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Abstract

Some properties of product and self-product automata are analyzed by the product of
state transition matrices.

It can be shown that the self-product automata of cyclic type automata with 2m+1 (m=1)
states are again cyclic, and the relationships bitween self-product automata are made clear. As
the most important result, we show that a set of self-product automata with some states forms
a group with the product operation of automata. Moreover, concerning the number of states
of automata, the necessary and sufficient condition to form the group can be derived. Fur-
thermore, it can be shown that the sequence of self-product automata with 2™ (m=1) states
converges to the unity type automata.

1. Introduection

The automata model, whose aspects vary with the lapse of time, can be found in
the theories of nonhomogeneous markov chains and L-systems. In a recent paper, A.
Pazb-2.9 J Hajnal®, and J. Wolfowitz® gave some properties of stochastic matrices and
discussed ergodicity of the nonhomogeneous markov chains, and H, Jiirgensen® investigated
some limiting properties of the system introducing the probabilistic factors into L-systems.
From the antomata-theoretical point of view?:®, it will be interesting to study the tran-
sition structures of those time-variant systems.

In this paper, we introduce a product automaton defined by the product of the ma-
trices which represent the state transitions, and investigate the transition structures of the
product automata. In order to simplify the problem, we deal with a cyclic type of DAOA,
where “DAOA” denotes the deterministic autonomous outputless automaton. Furthermore,
we introduce a new concept of self-product automata, and derive some algebraic properties
of them.

In Section 2, we give some definitions and notations concerning DAOA’s, and give
several fundamental propositions derived from those definitions. In Section 3, we investi-
gate the transition structures of product automata, and in Section 4, we investigate some
algebraic properties of a sequence of self-product automata.

2. Preliminaries

In this section, we give some definitions concerning autonomous outputless automata,
and give some fundamental propositions derived from those definitions.
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Notation 2.1

(2.1.1) Let A be a square matrix of order n for some n>>1. Then Ajj denotes the
ij entry of A (1<, j<Xn).

(2.1.2) For any set U, |U| denotes the number of elements of U.

Definition 2.1. An autonomous outputless automaton (AOA) is a couple S=[Z,
A], where “Z” is a finite set of states, and “A” is a square matrix of order |Z| whose
each entry A;; (1<, j<|Z]) is 1 or 0.

Definition 2.2. Let S=[Z, A] be an AOA. The directed graph G=[V,E] is
called the state transition graph of S, where V=Z, E={(z;, z;))e&ZxZ|Aij=1} and
(zi, z;) denotes the edge directed from z; to z;.

Let Z={z1, 22, +*, zo}(n=]Z|). For each i, j (1<i, j<n), “Ai;j=1" means that
when the present state of S is z;, one of the next states of S is z;. Also, “autonomous”
means that the behaviour of S is independent of the input signal.

Difinition 2.3. Let A be a square matrix of order n for some n>1. A is called
“deterministic” if >, Aj;=1 for all i={1,2,---,n}.
j=1

Definition 2.4. An AOA S=[Z, A] is called “deterministic” if A is deterministic.
We denote a deterministic AOA by “DAOA”.

For a deterministic matrix, a proposition is given as follows.

Proposition 2.1. If P and Q are deterministic matrices, then the product matrix
PQ is also a deterministic matrix.
The proof of this proposition and subsequent propositions are omitted, because they

are obvious.

Definition 2.5. S°(Z) 2[Z, 1] is called a “unity” DAOA with the state set Z,
where I is an unit matrix of order |Z].

A DAOA can be considered as a kind of directed graph. Therefore, this paper
may play a special role of connecting automata theory with graph theory.

Definition 2.6. Let S;=[Z,, A,] and S;=[Z,;, A;] be DAOA’s. Then S; %8S, if
and only if Z;=Z; and A;=A..

Definition 2.7. Let S;=[Z, A.l, S:=[Z, A:}, -+, and Sp,=[Z, A,] (n==2) be
DAOA’s with the same set of states, Z. Then, the DAOA [Z, AjA;z---A.] is called the
product automaton of S;,,Sz,+++, and S,, and is denoted by “SiS; <+ Sy”.

Definition 2.8. Let S=[Z, A] be a DAOA. Then, S (m>1) is called as self-
product automaton (where S™2 S ---S 2[Z, A™]).

———

m
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Definition 2.9. Let S=[Z, A] be a DAOA, and Z={z;, za2,...,za} (n=|Z]).

