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This paper investigates an alternation hierarchy of alternating multi-counter automata (amca’s)
and some fundamental properties of two-way 1-inkdot amca’s which have sublinear space. We first
show that for each k£ > 1, an alternation hierarchy of alternating k-counter automata (aca(k)’s)

with sublinear space is infinite. We then investigate a relationship between the accepting powers
of amca’s with and without 1 inkdot. We show, for example, that for each k£ > 1 and each I > 1
(I > 1 (I # 3)), sublinear space-bounded two-way aca(k)’s making at most [ — 1 alternations in
any computation path on any input, with the initial state universal (existential) which have 1
inkdot are more powerful than those which have no inkdots.
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1. INTRODUCTION

Alternating Turing machines were introduced in
[1] as a mechanism to model parallel computation,
and related investigations have been continued in
(2], [6]-(10], [13]—[19]. Recently, several prop-
erties of alternating Turing machines with small
space bounds were provided in [2], [4]-[6], [15]—
[19]. For example, von Braunmiihl et al. [2] showed
that there is an infinite alternation hierarchy of
Turing machines with sublogarithmic space.
Ranjan et al. [3] introduced a slightly modified
Turing machine model, called a 1-inkdot Turing
machine. The 1-inkdot Turing machine is a Tur-
ing machine with the additional power of mark-
ing 1 tape-cell in the input (with an inkdot) in
any computation path. Inoue et al. [4]—[6] inves-
tigated some accepting powers of 1-inkdot alter-
nating Turing machines and extended this model
to that which has multiple inkdots.

As is well known, two-counter automata with-
out time or space limitations have the same power
as Turing machines; however, when time or space
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alternating multi-counter automata, I-inkdot, alternation hierarchy,

restrictions are applied, a different situation oc-
curs. For example, hierarchical properties in the
accepting powers of one-way alternating multi-
counter automata operating in realtime, and alter-
nating multi-counter automata which have small
space are investigated in [7]—[9], and [10], respec-
tively.

While many researches have been advanced
and exciting results have been obtained for alter-
nating Turing machines with sublogarithmic
space, as mentioned above, properties of alternat-
ing multi-counter automata with sublinear space
are little researched as far as we know. On the
other hand, we think that alternating multi-
counter automata can be a theoretical model of
parallel computation simpler than alternating Tur-
ing machines. From the foregoing reasons, it is
valuable to make an exhaustive study of the au-
tomata.

In this paper, we investigate an alternation
hierarchy of multi-counter automata and some
properties of 1-inkdot alternating multi-counter
automata which have sublinear space.
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Section 2 gives the definitions and notations
necessary for this paper. Let strong-2¥,CA(k,
s(n)) (weak-2%;CA(k,s(n))) and strong-2I;CA
(k, s(n)) (weak-2I;CA(k, s(n))) denote the classes
of sets accepted by strongly (weakly) s(n) space-
bounded two-way alternating k-counter automata
making at most [ — 1 alternations in any computa-
tion path on any input, with the initial states exis-
tential and universal, respectively, and let strong-
2%,CA*(k,s(n)) (weak-25;CA*(k,s(n))) and
strong-2I[;,CA*(k,s(n)) (weak-2IL;CA*(k, s(n)))
denote the classes of sets accepted by strongly
(weakly) s(n) space-bounded two-way 1-inkdot al-
ternating k-counter automata making at most {1
alternations in any computation path on any in-
put, with the initial states existential and uni-
versal, respectively. We also denote by strong-
25, TM(s(n)) (weak-25;TM(s(n))) and strong-
I, TM(s(n)) (weak-2IL;TM(s(n))) the classes of
sets accepted by strongly (weakly) s(n) space-
bounded two-way alternating Turing machines
making at most [ — 1 alternations in any computa-
tion path on any input, with the initial states exis-
tential and universal, respectively, and denote by
strong-25;TM*(s(n)) and strong-2II;,TM*(s(n))
the classes of sets accepted by strongly s(n) space-
bounded two-way 1-inkdot alternating Turing ma-
chines making at most { — 1 alternations in any
computation path on any input, with the initial
states existential and universal, respectively.

Section 3 investigates an infinite alternation
hierarchy of alternating multi-counter automata
with sublinear space. It is shown in [2], for exam-
ple, that for each [ > 2, strong-2X;TM(loglogn)
— weak-2I[;TM(o(log n)) # ¢ and strong-2I[,;TM
(loglogn) — weak-2X,TM(o(logn)) # ¢. In cor-
respondence to this result, we show, for example,
that for each [ > 2 and any function s(n) such
that logs(n) = o(logn), strong-2I[;CA(1,logn)
— Ur<icooweak-25,CA(k,s(n)) # ¢ and strong-
25,CA(1,logn) — Uickcooweak-2IL;CA(k, s(n))
# ¢

Section 4 investigates a relationship between
the accepting powers of alternating multi-counter
automata with and without 1 inkdot. It is shown
in [4], [6], for example, that strong-2%;TM"
(loglogn) — weak-25;TM(o(logn)) # ¢
and strong-2I1; TM*(loglogn) — weak-211;TM
(o(logn)) # ¢. In correspondence to this result,
we show, for example, that for any s(n) such that
logs(n) = o(logn), strong-2X,CA*(1,logn) —
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Ur<kcooweak-2I,CA(k,s(n)) # ¢ and strong-
2I;CA*(1,log n) — Ui <kpcooweak-252CA(k, s(n))
£ 6.

