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Calculations of Critical Current Densities

for Type-II Superconductors (1)
Yukoh KoBAYASHI*

Abstract

In this paper, for mixed state in Type-II superconductors London equation is solved by using
normal core model which gives boundary conditions in the same way as Coffey, to obtain the
interaction force between a fluxoid and fluxoids lattice. This interacticn force that is repulsive is
considered pinning force as Coffey has proposed.

As loss mechanism normal eddy-current damping and cycloid damping are considered and we
get the expressions of viscous coefficient and induced voltage across superconductor, that are
rather different from the ones given by Kim, et al. Our expression of voltage across the sample
does not equal to v;B/c, which is usually adopted in flux flow theory, where v is fluxoid velocity
and B magnetic induction.

Two forms of critical current density as a function of reduced external magnetic field for a
given criterion voltage appeared in sample are found and plotted for various values of parameters.

Also discussion is made about voltage induced by fluxoid motion in superconductor.

1. INTRODUCTION

As is well known, non-ideal Type-II superconductors show resistance in the mixed state with
transverse magnetic field if transport current is injected above some critical value, and this means
voltage appeares across the superconductors. The induced longitudinal voltage is explained to be
caused by flux-flow phenomenon which means the one that quantized fluxes, which is also called
fluxoids, in the superconductors are driven to move by the Lorentz force JB. against pinning force.
This phenomenon is well discussed by Kim ez a/.1 on the phenomenologica! sides.

Critical current density vs. external magnetic field strength curves, namely Je-H curves, are
fundamental materials when Type-II superconductors are used for many applications, especially
power machines because the loss in the superconductors has great importance there. We show a
typical J.-H curve in Fig. 1.2

Although there are some interpretations®—7> of observed Je-H curves which have empirical
expressions with adjusting parameters, few papers have reported grounded on rather pure theories.

Coffey® has calculated critical current density J: by solving the London equation for simple
normal core medel. His expression gives good agreement with experimental data for some samples
but because of its uniqueness except multipling factor many samples remain outside the expression.
In Fig. 2 a Je-H curve calculated by Coffey’s expression is shown.

In this paper, we try to find new equations to fit experimental data by reforming Cotfey’s

theory and give some discussions about loss mechanism in superconductors.
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Fig. 1 One of the typical shapes of critical current x=H/He

density vs. applied transverse magnetic field. Fig. 2 Calculated curve by Coffeys®

Sample is Nb 50% —Zr alloy that is approxi- expression
mately 7/8—in long rectangular rod, and criterion

voltage is about 1078 V

9. MODIFIED LONDON MODEL

The theory described in this section is almost the same by Coffey® except details.

London equation® may be represented as

h+12curl curl h=10 (D
for 1>¢, where h is the local field in the superconductor, 2 London’s penetration depth, and ¢
coherence length.

De Gennes et all®. replace the right hand side of Eq. (1) by d-function, that is,

h(r)+ 22 curl curl h(r)=Npo 6(r). (2)
(1>%)
Using Maxwell’s equation
curi h=47j, ©

Eq. (2) leads to the following equation ;

[ {ndas+ 4256 5 ai=ngo @

c
which is called. the London fluxoid quantization condition, where ¢o is one quantized flux, i. e.
¢0=hC/’2e=2.07XiO'7 Gems. N should be taken as an integer but there are some experiments!l
which imply that N depends on samples and more over show there exist defects such as flux line
dislocations, point defects, holes and so on in the fluxoid lattice. Thus we had better consider N
is not always an integer but a positive value in the average sense. -Except origin Eq. (2) becomes
72h (r)=h(r)/22, €))
which gives the expression of h (r). If we choose a cylindrical coordinates in an infinite slab

superconductor, as shown in Fig. 3, the general solution of Eq. (5) may be written as the
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Fig. 3 Coordinate system in slab superconductor
with perpendicular magnetic field H for its

surface

following form :

h(r/2) = Clo(r/2) + DKo(r/2), (6)
where Iy and K are modified Bessel functions,
and both C and D are constant. The current

density can be obtained from Eqgs. (3) and (6) :
J(rIN ==z (Ch(r/2)=DKx(r/D)] .
@)

As the K-functions are infinite at the origin of
coordinates, we cut off the solutions at some
radius ro, inside region of which is normal with
no current flow, and outside region is super-
conducting with supercurrent. At the boundary
of r=rp some critical current density flows.

This core model is shown in Fig. 4 (a)?.

Fig. 4 (a) Simple normal core model.

The region with oblique lines is normal and cther

region is superconducting
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Fig. 4 (b) Distributions of magnetic field and
current density among fluxoids are shown

schematically

Magnetic field and current density distributions inside and outside a core are schematically

represented in Fig. 4 (b)®.
and D in Egs. (6) and (7).

