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Abstract

A convenient suboptimal method of selection of observation signals in time and space is
proposed which minimizes the mean square error of the state estimation under a restricted
number of observations.

Two different approaches are taken to obtain the method, dependent on the type of the
transition matrix, i.e., it is diagonalizable or not.

Several examples are also given to illustrate the effectiveness of the proposed approach.

1. Introduction

In control problems, we often encounter optimization problems of an observation
system. This is because of the requirement of controllers for improvement of the con-
trol performance as economically as possible.

Kushner? (1964) was the first researcher to consider such problems. He treated the
optimal timing of observations under the restricted number of observations for a one-
dimensional linear discrete control system. The performance index to be minimized was
a terminal cost. The problem of optimal timing was extended by (Sano and Terao®,
1970) to the continuous multi-dimensional case, where the performance index to be mini-
mized was the quadratic form in state and control at each step. Recently, the problem of
optimal timing in a linear discrete system was considered for the prediction of air pol-
lution (Sawaragi and co-workers,» 1978).

These studies are all concerned with the optimal timing of observations. However,
analytical general solutions have not been obtained except for the property of periodical
observations for a one-dimensional special case (Kushner,? 1964).

On the other hand, the optimization of an observation system was formulated by
(Meier, Peschon and Dressler,® 1967) in general form for a nonlinear discrete control
system, where observation gain is also controllable by the so-called measurement-control.
That is, they made the operation on extraction of observation signals possible not only
in time, but also in space. Athans? (1972) extended the problem to a continuous but
linear system and derived the equations satisfied by the optimal observation policy by
using a matrix minimum principle. However, an analytical solution or any concrete
method for easily obtaining a desirable observation policy has not been given because of
the high nonlinearity of the observation process.

This paper is concerned with a linear discrete system and considers the optimization
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of an observation system such that desirable observation signals are selected not only in
time, but also in space, in order that the mean square error of the state estimation is
minimized under a restricted number of observations. This problem becomes essentially a
combinatorial one. So, solving the problem completely in the numerically computational
manner, enormous time will be consumed.

Thus, the paper proposes a convenient method to obtain the desirable observation
policy with a low computational cost. Two different approaches are taken to obtain the
convenient method dependent on the type of the system, i.e., the system transition matrix
is diagonalizable or not. Finally, numerical examples are presented to illustrate the
effectiveness of the proposed approach.

2. Problem Statement

Consider the linear discrete dynamical system defined by
Xin=AX,+W, ; 0=t =£T—-1 (1)

where X, is an n-dimensional state vector, Y, is an m-dimensional observation vector
(each component is called here OS), W, and V, are mutually independent white gaussian
noises with zero-mean and covariance

EW, W] =W, E[V.V/!]=V (3)

where E and “” denote respectively the expectation and the transpose. It is further as-
sumed that the initial state X, is a random variable (independent of both W, and V)
subject to a gaussian distribution with zero-mean and covariance So/-1.

Our problem is then to select p optimal OSS in time and space from the m(T+1)
available OSS such that the following MSE of the state estimation becomes minimim.

T ~
J= 3 ELIX =% It] W
where || . || and ﬁt /¢ denote respectively the Euclidean norm and the least square unbiased

estimate of X, based on the OSS used up to time t. Of course, p is the allowable number
of observations and m(T+1) is the product of the number of different types of OSS, i.e.,
the dimension of Y, and the total number of sample times.

3. Approach to the Solution

Using a Kalman filter, equation (4) can be rewritten as
T
J = ‘go tr [Sl/i] (5)

where tr [ +] means the trace of a matrix and S,,, expresses the estimation error co-
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variance which can be computed based on the given observation policy by the following
recursive equations.

Six=Swr1—SisHi (HiSipi—1H{+V) "Hy Sk (6)

S =AS, AT +W ; k=0,1,---, T (7

where Hy and V represent respectively the observation gain and the corresponding obser-
vation noise covariance at time k. It is obvious from (6) and (7) that the observation
process has a historical property of high nonlinearity. So, it is in general very difficult
to solve the above problem analytically.

Thus, the paper presents a convenient selection method, which is desirable from the
viewpoints of both computational cost and optimality, by referring the results obtained in
[6] (Tanaka, Okita and Matsuoka, 1981) for a continuous system.

We first consider the case where the transition matrix A is diagonalizable.

3.1. Case 1 (Diagonalizable Case)
Letting the eigenvalues of A be A, A5,..., An such that | ;=] 2:]>...>] .| and

the corresponding normalized eigenvectors of A be &, &,..., £, then we have
A=PAP! (8)
where
Ay
0
A= A, (9)
0 A
P::[El,gz,...’g"] (10)

Defining further the reciprocal vectors 7; (i=1, 2,..., n) such that
P__l:["l’nZ’“‘:nﬂ], (11)

,then the state X; can be rewritten as
X, =A'X, + ;2;: AW,
=P[A'P7X. + Z APIW, 1] (2
=3 [(ns, X.) AL + kz:: (ni, Wier—) AE] &,

where (.,.) denotes the inner product in Euclidean space. It is seen from (12) that no
observation on [0, T] results in an increase of error covariance of the state vector X as
time passes, caused by the initial error covariance of state and the accumulation of noises
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entered the system.