Section 5 concludes this paper by giving some
open problems.

2. PRELIMINARIES

A multi-counter automaton is a multi-pushdown
automaton whose pushdown stores operate as
counters, i.e., each storage tape is a pushdown
tape of the form Z* (Z fixed). (See [11], [12] for
formal definitions of multi-counter automata.)

A two-way alternating multi-counter automa-
ton (2amca) M is the generalization of a two-way
nondeterministic multi-counter automaton in the
same sense as in [1], [13], [14]. That is, the state
set of M is divided into two disjoint sets, the set of
universal states and the set of existential states,
Intuitively, in a universal state M splits into some
submachines which act in parallel, and in an exis-
tential state M nondeterministically chooses one
of possible subsequent actions. Of course, M has
a specified set of accepting states. We assume that
M has the left endmarker “¢” and the right end-
marker “$” on the input tape, reads the input
tape in two directions (that is, right or left), and
can enter an accepting state only when falling off
the right endmarker §. We also assume that in
one step M can increment or decrement the con-
tents (that is, the length) of each counter by at
most one. For each k > 1, we denote a two-way
alternating k-counter automaton by 2aca(k).

An instantaneous description (ID) of 2aca(k)
M is an element of

£* x (N U{0}) x Su,

where ¥ (¢,$ ¢ ) is the input alphabet of M, N
denotes the set of all positive integers, and Sy =
Q x ({Z}*)*, where @Q is the set of states of the
finite control of M, and Z is the storage symbol
of M. The first and second components, w and ¢,
of an ID I = (w,1,(q,(a1,02,...,ax))) represent
the input string and the input head position, re-
spectively. Here, we note that 0 < 7 < |w| + 2,
where for any string v, |v| denotes the length of
v. “07, “17, “lw| + 17 and “|w| + 2”7 represent
the positions of the left endmarker ¢, the leftmost
symbol of w, the right endmarker $ and the im-
mediate right to §, respectively. The third com-
ponent (g, (a1, az,...,ag)) (€ Sy) of I represents
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the state of the finite control and the contents of
the k£ counters. An element of Sy is called a stor-
age state of M. If ¢ is the state associated with
an ID I, then [ is said to be a universal (ezisten-
tial, accepting) ID if ¢ is a universal (existential,
accepting) state. The initial ID of M on w € &*
is In(w) = (w,0,(go,(A,...,)))), where go is the

initial state of M and A delilotes the empty string.
We write I by I’ and say I’ is a successor of
I'if an ID I’ follows from an ID I in one step,
according to the transition function of M.
A computation path of M on input w is a se-
quence fo bpr Iy Fpp oo by 1, (0> 0), where
A computation tree of M is a finite, nonempty
labeled tree with the following properties:

1. each node v of the tree is labeled with an
ID, {(v),

2. if v is an internal node (that is, a non-leaf)
of the tree, {(v) is universal and {I|{(v)

I} = {Ii,I,...,I,}, then v has exactly r
children py,ps,...,p, such that Up;) = I,
and

3. if v is an internal node of the tree and £(v)
is existential, then v has exactly one child p
such that £(v) ks £(p).

A computation tree of M on input w is a computa-
tion tree of M whose root is labeled with Ips(w).
An accepting computation tree of M on w is a
computation tree of M on w whose leaves are all
labeled with accepting ID’s. We say that M ac-
cepts w if there is an accepting computation tree
of M on w. We denote the set of input words
accepted by M by T(M).

M makes an alternation if it changes an exis-
tential state into a universal state or vice versa.

A one-way alternating multi-counter automa-
ton (lamca) is a 2amca which reads the input tape
from left to right only. For each k > 1, let laca(k)
denote a one-way alternating k-counter automa-
ton.

Let s : N — R be a function, where R denotes
the set of all nonnegative real numbers. For each
x € {1,2} and each k > 1, xaca(k) M is weakly
(strongly) s(n) space-bounded if for any n > 1 and
any input w of length n accepted by M, there is an
accepting computation tree 7 of M on w such that
for each node v of 7, the length of each counter
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in {(v) is bounded by s(n) (if for any n > 1 and
any input w of length n (accepted or not), and
each node v of any computation tree of M on w,
the length of each counter in {(v) is bounded by
s(n)). A weakly (strongly) s(n) space-bounded
xaca(k) is denoted by weak-xaca(k, s(n)) (strong-
xaca(k, s(n))).

