proof is omitted.
(Theorem 5) For each i, i"(0=i, i'<r—1), if i=i’, n; and 5} which are the i-th and
i’-th rows of B(o) repectively are independent.

(Theorem 6) Let B=[Z, X, {B(0)}] be a interconnected stochastic system obtained
from m r-state components AM, AP, ...  A™_ Then, we can make a partition II*
on Z to be satisfied SP. And let B¥*=[Z, 2, {B*(¢)}] be a stochastic system merged
with the partition II* which is satisfied SP. Then, for any stochastic matrix N=
[n; ;J(1=i. j=Sr+7), there exist m r-state components AM, A®,. .. A guch that

B*(¢)=N (19)

Proof. From Theorem 3 and 5, the proof is straightforward, and so is omitted
here. Q.E.D.

From the above discussion, we can easily show a decomposition theory as follows.
The proof is omitted here.
(Theorem 7) Any n-state stochastic system is decomposable into interconnected
m(mz=2) r-state (2<r=<n—1) component stochastic systems. Where among n, r
and m the following condition is satsisfied.

r<n=m(r—1)+1 (20)

Eventually, when we decompose a n-state stochastic system A=[S, X, {4(c)}]
into m r-state components, each component is determined by solving the equation

B*(0)=A(0) 21

In that time we adopt a partition IT* such that |II*|=n. And from Theorem 2 if
n=[IIm"DED=m(r—1)+1 we must determine all m components, however, in
general log, |IT¢, .| components are arbitrary.

Furthermore, concerning a number of requied transition martices of each com-
ponent for one outer input we can show the following theorem.
(Theorem 8) Let II°={II?|i<1=r} (for each i(1Li<r), |O9 =rm1), and [Tr=
{(IIf|r<isr+4t1}in II'={IT{|1<i<r+71} be a partition on I1°. Where, similar to
IT*, I° is a partition on Z and for any z, e I19, z,€ II9, p<y if and only if u<v. Then,
a number of required transition matrices of each component A®™ (1<v<P) for one
outer input is |IT*|(=1+1).

Proof. We pay attention to a component A1), 1If the interconnected stochastic
system B is in a state z((i);o=(i;i,:-*i,),), input of AM) as the neighboring states is

pu: Wio=(si5 1p),
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And, from (12) and the fact that 4D has all inputs p,(0<u<rm"1—1) for each II?
(1£t<r), for each (1 =Zt=Zr)
alrl, if z;ell$

b; = aki, if z;ell§ (23)

alLi=e=0rm=tif 7 el]?
, where B(o)=[b; ;] (0<i<rm—1, 1< j<r)is a matrix merged with the partition II°.
Now, let B* be a stochastic system merged with II°. Since II° has to be satisfied SP,
for each t, j(1=t, j<r)if z,, z,eI?, b, ;=b, ;. Thus, in (23) considering
{ilzie Ny ={i—r"'|z;ell3}="-
={i—(r—Drm 1| z;e N} ={i|0Zisrm -1} (24)
for each p,, p, OZu<v=rm1-1)
AN (o, p,)=A"a, p,) (25)
Namely, a number of required transition matrices of the component 4 is only one.
From above discussion and for each v(1Zv<r—1) I9=1I%, it is easily seen that
under the partition ITr, A1) has |/T*| transition matrices for one outer input.
Each component A™)(1 <v<m) is interconnected with all other components, that

is, each component is connected symmetrical. So, for the components A®),
A® ..., A® the proof is analogous to the case of A1), Q.E.D.

Intuitively, for each component, we must determine 7! transition matrices for one
outer input. Theorem 8 implies that U={p,|0=Su=<rm"!'—1} is classified by the
equivalence relation ~as follows.

pu~p, < ACNa, p,)=A"(a, p,) (26)

4. Example

In this section, using the decomposition theory in the previous section, we try to
decompose a 7-state stochastic system A=[S, Z, {4(0)}] (2={0}) into three 3-state
comporent stochastic systems. Where

0.1 02 01 02 0.1 03 0 )
04 0.1 0.1 01 0.1 0.1 0.1
03 0 0 02 0 04 0.1
A(G)=| 0 02 0 03 02 0 03]. (27)
0.1 0.1 0.1 0.1 0.1 0.1 0.4
02 02 0 02 01 02 0.1
06 0 0 O 0 04 O
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Let B=[Z, X, {B(6)}]1 (Z={z¢, 21,.-., Z26}) be a stochastic system which is inter-
connected with three 3-state components A1), 4(2) and A3 whose transition matrices
are given in (6). And let IT* be a partition on Z as follows.

I1*={I1%, I13,..., 114}

, Where IT{={z,, z4,..., zg}, II4={29, Z10s-.+» Z17} >
3={zys, 219, 230} ME={221, 222> 223},
8={z54}, D§={z,5}, I5={z56} .