Considering the rate of increase of each component in &; (i=1, 2,..., n), it is evi-
dent from the assumption | 4;]>>|22|=>...>>| Aa | that the rate of increase is faster in the
order of &, &,..., €,. Therefore, in the synthesis of the optimal observation policy

which minimizes the performance (4), the following guide lines are obtained by referring
to the discussions of paper [6]. First, each OS of the appropriately selected OSS y*,
y*3,..., ¥*n, which decrease the error variance of ¢;-component (i=1, 2,..., n) of X
respectively, should be observed periodically in time. Second, it is desirable to allot more
number of observations to OS in the order of y*;, y*s,..., y*a.. Third, the initial obse-
rvation time OT should be selected appropriately for each OS y*;.

The above conclusions are obtained on the basis of the results of paper [6], where
the observation noise was assumed to be zero for simplicity. However, noisy observation
is usual in practical systems. When considering the effect of the presence of the observa-
tion noise, slight modifications are seen to become necessary in the optimal timing of
observations especially when the system is stable. When the system is unstable, the policy
of the optimal timing need not be changed. This is because of the relative weakness of
the observation noise compared to the increasing error covariance of the system state.
However, the situation is slightly different for the stable system with observation noise.
As an example, we can imagine the case where observation noise is large and the initial
error covariance of the state is larger than the stationary value in the case of no observa-
tion on [0, T]. In the case, a priori error covariance can not be repressed down below
the stationary value at one observation at the start of [0, T], i.e., t=0. The desirable
observation policy in that case is expected, considering the correspondence between the
results in [6], to become one such that observation is done sequentially from the start of
[0, T] until the MSE of the state estimation becomes smaller than the stationary value
and that a periodical observation follows after the sequential one. However, in the case
where observation noise variance is small or the initial error variance is smaller than the
stationary value, the policy of the optimal timing need not be changed even when the
system is stable. Although the analytical proofs are omitted here for its difficulties, these
have been all verified by many numerical experiments.

Note that, as is expected, in the selection of desirable OSS y*;, y*;,..., y*n, it is of
course required not only to select OSS which decrease the error covariance of &;-compo-
nent (i=1,2,...,n) of X respectively, but also to select OSS whose redundancies are
mutually weak. We present next a convenient method by which such desirable OSS y*,
y*s,...,y*n are easily obtained. First, we select y*, such that the MSE of &;-component
of X

J (¥;02t£T)= Min J(y; ;02t=T)

l=j=m

T ~
:Mm E[E{(Xz"Xt/t)lgl}z/y,,Oéth:l (13)

1Sj sm

= Min ét?‘ [[5151'] St/t]

1=js=m
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is minimized under the assumption that OS is used throughout [0,T]. Next, y*; is se-
lected from the remaining OSS except for y*, such that the MSE of {¢,, £:}-component
of X

J(Yr95,0st=T) = Min J(YLY;0<t=T)
)

1§j§m(Yj-‘eYi
T

= _Min E[31(X.~X) [5:&711%/9%, 9,01 =T)

15jsSm(Yj %Y} =

=

14
—  Min > ir [[£:67118:83) Sun]

1sjsm(Yj=y]) =0

is minimized. This time, the two OSS of a candidate of y*; and OS y*, are used to-
gether in [0,T] in order that the redundancy between them can be checked. By this
procedure, OS which has much redundancy with y*; is necessarily eliminated from the
possible candidates of y*,. Note also that {£;, £*;} in equation (14) are orthonormal
vectors constructed from {&;, &,}. Applying the Gram-Schmidt’s orthogonalization tech-
nique, we obtain

Er= (&,— (&2,80)&)/ 1&§.—(&2,81)6 | (19

It is obvious that [£;, £:’] in (13) and [¢; é*;] [£1 §*2]/ in (13) are both the projectors on
the subspace spanned by {£;} and the subspace spanned by {§, ¢}, respectively. Con-
tinuing the above procedure, we finally obtain n desirable OSS y*,y*s;,...,y*s. This
procedure allow us to pick up n desirable OSS with large signal-to-noise ratios and weak
mutual redundancies. The procedure is also effective in the case of m<(n, although m=n
has been assumed so far for clarification of the foregoing discussions.