(2.9.1) For any two states z;,z;=Z, we call that the state z; is accessible from the
state z; if there exists a natural number m such that Ap=1.

(2.9.2) S is called “cyclic” or “connected” if, for any two states z;,z;=Z, zj is
accessible from z; and vice versa. We denote a cyclic DAOA by “CDAOA”. And, for
each CDAOA S=[Z, A], A is called a cyclic matrix.

We note that, for any CDAOA S=[Z, A], there exists exactly one “1” on each row
and each column of A, respectively.

Definition 2.10.

(2.10.1) Let Z be the set of n states z,, zs,...,zn. Then, a mapping r: Z—Z
satisfying the following condition (C) is called a state renaming function for Z.

OA], j (1<, j<n) [ifgj—or(z0) %7 (zp) 1.

A state renaming function r for Z is simply denoted by “SRF(Z)” or “SRF(Z)z”.

(2.10.2) Let S=[Z, A] be a DAOA and r be a SRF(Z). Then we define r (A)
to be the deterministic matrix of order |Z| as follows. For each i, j (1<K, i<|Z]|)
(A);;=1 if and only if z;=7(zp) and z;=7(zq) and Apq=1.

Definition 2.11. For any nz=1, the square matrix of order n

010 0
00100
0 0 ‘1
10 0

is called “canonical”.

Proposition 2.2.

(2.2.1) If S=[Z, A] is a cyclic (non-cyclic) DAOA, then S'=[Z, 7 (A)] is again
a cyclic (non-cyclic) DAOA for any SRF(Z) .

(2.2.2) For any CDAOA S=[Z, A], there exists a SRF(Z)r such that v (A) is
canonical.

(2.2.3) For any DAOA S=[Z, A] and any SRF(Z)r, there exists a SRF (Z) r’
such that 7’ (r(A)) =A. ‘

(2.2.4) Let S;=[Z, A|] and S;=[Z, A;] be any DAOA’s. Then, for any SRF(Z)
() T(A1A2) :T(Ax) T(A2> .

(2.2.5) Let S=[Z, A] be a DAOA. Then, for any SRF(Z)’s r’ and r”, there
exists a SRF(Z) r such that 7/ (z”(A)) =7 (A).

(2.2.6) For any S°(Z)=[Z, 1] and any SRF(Z)r, = (I) =1.

Definition 2.12. Let A and B be two deterministic matrices of order r=>1 and s>>1,
respectively. Then the matrix
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(A) 0
A@Bg( )
0 (B)

of order r+s is called the direct sum of A and B.

Definition 2.13. Let R denote a form

iy g i
R=| (n=1)
J11]:2 “.jn
where, (1) for each p(1<p<n), ip and jp are natural number, and (2) for each p, p(1=<p

<q=n) ip=via. If {j1, jas...»in} C{iy, i2,...in}, then R is called “pseudo permutation”.
Especially, if {ji, j2».-.5Jn} = {i1, i2s...>in}, then R is called “permutation”.

Definition 2.14. Let C and D are pseudo permutations as follows.

i112°] « ri7z2°7a
C= D= (n=1)

Jrjeia) . S182°8,
where {i;, i2,...,in}=1{ry, r2,...,rn}. Then
i1i2"'in

CD:z

Uy U2 "Ua/
where, for each i(1<i<n), if ji=rx (1<k<n), then u;=sy.
Convention 2.1 Let C and D be the pseudo permutations described in the Defini-

tion 2.13. Then, we identify D with C, if D is obtained from C by rearranging each
column of C, appropriately. For example.

(12345) (13524)
32251 32125
Definition 2.15. A permutation
i 1 l 2 l .
Pgis i
is called “cyclic”, and is denoted by (iiz...in).

Notation 2.2 Let A, As,..., and A, (k>1) be cyclic permutations such that
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(2}
&2}
B

(1) Ap=Q@lik. gl (=l 1<<i<<k), and
@ 43,08, 4. .., i} =¢ for each p, q (I=p<lq=k).
(¢ denotes the null set.)
Then, A, ®A,® -©A, denotes the permutation

veejl g2

JiJaimitisgagd

L] 2252, .52
1 2 3

JrJjaiijad

From convention 2.1, note that 4, ©A, =A.0A,.

Definition 2.16. For any deterministic matrix A of order n=>1, ¢ (A) is defind as
follows. :

12 i —n
Pp(A) < Junie, i €412, i
JadeTicia/
where, for each i (1<i<n), the ij; entry of A is “1”. (Note that there exists exactly
one “1” on each row of the deterministic matrix.)