Let ¢ : N — N be a function. For each m €
{weak, strong}, each x € {1,2} and each k > 1,
and any function s : N — R, we say that an m-
xaca(k,s(n)) M operates in time t(n) if for any
n 2 1 and each input w of length n accepted by
M, there is an accepting computation tree T of
M on w such that the length of each computation
path of 7 is at most ¢(n). An m-laca(k,s(n)) M
operates in realtime if t(n) = n+ 1. For operating
time, we are only interested in realtime in this
paper.

For each m € {weak, strong}, each x € {1,2},
each £ > 1 and each I > 1, and any function
s : N — R, we denote by m-xoca(k, s(n)) (m-
xmica(k, s(n))) a m-xaca(k, s(n)) making at most
I — 1 alternations in any computation path on any
input, with the initial state existential (universal).

For each m € {weak, strong}, each k > 1 and
each | > 1, and any function s : N — R, an
m-20ca(k, s(n)) (m-2mca(k, s(n))) with 1 inkdot,
denoted by m-20;ca*(k, s(n)) (m-2mca*(k, s(n))),
can mark 1 tape-cell on the input (with an inkdot)
in any computation path. This tape-cell is marked
once and for all (no erasing) and no more than
one dot of ink is available. The action of the ma-
chine depends on the current state, the currently
scanned input, the current contents of counters,
and the presence of the inkdot on the currently
scanned tape-cell.

For each m € {weak, strong}, each x € {1,2},
each £ > 1 and each { > 1, and any function
s: N — R, we define

m-xACA(k,s(n)) = {L|L = T(M) for some
m-xaca(k,s(n)) M},
m-x%;CA(k,s(n)) = {L|L = T(M) for some
m-xoca(k,s(n)) M},
m-xIl;CA(k, s(n)) = {L|L = T(M) for some
m-xmica(k,s(n)) M},
weak-1%,CA(k, s(n), real)
={L|L = T(M) for some
weak-1ojca(k,s(n)) M
operating in realtime},
weak-11[;CA(k, s(n), real)
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= {L|L = T(M) for some
weak-1mca(k,s(n)) M
operating in realtime},
m-25,CA*(k,s(n)) = {L|L = T(M) for some
m-20;ca*(k,s(n)) M}, and
m-2IL,CA*(k,s(n)) = {L|L = T(M) for some
m-2mca*(k,s(n)) M}.

An alternating Turing machine (aTm) we con-
sider in this paper has a read-only input tape
with the left endmarker ¢ and the right endmarker
$, and a separate storage tape. (The reader is
referred to [15], [16] for the formal definition of
aTm’s.) For any function s : N — R, we de-
note a weakly (strongly) s(n) space-bounded one-
way aT'm and two-way aTm by weak-1aTm(s(n))
(strong-laTm(s(n))) and weak-2aTm(s(n))
(strong-2aTm(s(n))), respectively. (See [2]-[6],
[15]—[19] for the definition of weakly (strongly)
s(n) space-bounded aTm’s.) For each m € {weak,
strong}, each x € {1,2} and each I > 1, and
any function s : N — R, we denote by m-xo;Tm
(s(n)) (m-xmTm(s(n))) a m-xaTm(s(n)) making
at most | — 1 alternations in any computation
path on any input, with the initial state existential
(universal), and denote by m-20;Tm*(s(n)) (m-
omTm*(s(n))) a m-20;Tm(s(n)) (m-2mTm
(s(n))) with 1 inkdot. (The reader is referred to
[3]—[6] for formal definitions of m-20;Tm*(s(n))
and m-2m; Tm*(s(n)).)

For each m € {weak,strong}, each x € {1,2}
and each [ > 1, and any function s : N — R, we
define

m-xATM(s(n)) = {L|L = T(M) for some
m-xaTm(s(n)) M},
m-xX, TM(s(n)) = {L|L = T(M) for some
m-xo;Tm(s(n)) M},
m-xI[ TM(s(n)) = {L|L = T(M) for some
m-xm; Tm(s(n)) M},
m-25,TM*(s(n)) = {L|L = T(M) for some
m-20;Tm*(s(n)) M}, and
m-21, TM*(s(n)) = {L|L = T(M) for some
m-2m;Tm*(s(n)) M}.

The following lemma can be easily proved.
From now on, logarithms are base 2.

Lemma 2.1. For each m € {weak, strong}, each

x € {1,2}, each Y € {%, 11} and each [ > 1, and
any function s : N — R,
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(1) U1§k<oom'XACA(k73("))

C m-xATM(log s(n)),
(2) Ulgkmm-xYlCA(k,s(n))

C m-xY;TM(log s(n)), and
(3) U1§k<oom'2YlCA*(k7s(n))

C m-2Y; TM*(log s(n)).

It is shown in [17] that

o strong-1ATM(o(logn)) is the class of regu-
lar sets and

o weak-2ATM(o(loglogn)) is the class of reg-
ular sets.