3.2. Case 2 (Non-diagonalizable Case)

We consider here the case where the transition matrix A is not diagonalizable. So,
A is similar to the following so-called Jordan’s canonical from

4 4,
1 0 ,
4= 4 (nXn); 4;= 4;, (m; Xmj)
= e O
0 4. 0] Azaf] =1,2,",
A; 1 16
j
0
Al
4y = .’ (nj);ank) k=1,2’ ,a;
0 .1
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a.
where 11, 22,..., 4, are the mutually distinct eigenvalues of A, a; and m;=3/n;, are re-
k=1
spectively the geometric and algebraic multiplicities of the eigenvalue 1;. We first consider
the simplest case  where A is similar to the following matrix for clarification of the suc-
ceeding discussions.

A1
4 = (nXn) a0
0

Py

By the similarity of A to (17), A is represented as follows.
A=Q4qQ- | )
where Q is defined by
Q= [(ll,(lrz,"‘,fln] (19
where qi, g2,...,qn are eigenvector or generalized eigenvectors of A corresponding to the
eigenvalue 1. By similar expansions as used in obtaining (12), we have

t—1
X =Q[4'Q'X, + E. 4*Q "W i—q ] 0

From (20) and the property of the matrix 4, it is easily seen that no observation on
[0, T] yields not only the increase of error covariance of each component of X in qj,
s, ...,qn along the time axis, but also the accelerative spatial propagations of error covar-
iance from the lower components to the upper components in the order of qu, qu-1,...,q
(see Fig. 1). Here, by the upper components are meant the q;-component whose sub-

I [ f

script 1 is small.
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A
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: I
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Fig. 1 Spatial propagations of the estimation error.

Therefore, it seems to be reasonable to cut off the spatial propagations periodically
as well as the periodical repressions of the increasing error covariance along the time axis,
in order to repress the performance (4) effectively under the restricted number of observa-
tions, Desirable OSS which cut off the spatial propagations effectively are those that
minimize the MSE of g*;-component of X(i=1, 2,...,n%), where {q*;} are eigenvectors
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picked up from the eigenvector-set {qi, Qz,..., da} with each equal intervals such as
{g*;} ={qs} for n=3 and {q*;} ={qs} or {q*i} ={qs, qs} for n=>5. Each OS thus selected
then must be used periodically in time in order that the increase of the error covariance
along the time axis can be repressed as well as the repressions of the dynamical spatial
propagations. In the case where many OSS are available, the procedure descrived in
3.1 may serve as the method to pick up such n* desirable OSS.

It is to be expected that the number of different type of OSS, i.e, n*, depends on
the total allowable number of observations p. It should be, however, noted that the num-
ber n* for the system with small 1 is larger than (or equal to) that of the system with
large 2. This is because that in the former it is desirable to cut off the spatial propaga-
tions as many times as possible, since the cut-off in this case can be smoothly done only
with a few periodical observations. On the contrary, in the latter, since the propagations
can not be cut off by a few periodical observations, it is necessary to cut off the propaga-
tions completely with the allowable number of observations p concentrated on a few desir-
able OSS.

In the general case where A is similar to the matrix in (16), we need first to pick
up desirable OSS for each minimum block 4;, as the same way as done for (17) pre-
viously and then to use them periodically in time respectively.

4., N_umerical Examples

4.1 Diagonalizable Case

We consider the system

1.5 0 0
X1=]05 1—05|X.+W, ; 0=t =T—1 o)
0 0 0.5
0 1 0
0.65 0.65 0
Y == . ey
: 0 0 1 X.+V, ;0= =T @)
0.6 0.5 0

where 30,-1=0.01 I, W=0.1 I;, V=0.025 I,, T+1=20. The transition matrix A has
three mutually distinct eigenvalues 1,=1.5, .=1.0, 23=0.5. Hence, A is diagonalizable.
The corresponding eigenvectors to the three eigenvalues are respectively

&= (1//2, 1//2, 0) , &,=(0, 1, 0)’
and

E,=(0, 1//2, 1//2) @)

Following the procedure descrived in section 3.1, we obtain the following three desirable
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0SS
Y1="Y,, Y31=19,, Y3i=1Y; 4

This procedure does not allow us to pick ys, which has much redundancy between the
OS y*,(=ya), as a candidate of such desirable OSS. Now, having obtained the three
desirable OSS y*,, y*;,y *;, we next optimize the allotment of observations to these OSS
under the assumption of periodical observation for each OS and the constraint concerning
the observation allotment m;>m,>>m,. Performance indices are plotted in Fig.2 for
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Fig. 2 Comparison of the mean square estimation errors
for the two observation policies.

number of observations p=5,6,...,15. Observation policy, for example, for p=8 is the
observations of y, (=y*) and y, (=y*) at the times {3,6,9,12,15,18} and {2,11},
respectively.