9.1 Distributions in an Isolated Fluxoid

On the basis of this core model we can determine the constant C

In the case that one fluxoid exists across infinitely spacious slab we impose the following

boundary conditions on Egs. (6) and (7) :
h(ran/2) = hyy = constant
Ch(r/2)1 =0.

T

®

Then magnetic field and current density are obtained as follows :

LR ~ )

X chgl Kl (I‘/i)
(/R = T Ko Cra/ 1)

)
(10)
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for r= ro.
Putting these formulas into quantization condition, Eq. (4), we find

K 2
nroi2ho+ 272 ho rot ﬁ%ﬁ =Ng¢o (11

or
12)2 1
T rg? ho1+£7—r% Ji(ra/2) = Ngo 12

with quantized flux Ngo. The first term is negligible compared with the second for large «’,
which is defined by

A
"’z?a . _ 13)
and then
A Ki(ra/A)
2 ot rot Ko(roi/2) — Her 4
where
Néo '
o = Hey 15
is applied.

9.9 Distributions in Latticed Fluxoids
In arbifrary magnetic flux density B we consider that flux of N¢o is contained within radius

R, i. e.

Néo
B=-"p5 . (16)

We regard N as independent of B but dependent on samples.
As shown in Fig. 4 (a), fluxoids are arranged to make triangular latticel? so that free energy
may become minimum.
In this case we choose
ha (rop/ 3) = e
j2(R/A) =0 an
(0 <rep=R)
as boundary conditions. ko2 is constant for distance r but dependent on magnetic flux density B
or radius R. Although we regard roe=ro1 later, we distinguish between ro2 and ro1 for easy

understanding at present. From Egs.(6), (7) and {17,

Ki(R/ ) Io(r/2)+Ko(r/A)1(R/A) 3
ha(r/2) =hos | Ky (R To(roa/ 1) + KeCroal Y RCRID) ) (18)
) chos¢ K1 (r/2)I1(R/AD)—K1(R/L(r/2)
Ja(r/ )= 471; K1(R/ D) Io(roz/1) +Ko(roz/2)1(R/ %) ] (19)

are obtained for roe<r<<R. We can see that current density j2(r/1)=0 for 0<r=R because K-
functions decrease monotonously while I-functions monotonously increase'®. Putting these equations

into quantization condition Eq. (4), we get

B 1 ) JRV
or

nroz2hoz + 8’”21:)& Jj2 (roz/2) = Néo @1
or

ho2+§.77:f23 Jo(roe/2)=He . (22)
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Apparently, Eqgs. (9), (0, (18 and (19 seem to be different from ones obtained by Coffey® but the
both are exactly same being considered Eqgs. (1) and 20).
It may be noticed that when radius R go to infinite Eqs. (1§ and 19 become the distributions
in the case of an isolated fluxoid, Egs. (9) and (o).
The field strength in the normal core, which is represented by ho2, may be led from Eq. {18
for ros/2<<<<1 and R/} <<<1, that is,
ho2=B (23)
where we have used the following approximate expressions upon modified Bessel functions :
Ko(2)=In(1/2), K1(z)~1/z,
In()~1, h(z)~z/2, 4
when 0<z<<<<1.

3. FORCE OF FLUXOID LATTICE ON A FLUXOID

A fluxoid symmetrically surrounded by other fluxoids will experience no force but if shifted
from its equilibrium position it should be forced back to the original position. We consider here
such situation that a fluxoid of Ng¢o is displaced to a position where current density js, which is
produced by fluxoid lattice, flows. In this case force of Ngojs/c acts the fluxoid towards the
original point where it was situated initially, and we may write pinning force as

Sfo=Ngojs/c. (25)
By Coffey current density js contributed by fluxoid lattice is approximately given by
Jjs=j2—J1. (26)

If we regard ro1=ro2=ro in the same way as Coffey, we can get

K1(R/2) Ii(r/2)Kolro/2)+Io (ro//lj Kl(’/’l)+2Tj(K1("0//1)Il(r/l)—K1(r/l)11(ro//1))7

9h01)

Js=—\71 7 ;
e K3(R 2ol ro/ )+ Kolro/ AR 1+ 22 (K(ro/ 1)12(Rj2) Kn(R/2) o/ 2,

@n
When ro/A<<<<1, r/A<<<<1 and R/A<<<C1, we can use approximate equations, Eq. @), for

modified Bessel functions, to obtain simpler expression, that is,

) cho1 r
o= e Ra) | 9

Here r should be replaced by displacement 4r. Although this equation should be applied for the
region of ro<<r<R, we use it for 0 <r<R in approximation. :

It should be noticed that we have considered ho1#ho2 to derive ja, i. e. Eq. ), or @9 never-
theless Coffey® has not done so. Then Eq.¢9 gives js= 0 for r= (0, that is equiliblium position,

but Coffey’s equation formally gives infiniay for r=0.