From this result and Lemma 2.1, we can show
that for any functions s; : N — R such that
log s1(n) = o(logn) and s; : N — R such that
log s2(n) = o(loglogn),

. U1§k<003t7’0"9-1ACA(k,Sl(n)) is the class
of regular sets and

. UISKOOweak-‘ZACA(k,sQ(n)) is the class of
regular sets.

At the end of this section, we further give two
notations: for each string w, wf and w(7) denote
the reversal and the i-th symbol (from the left) of
w, Tespectively.

3. AN INFINITE ALTERNATION HI-
ERARCHY WITHOUT INKDOTS

It is shown in [2] that the alternation hierarchy for
aTm’s with space-bounds between loglogn and
log n is infinite. This section investigates an infi-
nite alternation hierarchy for lamca’s and 2amca’s
with sublinear space (without inkdots). Through-
out this section, we need the languages in [2] de-
scribed below.

For each i € N, a special symbol & is intro-
duced. Let

D, = {0,1}* and
Diyv = (Di{#})* - D; foreach 1 > 1,
iDy(v) = {0,1}* —{u} and
VDy(u) = {u}, and for each i 21,
3D;y1(u) {(W1aWai ... #Wn € Dyl
35(1 < j < m)[W; € VDi(u)]
& m > 1} and
VDip(u) = {WigWas...#W, € Dit|

Vi(l < j < m)[W; € 3Di(u)]
& m>1}.
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C, and checks whether both the sym-
bols satisfy (i) or (ii) above. (It deter-
mines whether they should be the same
or not, by checking the first occurrence
of 1in y;4q. If the symbol 1 has al-
ready occurred, then y;;;(j) and vi(7)
should be the same; otherwise, y;(5)
and y;11(j) should not be the same.)

* In another branch, it reads the next
symbol y;(j + 1), stores it in the finite
control, and adds Z to C in order to
store Zi*t1in C.

In this way, M3 can check if Yi+17 is one more
than 3, (1 < i< n) using only universal branches
and only one counter, and operating in one-way.
It will be obvious that if y,fy,_14...4y; is such a
string that y; = B(¢)® for each i (1 < i < n), then
the length of y, (= B(n)R) is equal to [logn], and
thus the length of C is bounded by log n. Further-
more, it is clear that Mj; operates in realtime.
(IT) The language

L] = {wisws...sw,futB(n)B(n — 1)y
L ABMBE R >2&m>1&
t>1&ue{0,1}Mlsn g
Vi(l < i< m){w; € Dy & w; # u]}

is accepted by a weak-1myca(l,log n) My operat-
ing in realtime as follows. Suppose that an input
string

Tr = wl:#w%i ce #wmuuﬁynﬁyn~1ﬂ s “ylﬁt

(wheren > 2, m > 1and t > 1, and w;’s, ¥;’s and
u are all in {0,1}*) is presented to MY. (Input
strings in the form different from the above can
easily be rejected by My .)

MJ moves on z while making a universal
branch at the first symbol of each w; (1 <1 < m).

(A) Inone branch, My continues the action above
until it reads the first §, and then makes a
universal branch to check the following two
points:

(a) whether |u| = |y,]|, and
(b) whether y; = B(i)F for each i (1 < i<

(a) and (b) can be checked in a way as de-
scribed in (I).
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(B) In another branch, My immediately enters
an existential state, guesses some j (1 <5<
|w;]), and compares w;(7) with u(j) in order
to check if w;(5) # u(j).

2. Assume that assertion (1) of this lemma holds
for L7 and LY (i = 3,4,...,1— 1). We shall prove
assertion (1) of the lemma holds for L7 and Ly,
too.

(I) An input string z in L3 has the form z =
WS with W in 3Dj(u), W = W;'3'W,'3 ... '3
W with W; in VD;_(u) for some i 1<i<
m), and S = fufB(n)FY.. $B(1)FH, where u is
in {0,1}Mesn] and ¢ 21, m>1and n > 2. By
the assumption above, there is a realtime weak-
Im_jca(1,logn) Mﬁl which accepts W;§ iff W; is
in VD;_q(u). LlEi is accepted by a realtime weak-
lojca(l,logn) M7 acts as follows. Suppose that
an input string

L= WIZ;IW2[;1 cee l;ﬁ]Wmﬁuuyn“yn-lﬁ cee uylﬁt
(wheren > 2, m > land ¢ > 1, and W,’s are all in
{0,1,4,%,... ,'# )} and y;’s are all in {0,1}*) is
presented to M7. (Input strings in the form differ-
ent from the above can easily be rejected by M7.)
MIEi first guesses some i (1 < 7 < m) and runs on
z to W,. Mla then enters a universal state, and
acts just like M}’L] above, but ignores any sym-
bols between the next 'z (just after W;) and the
first f.