Proposition 2.3.

(2.3.1) For any deterministic matrices A, and A, of order n=>1, ¢ (A ¢ (Ag) =
¢ (A1Ay). .

(2.3.2) For any cyclic matrix A of order n=>1 and any SRF(Z) z, if ¢ (r (A)*=¢
(1), then @A) =(1).

Example 1. Let A; and A, be two deterministic matrices as follows.

0100 03 00 100
0010 ,01000’
Ai=10 000 1| As;=1]10 000
00010J 00001J
\10 0 0 0/, 00010/,

Then

12345 12345
p(A,) = @(A;)= , and
23541/, 32154

=(12)0(3 4 5)

12345
¢(A1)¢(Az):r( )

21453

Notation 2.3. -
(2.3.1) The set of all DAOA’s (CDAO’s) is denoted by & (&.).
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(2.3.2) &2&“U&"™, where & (& @) is the sets of all DAOA’s with an even (odd)
number of states.

(2.3.3) &.2&9U&", where & (&) is the sets of all CDAOA’s with an even
(odd) number of states.

(2.3.4) guwe gy gy, &02g0UEW U....

&OLEPUEWU -, LW UEI U .

where, for any natural number i, &L (&Li1) is the ste of all DAOA’s (CDAOA’s) with
just i states (&12g ) ’

.

3. The Transition Structures of Product Automata

In this section, we investigate the transition structures of product automata. First,
we give a lemma whose proof is obvious from Definition 2.9.2.
Lemma 3.1. Let S=[Z, A] be in & (n>>1) and let

12
P (A)=
i I ./
If ir=is for some r, s={l, 2,...,n} (ras), then S is not in &[]

Theorem 3.1. Let S;=[Z, A,], S;=[Z, A;] be DAOA’s, and let

1 2:-n 1 2 :n
plan={"—" | elan=| "~
titz2°'l./ , Ji1Jlz2"")a/ .

Then, if i ,=is or jy=jq for some r, s, p, q={1, 2,+--,n} (r3cs, p=xq), then the product
automaton S,S;=Sz=[Z, A;] is not in &

Proof. Suppose that=i, =is. Then

P (A:) =9 (AiA) =9 (A) (A1)
1 coor e eeem 1 oi,e-m
1 coor cees eoem
- (ka gy iy "'kb)
It follows from Lemma 3.1 that S; is not in &

case of jp=jq. Q.E.D.

The following theorem implies that the self-product automata of cyclic DAOA‘s
with an old number of states are again cyclic or unity.

The similar argument is used for the
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Theorem 3.2. Let S=[Z, Al g~ (m=1).

(1) S*=8°(2), if n=r(2m-1) for some natural number r>1,

(2) Ste gl | otherwise.

Proof. (1) Let S=[Z, Ale &i»1 Then, for a SRE(Z) r, the matrix A can
be transformed into the canonical matrix r(A) of order 2m-1 (from Proposition 2.2.2),
and ¢ (7 (A)) can be denoted as follows.

12-2m-2 2m-1
P (r(A))=( )

2 3:2m-1 1

Easily, we have

? (r(A))HZMI):(l 2"'2'"_’)
‘ 12-2m—1/ ,

for any natural number r>>1. Since ¢ (t (A))*@® -V =¢(r(A)* @ D) (from Proposition
2.2.4), it follows that

» 12 9m—
¢<r<A>'"~““>=( 2am 1)
122m—1

Therefore ¢ (A)*@™-D js the unit matrix of order 2m-1. From Propositions 2.2.4 and
2.2.6, it follows that AT@m-v js the unit matrix of order 2m-1, which implies that
Sram-n =8°(Z),

(2) To prove (2), from pért (1) of the theorem, it suffices to show that, for each n
(1<n<2m-2), S™® is cyclic, Let 7 (A) be the canonical matrix as the mentioned above.
Then

p (r(A)")=9 ((A))"
( 1 2 ¢ 2m—n—1 2m—n~-~2m~—1)
n+1 n+2 - 2m—1 1 - n

From the state transition graph of $’*=[Z, = (A) ], it is easily shown that 5’* is cyclic.
Therefore, from Propositions 2.2.1 and 2.2.3, it is shown that S*=[Z, A®] is cyclic.
Q.E.D.