4. INDUCED VOLTAGE

When fluxoids, number of n; per unit area, move stationarily with velocity v, across
slab-shaped superconductor, electric field £, will be generated, i. e.

do 1
Ey= —% A= "¢ Vi nr (Ndo) 29

which is proposed by Kim and co-workersD. - And more over additional field £; may exist within

normal core :

- 30)
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that is insisted by Stephen and Bardeen!#, where e is electron charge, ro normal core radius and 7

Planck’s constant divided by 2 7. Thus total field along the superconductor may be written by

Ei=Ef+E;
nre2nrHep A
=( c 2er02) Ve 31)

Deﬁoting the appeared voltage per unit length along lhe'superconduptor by E, meas}uring transport
current density by J, density of fluxoid core by nc and normal conductivity of the core by «, the
loss per unit volume in the sample

P=EJ (32)
should be equal to consumption in normal core, that is, ‘
P = ne(nro20)E2; » (33)

The number of flowing fluxoids, ns, is the one of unpinned fluxoids, since we consider pinned

fluxoids, which is denoted by np per unit area, cannot flow, and

ny=nc—np, 34
with
B N
nc:m ’ . (35)
B : .
"="Ngo : . (36
and '
1 (B B
ny= 7'L'r0 ( Hcg H(:z)' * (37)
We are restricted here to the case of nc>np ie. . .
B>By. . (38)
With these expressions we can rewrite Eq. &)
H2( B\( B By 1\ 2
P=0"2 (ch)(ch—Hcg+2N) vp? . (39
On the other hand loss P may be expressed with the viscosity coefficient » of the medium as
follows :
P=nv, 2. " (40)

Fluxoids begin to flow when Lorentz force FL per unit volume overcomes pinning force Fp per
unit volume, and force balance equation may be expressed as
Fr—Fp=nysyvL. 41
From Eqs. 69, @ and @), we find
J(B/ Hep) —(¢c/ Hep) Fp

V=G (Heplc) (B Hez) (B/ Ho— B,/ Hep+1/2N)? @2)
and
2 (H'z)2 (B/Hrz)(B/Hrz—Bp/H«z+1/2N)2
T =nro B/Hey—Bp/Hez
(N¢0)6Hr2 (B/Heg) (B/Hep—By/Hea+1/2N)2 | 43)
o2 B/Hez—By/ Hez .
When B>>>B, and N=1 Eq. (3 becomes
po Hep 1\2 ' ' :
1= o2 (ch+ 2) NG

and this formula is the same one as Kim er al.» have shown except the term of 1/2. Although
Kim’s expression is too small to account for the observation at low field, our equation Eq. @3
seems to be agreeable because the denominator becomes small at low field.

Induced voltage along the sample per unit length becomes

Vol.22 No.1 (1971)
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{J(B/Hcp) —(c/Hep) Fp}2 B .
6J(B/Hep)(B/Hep— Bp/Hep+1/2N) 2 45)

in the presence of current flow J,

E=

£. CRITICAL CURRENT DENSITY

We can now calculate the critical current density J., which is defined in such a way as some
criterion voltage E. per unit length alcng the cample aprears. Then Eq. @5 leads

J:(%é\,[(_d%) (’Fﬁ)%rix(x — B/ Hez+1/2N)2
VI o dmmmae v (UL ) @
where we have put
B
X = :[TZ . (47)

Fer a samrple with large «#'=2/1¢, megretic flux dencity B can te replaced by external magnetic
field H with little errcr fcr its magrnetizaticn is very small. We had better to adopt the lower sign
in atove expressicn tecause if pinning force does nct exist critical current density should vanish.
It will be instructive to mention that if criterion voltage E. is negligibly small, Eq. @ reduces

cF,
JC:—B”, (43)

which agrees with usval exptessicn vsed in {lux flcw theory, fcr instance, in the rape of Friedel
et al 1 or Irie et al.?,
As we consicer the case of B>F,, tle pinning force density F, may be given by
Fp=nfo, (49)
where f, is local pinning force. Using Eqgs. @, ©9arnd @9, we get

. I‘[l rodr
e (29 (5) &
where
Ch()[ cH-
# = grrolnCiir) ~ 4 o
and
B
T =4 (52)

and also, Hc is determined so that condensation energy should become H.2/8 . By putting
o zﬁf_" (53)
and substituting Eq. 60 into Eq. @, we find
_ Br(redrN1 1 1 \2_JfBrirodr1 | 1 1 \2\2 §Rr rodr 12
=0 (" St ey V() s+ i3y ) ~{a (R If Josw

for x>7 or

e G e VI ke PO o
(x>71)
where
P Qaz, (56)
nn= —-r+ﬁ | D

Now, we must choose displacement 4r in appropriate manner. We try to show some .cases next.