(IT) An input string « in L) has the form z = W §
with W in VDi(u), W = W,'5W,'5 ... '¥w,,
with Wi in 3D;_;(u) foralli (1 < i < m),and § =
fuf B(n)R4 ... §B(1)Rf, where u is in {0, 1} Nogn}
and ¢ > 1, m > 1 and n > 2. By the assumption
above, there is a realtime weak-10;_;ca(1,log n)
Mf'_1 which accepts W;§ iff W, is in dD;_q(u).
There is a realtime weak-1m;ca(1, log n) MY which
accepts LY as follows. Suppose that an input
string ¢ described in (I) above is presented to MY
M) moves on z while making a universal branch
at the first symbol of each W; (1 < i < m).

(A) Inone branch, M) continues the action above
until it reaches the first §. After that, My
runs to the right endmarker $, and enters an
accepting state.

(B) In another branch, MY enters an existential
state, and acts just like M13~1 above, but ig-

nores all the segments between the next 'z’
and the first .
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Now, let us define the following witness languages:
for each [ > 2,

L} = {wiuBm)B(n - . 4B
w e ID(u) & u € {0, 1}Mlesnl
&n>2&t>1}, and

Ly {wiui B(n)R§B(n — Y. BT
w e ¥D(u) & u € {0,1}len]
&n>2&t>1},

li

Il

where for each positive integer i > 1, B(i) denotes
the string in {0,1}* that represents the integer ¢
in binary notation (with no leading zeros). The
following lemma is shown in [2].

Lemma 3.1. For each [ > 2,

(1) L? € weak-15,TM(loglogn) and
LY € weak-111;TM(loglog n),

(2) L} € strong-2%,TM(loglog n) and
L} € strong-21I;TM(loglogn), and

(3) L7 ¢ weak-2I[;TM(o(log n)) and
LY ¢ weak-2%;TM(o(logn)).

In correspondence to this result, we can show the
following lemma.

Lemma 3.2. For each [ > 2,
(1) L7 € weak-1%,CA(1,log n, real) and
LY € weak-111;CA(1,log n, real),
(2) L7 € strong-25,;CA(1,logn) and
LY € strong-2I[;CA(1,log n),
and for any function s : N — R such that log s(n)
= olog n),
(3) L2¢ Usckcooweak-2ICA(k, s(n)) and
L ¢ Ulgk@oweak-‘ZEICA(k,s(n)).

The proof of (1). We prove (1) of this lemma
by using induction for ! (> 2).

1. (I) The following weak-1o,ca(1,logn) M3 op-
erating in realtime accepts the language

I3 = {wiswos . . swmfui B(n)*§B(n - 1Ry
LABMEE R >2&m>1&
t>18&ue {01} &

Vi(l <1< m){w; € D1} &
3j(1 < 5 < m)[w; = ul}.

Suppose that an input string
T = wl#wZ;# e ;wmﬂuﬁynﬁyn—lﬁ cee ﬁylﬁt
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(wheren > 2, m > 1andt > 1, and w;’s, y;’s and
u are all in {0,1}*) is presented to M3. (Input
strings in the form different from the above can
easily be rejected by M3

M3 first existentially guesses some j (1 < j <
m), and runs to w;. M5 then makes a universal
branch.

(A) In one branch, in order to check whether
w; = u, M3 universally checks if w;(i) =
u(i) for each i (1 < ¢ < |wj|). That is,
to verify w;(i) = u(i), M3 stores i in its
counter when it picks up the symbol w;(7),
compares the symbol w;(7) with the symbol
u(i) by using Z* in the counter, and enters
an accepting states only if w;(i) = u(z).

(B) In another branch, M3 branches to check the
following two points:

(a) whether |u| = |y, and
(b) whether y; = B(:)f for each i (1 <1 <
n).

(a) above can easily be checked by using
only one counter, and M3 enters an accept-
ing state only if (a) is successfully checked.
(b) above can be checked as follows. M3
essentially uses the algorithm in [10], [15].
By using universal branches and only one
counter, M3 can check in a way described
below whether y; = B(i)F for each i (1 <
i < n). M3 compares y;41 with y;, and veri-
fies that y;+1 7 represents in binary notation
(with no leading zeros) an integer which is
one more than the integer represented by
y;f in binary notation (with no leading ze-
ros). In doing so, M3 will compare the j-th
symbols of y; and yit1, for all appropriate
j. Observe that if y;41't is one more than
y;ft, then (i) yiy1 = 0™1z and y; = 10z,
where z is a string (finishing with 1) over
{0,1} and m is some non-negative integer,
or (i) ¥iy1 = 0™1 and y; = 1™, where m is
some positive integer. Let C' be the counter
of M3. For each j (1 < j < |yi41]), M stores
the symbol y;41(j) in its finite control and
ZJ in C just after it has read the symbol
yi+1(j), and makes a universal branch.

o In one branch, it compares y;+1(j) with
the symbol y;(j) by using Z’ stored in
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Clearly, the lengths of the counters of Mla and
MY are bounded by [log n], because those used in
the computation are basically equal to the lengths
of the counters of M3 and MY when they enter
accepting states. M3 and My on accepted inputs
use no more than [logn] space, which is shown as
in 1 above.