Corollary 3.1. Let S= & !"~Y (m=1). Then, for each n=1, S** is in & [»-1
When the number of states is even, the state transition structures of product automata
differ from the odd cace, as follows.

Theorem 3.3. Let S=[Z, Ale &1 (m=1), and let $?=[Z, A?]. Then, there
exists a SRF(Z) r such that r (A?) =A, @ A,, for some cyclic matrices A; and A, of
order m.
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Proof. For each S=[Z, Al g, there exists a SRF (Z) 7’ such that the matrix

' (A) (of order 2m) is canonical, and

0010 0
0001070
0 -
(A)? = o .
00 01
10 0
010 0

From the state transition graph of S’=[Z, r*(A)?], it is easily shown that there exists
a SRF(Z) «” such that r”(r’ (A)?) =A,PA,, for some cyclic matrices A, and A; of order
m. Therefore, from Propositions 2.2.3 and 2.2.4; it follows that, for some SRF 2 -,
v (A?) =A;DA,;. This completes the proof of the theorem. Q.E.D.

Theorem 3.4. For each S, g2n) (m=>1), there exists some S, in &) such that
S; ¢&lm and S;S.c gl . o

Proof. Let S;=[Z, A\]J= &". From Proposition 2.2.2, there exists a SRF(Z)
such that 7 (A)) is the canonical matrix of order 2m.

Now we consider a non-cyclic matrix A of order 2m as follows.

0 010
0 01
1 0 0
A=1010
O.~.
0 0100
Then
010 0 0 010 0 01
010 OO0 0 01 10 0
10 0 0 010 O
T (A])A = 0 =
0 0 )
0 01 0 . 0 .
10 0 0 100 0 010

From the state transition graph of S'=[Z, r (A)A], it is easily shown that S’ is cyclic.
From Proposition 2.2.3, there exists a SRF(Z) ¢’ such that ¢’ (<t (A)) =A,, and thus
' (t (ADA)=7"(r (AD) 7’ (A) =Air’ (A).

Noting that v (A) A is cyclic, from Proposition 2.2.1, it follows that Az’ (A) is
cyclic. Furthermore, since A is non-cyclic, v’ (A) is also non-cyclic (from Proposition
2.2.1). Thus S;=[Z, ' (A)] is not cyclic, but S3=S,8,=[Z, Az’ (A)] is cyclic. Q.E.D.
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The next theorem implies that the product automaton S;S; with an odd number of
states is not always cyclic, even if both S; and S; are cyclic.

Theorem 3.5. There exists S;, Soc= & @ (S12¢S2) such that S,S, €&
Proof. Let S,=[Z, A\], S:=[Z2, AJ=&" , where

01000 00100
00100 10000
Ai=100010 A, =100010
00001 00001
10000 01000
Then

10000

00010

A;=AA;=] 00001

01000

00100

It is obvious that S3=[Z, As] is not in & (See Fig.l).

@ | | @2
17 o
®<—Q @<—0O @<=0®

$,=1{1,2,3,4,5} ,A] S>=[{1,2,3,4,5},A,] $3=[{1,2,3,4,5} ,A)A;]
Fig. 1 State transition graphs of S,, S, and S; in Theorem 3.5

_ 4. Self-product Automata
In Section 3, we considered the transition structures of product automata of DAOA’s.
In this section, we investigate some algebraic properties concerning an infinite sequence
of self-product automata. ‘

Notation 4.1. For some natural number n and m, [n]m denotes the remainder when
n is divided by m.

Notation 4.2.
(4.2.1) Let S be a DAOA. Then S* denoted the infinite sequence of self-product

automata S, S2%, S4¢,...,52%, .., .
(4.2.2) For each DAOA S=[Z, A], Q(S) 2 {8°(Z)} U {S2™ | n=>0}.

Definition 4.1. Let S=[Z, A] be a DAOA. The least natural number n such that
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A?2"=A is called a “cycle” of S* and is denoted by C(S*).

Proposition 4.1. Let S=[Z, Al=& (n=>1). If C(S*%) =n, then

(4.1.1) $2m2=S§, for each natural number, m,

(4.1.2) For any SRF(Z) r, let S;=[Z, r(A)], then C(S*) =C(5/%).

In a sense, the concept of a infinite esquence of self-product automata has a physical
and biological image such that the present aspects of a system depends upon its past
aspects.

In the following theorem, it is shown that a set Q(S) for a CDAOA S consists a
group with the product operation of automata.