Then, since IT* has the SP the following equations are derived.

( aly by alg
A3, po) = AD (3, p)=AD(o, p)=| al§ al} al
af a¥f ay
aly aly aig
A3, p3)=AD(0, p) = AD(c, ps)=| al§ al? al3
a} aii af3
aly g aig) aly aty aig
4D, p)=| al§ all @l |, AD(o, p)=|al} alf alg
\a3§ @l alf a} ail ail
aly ay alg)
Ao, po)=| al} aly alg
\ af alf ais
a¥y a3} a3}
AD(3, po) = AP (0, p) = AD(0, p1)=| aB} a} a3}
a¥ ¥y a3
a¥ a3l a3}
AD(3, p3) = AD(0, p) =AD(0, ps)=| aB aF} o
a¥ a3l a3}
a3y a3y azg a¥y a3 i
AP0, p)=| @i aif aif |, AP0, p)=|a a¥f aif
a% a3t a3 ) a3} afl o
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26 26 26

ago Qo1 4oz

2 _| 26 26 26
AP (o, pg)=| aif ai ail
28 28 28

azo 4azy 4z

Ao, po) =A®(o, p)=AP(0, py)=| a3d a3 a3}

AP (o, p3) =430, p)) =4 (0, ps)=| a3y a3l a33

ads adi as3
a3y adi ads ) a3} a3 ad;
A (o, pe)=| a3y adt a33 |, AP(o, py)=|ad} adi ai
agy a3y ags ay adl ad}
a3y adi adl)
A(o, pg)=| aif aif ai} (28)
a3y a3f a3}

, where we use the notation ai instead of aj/.
From (28) B(o) can be constructed, and the following matrix B*(¢) which is merged
with IT* is obtained

10 10 10,20 10,,20 10,20 ,30 10,20 ,30 10,2030
apo Qo1 Q02800 Q02901 Q0290290 Q024002901 Q02402802

alf alt al%ed alfad? alfedlald alfedladl aifadieds

a} i} alfaly a¥alt alladtads ajladedt alfadseds
BY(o)=|al} a} alledd oYl ajledfadl aflelfad] afielfed] | (29)

Al alf alge}s aladt alfelfeds alfalfedt alfaleds

af} af allad} atie}l alledlald aflaflelt aiazled

Q

18 18 18,28 18,28 18,28 ,38 18,2838 18,28 ,38
\ 430 21 Q22G30 Q33037 A323%3030 Q33033437 Q33032433

From (27) and (29), solving a equation B*(s)=A(c) we get three components
AMD, A@) and AB such as (28).
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5. Conclusions

We have shown a method to decompose any n-state stochastic system into inter-
connected m r-state component stochastic systems. Using our method it is mainly
derived that there exists a relationship among n, m and r, and for one outer input,
some specific number of transition matrices are assigned to each component.

Problems to be considered in the future are to decompose a given stochastic system
into components whose transition matrices are identical and to develop a decomposition
method when a number of the connected neighboring components are restricted.

Acknowledgement

The authors would like to thank Professors I. Takanami, K. Inoue and T. Okada
of Yamaguchi University for their useful discussion and encouragement to pursue
our work.

References

1) G. C. Bacon: “The decomposition theory of stochastic automata”, Inf. & Control, 7, 320-339
(1964).

2) J. Hartmanis: “Loop-free structure theory of sequential machines”, Inf. & Control, 5, 25-43
(1962)

3) J. Hartmanis and R. E. Stearns: ‘“Algebraic structure theory of sequential machines”, Prentice
Hall Inc. (1966).

4) S. Fujimoto and T. Fukao: “The decomposition of probabilistic automata”, Bull. Electrotech.
Lab(Tokyo), 30, 688-698 (1966).

5) A.Paz: “Whirl decomposition of stochastic systems”, IEEE Trans., C-20, 1280-1211 (1973).

6) S. Fujimoto; “On the partition pair and the decomposition by partition pair for stochastic
automata”, IECE of Japan Trans. (D), J56-D, 615-622 (1973).

7) A.Kh. Giorgadze and A. G. Safiulina: ‘Iterative decomposition of finite probabilistic autom-
ta”, Autom. & Remote Control, 35, 1448-1451 (1974).

8 S. Kikuchi and E. Fujino: ‘“Homogeneous decomposition of stochastic automata”, IECE
of Japan Trans. (D), J61-D, 827-833 (1978).

9) A.Paz: “Introduction to probabilistic automata”, - Academic Press (1971).

10) T. Kanaoka and S. Tomita: “A whirl decomposition of stochastic systems based on the sub-

stitution property”, Proceedings of the 1st Conference on Foundations of Software Technology
and Theoretical Computer Science (in India), pp. 287-296 (1981).