The proof of (2). It is shown in [10] that the
language

{B)IB(2)}...4B(n)|n > 2}

is accepted by a strongly log n space-bounded two-
way deterministic 1-counter automaton. For each
1> 2, L7 (resp., L) can be accepted by strong-
20ica(1,logn) (resp., strong-2mca(1,logn)) M as
follows. M begins by examining whether the suf-
fix of a given input is of the form B(n)R§B(n —
DRt 4B(1)F (= (B(1)tB(2)t...4B(n))F) in the
way as in [10]. If this examination is successful
and M stores Z[°gnl ip itg counter, then M can
check by using the same technique as in the proof
of (1) of this lemma whether the given string is a
desired one.

The proof of (3). It is shown in [2] that L} and
LY are not in weak-2I[;TM(o(logn)) and weak-
2X;TM(o(logn)), respectively. (3) follows from
this result and Lemma 2.1. a

From this lemma, we have the following theorem
and corollaries.

Theorem 3.1. For each ! > 2, and any func-
tion s: N — R such that log s(n) = o(log n),
(1) weak-1X;CA(1,log n,real)
N strong-2X;CA(1,logn)
— Ur<k<ooweak-2IL,CA(k, s(n)) # ¢, and
(2) weak-11T;CA(1,log n,real)
N strong-2II;CA(1,logn)
= Urckeooweak-25,CA(k, s(n)) # &.

Corollary 3.1. For each [ > 2, each k > 1
and each m,m’ € {weak, strong}, and any func-
tion s : N — R such that s(n) > logn and
log s(n) = o(log n),

(1) m-2%,CA(k,s(n)) is incomparable with m/-
2I1,CA(k, s(n)),

(2) weak-1%;CA(k,s(n),real) is incomparable
with m-2II[;CA(k, s(n)), and

(3) weak-1II;CA(k, s(n),real) is incomparable
with m-2E,CA(k, s(n)).

Corollary 3.2. For each [ > 1, each k > 1, each
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m € {weak, strong} and each Y, Y’ € {%, 11}, and
any function s : N — R such that s(n) > logn
and log s(n) = o(logn),
(1) m-2Y,CA(k, s(n))

G m-2Y],  CA(k,s(n)),
(2) weak-1Y;CA(k,s(n))

& weak-1Y], , CA(k, s(n)), and
(3) weak-1Y,CA(k, s(n),real)

¢ weak-1Y[, , CA(k, s(n),real).

We then show a relationship between one-way
and two-way operations, and strongly and weakly
space-bounds.

Theorem 3.2. For each Y € {Z,1I}, and any
function s : N — R such that log s(n) = o(logn),
strong-2Y,CA(1,logn)
— Ui<k<ooweak-1ACA(k, s(n)) # ¢.

Proof. Let

Ly = {B(1)}B(2)f...4B(n)2wecw cwye. .. cw,
n>2&r>1&we {0,1}[]05”]

& Vi(1 <1 < r)w; € {0,1}7]

& 3j(1 <5 < r)[w = w,;]}, and
{B(L}B(2)} ...t B(n)2wew;cwae . . . cw, |
n>2&r>1& we {0,1}Mosn

& Vi(1 <4 < r)[w; € {0,1}Mosn]

& w# w;]}.

Then, (i) ‘L1 € strong-25,CA(1,logn)’ and (ii)
‘L1 & Ur<kcooweak-1ACA(k, s(n))’ are essentially
proved in [10]. On the other hand, (iii) ‘L, €
strong-2II;CA(1,logn)" and (iv) ‘Ly ¢ weak-
1ATM(o(logn))’ can be proved in the same way
as in the proofs of Lemma 4.1 in [10] and Lemma

1 in [16], respectively. From (iv) and Lemma 2.1,
‘Ly & Ui<kcooweak-1ACA(k,s(n))’ follows. So,
the full proofs are omitted here. a

Ly =

Corollary 3.3. For each [ > 2 and each k£ > 1,
and any function s : N — R such that s(n) >
log n and log s(n) = o(logn),
(1) weak-1%,CA(k, s(n))

¢ weak-25,CA(k,s(n)), and
(2) weak-11;CA(k, s(n))

¢ weak-211;CA(k, s(n)).

Let weak-2DCA(k,s(n)) (strong-2DCA(k,
8(n))) denote the class of sets accepted by weakly
(strongly) s(n) space-bounded two-way determin-
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istic k-counter automata. It is shown in [10] that
for any function s : N — R such that logs(n) =

o(logn),

weak-2DCA(4,logn)

— Ur<keoostrong-2ACA(k, s(n)) # ¢, and
weak-15,CA(3,logn)

~ Ur<kcoostrong-2ACA(k, s(n)) # ¢.

From this result, the following corollary is shown.