First, we give the wellknown lemma, as follows.

Lemma 4.1. The order of a cyclic group generated from a cyclic permutation (1 2
... n) is n,

Theorem 4.1. If S& &?"*Y and C(S*) =2m, then the set =(S) forms a group with

the product operation of automata.
Proof. Let S=[Z, A]l& &[2»+1] and let a set U be
U2 DU, $2,...,8°"

If C(S*) =2m, then |U|=2m+1, and it is obvious that U is isomorphic to a cyclic
group generated from the cyclic permutation (1 2 -++ 2m+1). Thus, it follyws from
the Lemma 4.1 that the Q(S) forms a group. Q.E.D.

For the number of states of automata, the necessary and sufficient condition to form
the group can be derived, as follows.

Theorem 4.2. Let S=[Z, Al &i+1 (m=1). Then, C(5*)=2m if and only
if (1) [22™]ome1=1 (2) for each i(1<i<<2m—1) [2!]em+13¢1.

Proof. Let S=[Z, A]le &%+ From proposition 4.1.2, cycle of S* is independ-
ent of permutation of their states. Therefore, without loss of generality, we can assume
¢ A=1 2 --+ 2m+1). Then, for each k=1, we have

par =1 1k, 2) fk, 3) --- f(k, 2m+1)),
where f(k, r) =[1+ (r—1)2%]om+; for each r(2<r=<2m+1). It is obvious that for each
k, j (k, j=1), if f(k, 2) =£(, 2), then @A)2*=¢(A)?’. It follows from C(S*) =2m and
Proposition 4.2.1 that

P(A)2" = (A?™) =¢(A)
Thus, the condition can be derived as follows.

[1+22%]ym+1=2, and

[1+2i}me1552, for each i=1, 2,--+,2m—1.
Namely,

[222]5ms; =1, and

[2i]om+1¥1, for each i=1,2,---,2m—1.
Converse is easily shown. Q.E.D.
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As an example of Theorem 4.2, in Figure 2, we show one cycle of S* of a CDAOA
with five states.

O O) ®,

TP gy 9y
@®<—0 @ @ - @—9@7‘
S s? gl
® Q)
pol O
@ O ©O<—0B
s® s16

Fig. 2 One cycle of S* (S=[{1,2,3,4,5}, A]

Concerning a S* of CDAOA S with 2™ (m>1) states, we obtain a theorem as
follows,

Theorem 4.3. If S=[Z, Al= &1 (m=>1), then s —ge (Z), and lim s =g° (Z).

e 1--)

Proof. Let S=[Z, Al &% From Proposition 2.2.2, there exists a SRF(Z) = such
that ¢ (A) is the canonical matrix, and
e(z(A)=Q1Q 2 ...2™).
The proof is derived by the induction on the number m.
The initial step is trivial. ((1 2)(1 2)=(1)0©(2))

The induction step is taken from k to k+1, For ¢ (v (A))=(1 2 3 ... 2¢*)), we have
@(t(A)*=(135 --2*-1)o(2 4 6 +-2%") (by Theorem 3.3)
LetB=(1 3 5 ... 2k01-1),C=(2 4 6 ... 2k*), Nothing that the set {1, 3,...,

2k+1-1} and {2, 4, 6,...,25*1} are disjoint, we have

P(r(A)* " =tp(z(A))"H"
= (BOC)*=B* oC*

Since | {1, 3, 5,...,2k*1—1}|=|{2, 4, 6,...,2k*1}| =2% by the inductionhyposesis,
B¥*=(1)0(3)@-®(21-1)
C*=(2)0(4) 00 (241,

Therefore,

P(7(A))2""'=(1)0(2)0(3)00(2"1).

From Proposition 2.3.2, we obtain A? ' =I, namely $** "=$°(Z).
Then lim S*"=5°(Z). Q.E.D.

N=$c0

Fig. 3 illustrates an example of Theorem 4.3.
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A P>

O Qu
HQ

8

Fig. 3 Example of Theorem 4.3. (S=[Z, Al, |Z|=8)

5. Conclusion

As the automata model, whose aspects vary with the lapse of time, we introduce
product automata and self-product automata. And some structural properties of product
and self-product automata are analyzed by the product of state transition matrices.

In this paper, in order to simplify the problem, we deal with cyclic type of determinis-
tic autonomous outputless automaton, however, it will be of interest to study the structural
properties of general type of non-deterministic one.
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