Next, we try to apply the sequential optimization method for the selection of such
desirable OSS to verify the effectiveness of the proposed approach. This sequential
optimization method is a convenient one by which desirable OSS are selected sequentially
one by one such that performance index becomes minimum. Observation policy, for
example, for p=8 by this method is the observations of y4, y; (=y*:), and y, (=y*,) at the
times {4,7,11,16,19}, {8,15}, and {2}, respectively. We see that OS y, is observed with
a high frequency, while the signal y. is not entirely used in the corresponding obser-
vation policy by the proposed method. The optimal performance indices by this se-
quential optimization method are also shown in Fig.2 for p=5,6,...,15. This figure
shows us that proposed one is far superior to the sequential optimization one.

4.2. Non-diagonalizable case

We consider the system
1.02 1 0

Xiam™ 0 1.02 1 X, +W, ; 0=t=T—1 ; ©)
0 0 1.02
Y, = X ;0 0t <T o
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where Y;,-1=0, W=0.05 I; and T+1=100. The a priori error covariance and the obser-
vation noise are assumed to be zero for simplicity. We see that the transition matrix A
is the same matrix as in (17). Hence, A has only one distinct eigenvalue, i.e., 2=1.02,
and the geometric multiplicity of it is also one. Therefore, the eigenvector of A is
a:=(1,0,0)’
and the remaining generalized eigenvectors are
qe:=(0,1,0)’ and qs=(0,0,1)"
Since n=3, it is obvious from the discussions in 3.2 that it is necessary to observe OS
y2 with a high frequency in order to repress the spatial propagations of the estimation
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Fig. 3 Comparison of the mean square estimation errors
for the two observation policies.

Table 1 Suboptimal observation policy by proposed method.

ORIssgﬁéiron Obssiegrr\::i;on Observation Times

Y1 50

8 Va2 12 25 37 50 62 75 87
Ys
Y1 50

10 Va 10 20 30 40 50 60 70 80 90
Ya
Y1 33 67

12 Ya 9 18 27 36 46 55 64 73 82 91
Ys
Y1 50

14 Yo 7 14 21 28 35 43 50 57 64 72 78 86 93
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error. This is because y, is the OS which observes the qs-component of X. To check
the validity of the argument, the allotment of the number of observations p to every OSS
yi, V2 and ys is optimized for p=8,10,12,14 under the assumption that each OS is peri-
odically observed. The optimized observation times for each OS and the performance
indices are shown in Table 1 and Fig. 3, respectively. It is apparent from Table 1 that
OS vy, is observed in practice with a high frequency, confirming our conjecture. How-
ever, it should be noted that OS y,, which observes the q,-component of X, is also used,
although the number of observations is very small. This phenomenon has been seen in
many other numerical experiments to occure to unstable system with a small allowable
number of observations. The situation does not occure to stable systems. This is in-
terpreted by assuming that the observation of y, plays a role of repressing the escaped
equivocations from the observation of y, caused by the small number of allowable ob-
servations p.

For comparison, the performance indices by the sequential optimization method are
also shown in Fig.3. From Table 1 and Fig. 3, the effectiveness of the proposed approach
is verified, if allowance is made for the slight modification mentioned above to the es-

150 [~
- St/
s
100 [ 10  t/t,2
50 - 51
I ] 1 1 - | 1
0 20 40 60 80 , 100 0 20 40 60 8o , 100
Fig. 4 Mean square error of q,-component Fig. 5 Mean square error of q,-component
(proposed method). (proposed method).
300 St/ ,1
0.6 i
Se/t,3
200 f-
0.4 |-
100 [~
0.2 H
! 1 1 1 ] ,
0 20 40 60 80 , 100 0 20 40 60 80 . 100
Fig. 6 Mean square error of g;-component Fig. 7 Mean square error of q;-component

(proposed method). (sequential optimization method).
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caped error covariance.

For reference, the transitions of S,,, for p=14 are shown in Fig.4-7 for the two
methods. These figures tell us that performance index is influenced by the behaviour of
s:/1.1 (MSE of q;-component of X). Furthermore the performance index for the sequential
optimization method is remarkably deteriorated by the irregularity of s, ,;, while perform-
ance index for the proposed method is considerably minimized because of the well-bal-
anced repression of s,,;,1, which is caused by the many regular (or periodical) observations
of gy-component of X. From these figures, it is confirmed that the periodical observations
of OSS which cut off the spatial propagations are very effective in minimizing the per-
formance index.

6. Conclusions

Two convenient methods to select the desirable p observation signals in time and space
for both diagonalizable and nondiagonalizable systems have been proposed.

The proposed methods were not only desirable because the synthesis of the obser-
vation policy was non time-consuming (of the periodical observations and the convenient
ordering method of observation signals to be used), but as numerical examples showed
desirable from the viewpoint of optimality.

The proposed approach is expected to give a guide to the synthesis of an optimal
observation policy for the systems where observation gain is controllable by observation
control (Meier and co-workers®, 1967; Athans?, 1972).
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