Corollary 3.4. Let s : N — R be a function
such that s(n) > logn and logs(n) = o(logn).
Then,
(1) strong-2Y,;CA(k,s(n))

¢ weak-2YCA(k, s(n))
for each Y € {Z, 11}, each [ > 2 and each k > 3,
(2) strong-22,CA(k, s(n))

¢ weak-2X1CA(k, s(n))
for each k > 3, and
(3) strong-2I1; CA(k, s(n))

¢ weak-211; CA(k, s(n))
for each k > 4.

4. THE POWER OF ONE INKDOT

This section investigates a relationship between
the accepting powers of space-bounded 2amca’s
with and without 1 inkdot. This investigation is
based on the results of 2aTm’s in [4], [6]. Inoue et
al. [4], [6] showed that

strong-2X1 TM*(loglog n)

— weak-2X1,TM(o(logn)) # ¢,
strong-211; TM*(loglog n)

— weak-2I1; TM(o(logn)) # ¢, and
strong-2I13TM*(log log n)

— weak-2ATM(o(log n)) # ¢.

In correspondence to this result, we can show sev-
eral results for 2amca’s. In order to do so, we first
give the following two lemmas.

Lemma 4.1. Let L3 and LY be the languages
described in the proof of (1) of Lemma 3.2. Then,
(1) L3 € strong-2£;CA*(1,logn), and

(2) LY € strong-211;CA*(1,log n),

and for any function s : N — R such that log s(n)
= o(log ),

(3) LY ¢ Ur<kcooweak-252CA(k, s(n)), and

(4) L3 ¢ Ui<kcooweak-2I,CA(k, s(n)).
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The proof of (1) (resp., (2)). We can construct
a strong-20ica*(1,logn) (tesp., strong-2mica*(l,
logn)) M which acts as follows. Suppose that an
input string

¢w1;#’w241# AN #wmﬁutiynﬂyn_w s

(where n > 2, m > 1 and ¢t > 1, and w;’s, y;’s
and u are all in {0, 1}*) is presented to M. (Input
strings in the form different from the above can
easily be rejected by M.) For each i (1 <4 < n),
M can first check whether y; = B(:)F and store
ZMogn] i its counter when y; = B(i)F, as in the
same way in the proof of (2) of Lemma 3.2. (Of
course, M never enters an accepting state if y; #
B(i)R for some 1 < i < n.) If M successfully com-
pletes the action above, then it checks by using
7 Mogn] stored in the counter if |u| = [logn]. After
that, M existentially guesses some j (1 < j < m),
and marks the symbol # just before w; by the
inkdot in order to check whether u = w; (resp.,
M universally branches and marks the symbol #
just before w; by the inkdot in order to check
whether u # w; for each j (1 < j < m)). Finally,
M checks by using Z[l¢ "] in its counter whether
|w;| = [logn], and then deterministically checks
by using the inkdot as a pilot whether u = w;
(resp., M deterministically checks by using the
inkdot as a pilot whether v # w;). That is, for
example, M stores Z* (1 < i < |u| = [logn])inits
counter when M picks up the symbol w;(¢) and by
using Z' in its counter compares w;(7) with u(%)
while moving its input head back and forth. (For
the check, it is clear that logn space is sufficient.)
M enters an accepting state only if these checks
above are all successful. It will be obvious that M
accepts the language L3 (resp., LY).

The proofs of (3) and (4). These proofs have
been already shown in Lemma 3.2 (3). a

Lemma 4.2. Let

Ls {B(L){B(2)}...4B(n)cwicwzc. ..
cwyecuicuge. .. cupln > 2 & (r,r' > 1)
L Vi1 <i< Vil <5< 7)

[wi,u; € {0,1}1°8™] & Vi(1 < i < r)
[35(1 < 5 < r')wi = u;]]} and
{B(1)§{B(2)}...4B(n)cwicwzc. ..
cwyecuycusc. .. cpln > 2 & (ryr' > 1)
&Vi(l<i<rVj(l<j<r)

Il

Ly

i



ALTERNATION FOR TWO-WAY (INKDOT) MULTI-COUNTER AUTOMATA WITH SUBLINEAR SPACE (109) 109

[wi,uj € {0,131 & (1 < i < 7)
[Vi(1 <5 < r)w; # )]}

Then,

(1) L3 € strong-2II3CA*(1,logn), and

(2) Ly € strong-2¥X3CA*(1,logn),

and for any function s : N — R such that log s(n)
= o(logn),

(3) Lz ¢ Urckcooweak-2ACA(k, s(n)),

(4) Ls ¢ U1;k<ooweak—221CA*(/c,s(n)), and

(5) La & Urcpeooweak-2IT; CA*(k, s(n)).