WIS T i ge sty
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CI1J When magnetic flux density B is small and the distance R between fluxoids is large as
shown in Fig. 5 (a), fluxoid C which is driven by Lorentz force will pass through the middle of
two fluxoids owing to repulsive force among them. This is indicated by an arrow. In this path
fluxoid C will experience maximum repulsive force on the line AB. So that for the calculation of
pinning force we take

A
A
C
C
B B
(@) When 2ro < R. (b) When 2ro=>R.
Fig. 5 Configurations of fluxoids for the choice of displacement Ar
dr=4/3 R (58)
for 2ro=R.

On the other hand, when B is large and 2 ro>R, fluxoid C will knock against other fluxoid
A and B in the movement. Then we put
ar=/3 R—JGro"—R* 9
for 2 ro>R to get maximum resistive force (Fig. 5 (b)).
In this choice of 4r Eq. 5 becomes

Je=a ( l//i+ (x+nn)2 — V{ ji-i— (x+nn)2} —{k%}z ] (60)
(0<x=0.25)

and

Je =a[ k“/:*:/—;@‘;l + %(x—{-nn)? _V{ k“_/“S_—i/_‘*x_‘:l+%(x+n,,)z}2_{ k%}.}]
61)
0.25=x=1)
This curves as a function of x are shown in Fig. 6 where nn=0.5 and k has several values, and
Fig. 7 where k=10-1 and nn varies.
CII) If we choose such that
dr=R—ro , (62)

critical current density may be obtained as follows :

se=al k(m 1)+ x Grrmz =Y { e ( om 1)+ Larma) {k (- 1)) @

This results are shown in Fig. 8 for constant nn and various k’s, and in Fig.9 for constant

k and various nn’s.

6. CONCLUTIONS AND DISCUSSION

We have derived the relation between induced voltage and transport current in Type-II super-
conductors with transverse magnetic field through the consideration of appropriate loss mechanism.
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To get pinning force, we have calculated the repulsive force which acts between a fluxoid and other
fluxoids by solving the London equation for a normal core model. Using obtained pinning force
we have found critical current density representation Eqgs. 60, 6) and €3 as a function of external
magnetic field for a given criterion voltage, which is shown in from Fig. 6 to Fig. 9.

As these curves do not fall down sharply or in very small interval near Hep, it seems to be
difficult for our expressions to agree well with experimental data except some ones including the
region of large x, and further investigations should be done.

There still remain some questionable or remarkable points in our theory and we would like to
describe them below.

1) As usually done, we have written down Eq. ©, which means that loss P dissipated by con-
ductor with unit length and unit cross-sectional area is given by the product of voltage E and current
J in it, but does it hold always? Now we consider a simple electric circuit like Fig.10, where
voltage source S with voltage Ve, resistor R with resistance R» and D. C. generator G, which
is assumed to be constructed by perfect conductor without resistance, are connected in series.

When generator is stopped, current flowing in the circuit is given by

resistor R

Rr Voltage

Source

v o S

D.C.Generator

h=p¢ - (64)

Next, generator is rotated and produces voltage of V¢ against Vg, then current
12=—V§1%VG =h— 11/?(r (65)
will flow through the generator. Though generator has voltage V¢ and current Iz, it will not
dissipate the power V¢ x/I2, because the generator is made of perfect conductor. The work made
for rotating the generator is restored to the source S. From this fact we can understand that
electromotive force induced by magnetic induction does not result in loss. Thus this kind of power
should be removed in our concerns.
2) In our theory we have considered that a pin site catches a fluxoid more strongly than fluxoids
lattice, so-that. if fluxoid number is larger than pin site one, that is, B>B, critical current density
may be decided by rigidity of fluxoids lattice and if fluxoid number is smaller than pin site one,
that is, B<_B,, critical current density may depend on strength of the pin site force. In other
words when B>B,, pinned fluxoids cannot flow while Coffey has assumed that even fluxoids
caught by pin sites can flow. Thus when B<Bp, in Coffey’s theory B, has been replaced by B
simply in critical current density representation for B>B, but in our theory we should put
Fp=5b+Cyp (66)

where C) is strength of a pin site force which will be constant for B.

Val.22 No.l (1971)
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3) Coffey has replaced ko1 in Eqgs. (9) and (0) by ko2 to obtain js that is contribution of fluxoids
lattice, which will lead quantization condition Eq. (11} not to hold, and we have not done so.
And the same time he has taken N= 1, but we have treated N as parameter.

4) We have neglected both pinning loss, which may be caused by hysteresis of pinning and
depinning fluxoids, and the loss which will be dissipated in normal and superconducting transition

process in superconductor when flux flow is occurring.
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