The proof of (1) (resp., (2)). One can con-
struct a strong-2mzca®(1,logn) (resp., weak-
203ca™(1,logn)) M which accepts L3 (resp., Ly)
as follows. Suppose that an input string

gyifyat . . fyncwicwsac. .. cwpccurcuge. .. cup$

(where n > 2 and (r, 7' > 1), and y,’s and w;’s are
all in {0,1}*) is presented to M. (Input strings
in the form different from the above can easily
be rejected by M.) M first stores Z[°871 iy jts
counter when y; = B(7) for each 1 < ¢ < n in the
way as in [10]. M then checks by using ZMosn]
stored in the counter if |w;| = ... = |w,| = |uy| =
... = |up| = [logn]. After that, M universally
checks whether for all i (1 <4 < r), w; = u; for
some j (1 < j < r') (resp., M existentially checks
whether for some i (1 <7 < r), w; # u; for all j
(1 £j < 7')). That is, for example, in order to
check if w; = u; for some j (1 < j < ¢'), M first
branches, marks the symbol ¢ just before w; by
the inkdot for each ¢ (1 <7 < r), and then moves
to the right to existentially choose u; (resp., in
order to check if w; # uj forall j (1 <j < ), M
first guesses some 7 (1 < ¢ < r), marks the symbol
¢ just before w; by the inkdot, and then moves
to the right to universally choose u;). After that,
by universally checking if w;(t) = u;(t) for all ¢t
(1 <t < [logn]) (resp., by existentially checking
if wi(t) # u;(t) for some t (1 < t < [logn])), M
can check if w; = u; (resp., w; # u;). For this
check, it is sufficient to use only one counter and
use only its contents of length logn. It will be
obvious that L3 (resp., Ly) = T(M).

The proofs of (3), (4) and (5). It is shown in
(6] that ‘L3 ¢ weak-2ATM(o(logn))’, ‘L3 ¢ weak-
2X,TM*(o(logn))’, and ‘Lsy ¢ weak-211;TM*
(o(log n))’. From this result and Lemma 2.1, (3),
(4) and (5) follow. 0

From these two lemmas, we give the following the-
orem.

Theorem 4.1. For any function s : N — R such
that log s(n) = o(log n),
(1) strong-2X;CA*(1,logn)

— Ui<k<ooweak-2I1,CA(k, s(n)) # ¢,
(2) strong-2I1; CA*(1,logn) —

~ Ushenoweak-25,CA(, s(n)) # ¢,
(3) strong-2I13CA*(1,logn)

— Ur<kcooweak-2ACA(k, s(n)) # ¢, and
(4) strong-254CA*(1,log n)

~= Ui<k<ooweak-2ACA(k, s(n)) # ¢.

We conjecture that for any function s : N — R
such that log s(n) = o(logn),

strong-2X3CA*(1,log n)
- U15k<m/weak-2ACA(k,s(n)) # .

Unfortunately, we have no sufficient proof for this
conjecture.

Corollary 4.1. For each m € {strong,weak}
and each k¥ > 1, and any function s : N — R such
that s(n) > logn and log s(n) = o(log n),

(1) m-2II;CA(k, s(n)) & m-2IL,CA*(k, s(n))

for each I > 1, and

(2) m-2%X,CA(k, s(n)) G m-25;CA*(k, s(n))

for each { > 1 (1 # 3).

5. CONCLUSION

We conclude this paper by enumerating several
open problems related to this paper.

Let s : N — R be a function such that log s(n)
= o(logn).

(1) strong-253CA*(1,logn)
- U15k<oowea,k~2ACA(k,s(n)) # @7
(2) For each Y € {X,II} and each [ € {1,2},
strong-2Y,CA*(1,logn)
— Uick<ooweak-2ACA(k, s(n)) # ¢?

Let s : N — R be a function such that s(n) >
log n and log s(n) = o(log n).

(3) For each k; € {1,2}, each k; € {1,2,3},
each Y € {¥,II}, and each | > 2,

o strong-2X,CA(ky,s(n))
G weak-2E;1CA(ky,s(n))?,
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o strong-2I1; CA(kz,s(n))
- weak-2I11CA(kz,s(n))?, and

o strong-2Y,CA(ky,s(n))
- weak-2Y | CA(k1,s(n))?

Let weak-2DCA*(k,s(n)) (strong-2DCA*(k,
s(n))) denote the class of sets accepted by weakly
(strongly) s(n) space-bounded two-way 1-inkdot
deterministic k-counter automata, and let weak-
2DTM(s(n)) (strong-2DTM(s(n))) and weak-
2DTM*(s(n)) (strong-2DTM*(s(n))) denote the
classes of sets accepted by weakly (strongly) s(n)
space-bounded two-way deterministic Turing ma-
chines and Turing machines with 1 inkdot, respec-
tively. It is shown in [3], [5] that

m-2DTM*(s(n)) = m-2DTM(s(n))

for each m € {weak, strong}, and any s : N — R
such that s(n) > loglogn and s(n) = o(log n).

(4) For each m € {weak, strong} and each k >
1, and any function s : N — R such that
s(n) > logn and log s(n) = o(log n),

o m-2DCA*(k,s(n))
= m-2DCA(k, s(n))?,

. U15k<oom-2DCA*(k,s(n))
= U15k<oom—2DCA(k,s(n))?, and

e what is the minimum of &"’s (k' > k)
such that
m-2DCA*(k,s(n))
C m-2DCA(K',s(n))?
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