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Abstract

The author accomplished the mathematical analyses on the case of’ which hct gas flows
through inside of a pipe with multiple concentric layers, and thermal radiation, heat
conduction and forced convection coexist at the inside and outside of the pipe at the same
time.

It is possible to linearize the nonlinear boundary conditions by means of Legendre’s
polynomials on the whole interval.

The simultaneous Integrodifferential equations and the simultaneous Volterra’s integral
equations are reduced to the simultaneous algebraic equations.

The finite Hankel Transforms are practised over the paper with emphasis.
1. Introduction

High temperature heat transfer devices are often associated with large convection and
radiant heat. The thermal radiation becomes of greater importance as the temperature level
increasesD),

The developments of researches on the case of which thermal radiation, heat conduction
and heat transfer coexist at the same time are verv necessary, but the researches on these
cases are extremely difficult theoretically or experimentally.

The thermal radiation characteristics of enclosures are a matter of considerable practical
interest2.3.4)

The author accomplished the theoretical and mathematical analyses on the case of which
hot gas flows through inside of a pipe with multiple concentric layers, and thermal radiation,
heat conduction and forced convection coexist at the inside and outside of the pipe at the

same time.
2. Mathematical Analyses

Hot gas flows through the inside of multiple layers of pipes, heat is transferred by heat
conduction in the walls of pipss, and thermal radiation and heat transfer occur at the
inside and outside of pipes.

To write dimensionless forms, put

7’+ Tn

= = e D=2,
=%1 R (n=1, 2,.3)
(1) Equation of heat conduction for inside demain 1.
s Tansori ot (o) =0 or vin=o .
—(601/6’x1)mzél= (—ao0 j~b01+d)x1:e1’ e1=2r1/(rs+nr1) 2
(included radiation and heat transfer)
01, =Fo(2), (fo(2)=F(2)/Ts) ®
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Di1=ay s+ 01+bn (6)

01=u1+(’—?—:£)” * f(2) ()

f(z) =(ml)x1x 1=dn* f0(2)+bn

Constant d contains gas temperature 7, heat transfer coefficient and radiation
constant2

Constants @, and b, are approximated in @) in all parts over the interval (e1, B1) by
Legendre’s polynomials Pn.

From (1), (2) and (38), we obtain the next equations.

Vf741+Q1(x1, 2)=0 ®
—-( gz;;)xl:él:(“l)xl=61 ) (9)
(ul)’q: QO)

(1—:1)2 S 1 —e1 D1
) 1 ro+r1

0z2

Qi(x1, 2z)= 2/(z) §1 +M§+(x1——al)2(7,‘,+h)2?2 ()

To solve (8), (9) and (0, the finite Hankel Transforms, are applied.
The Eigen-values &; ; are to be determined by the given boundary conditions (9).
cot & 1=¢;
From (8), (9) and (0, applying the finite Hankel Transform®, we obtain the solution of u1.
(2) Equation of heat conduction for middle domain 2.

V§2«’2+Q2(:~:2, 2)=0 0
(#g) =0 i13)
*2=E2
(22) =0 m
12:
ro—: v(Z
02=142+{W0(2) _‘fu(Z)}(lig:;z)+f0(2), Wt)(Z): g‘n) ,
1 Y(z) _f(z)_ b'n, ba
Valrz, 9= o o
(x2—r3+r2)\ 1—z:2)
ra-tre\2 . 1 . ,’Qgr(z)_ 1, “"?'f(,,z,,), gf&jﬁé) 1 . ff_’i@
+(*Dim) [{Tn 7z2  an 022 }(1 ~92)+ an = 0z2 ]

From (12, (13 and {4, applying the finite Hankel Transform®, we can obtain the solution
of ue similarly.
The Eigen-values &;., are obtained from {14,

571‘2:7(,2.227]17)—.7; G=1, 2, 3, oo )

(3) Equation of heat conduction for outside domain 3.

Vi0s=0 ; 13
P

~( g;’:)=(a/034+b'03—df> , 46
’ x3=l xg= 1

(included radiation and heat transfer)

Vol 18, No.2 (1967)



Thermal Radiation with Conduction and Convection 3

(08)z3-e5=¥0o(2), e3= 27r3/(ra-+r3) )
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A3/\ Oxo ra+r3z/\ dxg
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IOge Q3= S (0/034+b’03—d/) 19
O3=a’n03+b"xn @0
(1 —x3)2 ‘
Ps=us+- . yz° V(2 @

V(z)=a’n¥o(z)+b'n
Constants a’» and #’, are approximated in @7 in all parts over the interval (ag, Bs3) by
Legendre’s polynomials Py,

From {5, (16 and {17, we obtain the next equations.

V§M3+Q3 (xg, Z)= 0 (22)
—(%2) = (u3) )
xg=1 2x3=1
(3)= 0 ©4)
xX3=¢gg
1 —x3) 5
_ 2% 1 _ (1—x3) p(retrs)? (1 —x3\2 92¥(2)
Qs(x3, z)= (1 ~sa)2{ (x"_'r]_:—Lm) ( D1 ) ( 1 —-;3) 522

From 9, ) and ¢, applying the finite Hankel Transform®, we can obtain the
solution of #g similarly,

The Eigen-values §:,3 are obtained from @9, & 3=£&; 1.

From (5) and (9, we can put as follows generally,

( do
loge @u= | e g G iy 07 00=%, 0u=y, (n=1,3) G2

x=£(y) ]
g(x) is approximated by Legendre’s polynomials P, over the whole interval (an, Bu) of x.

a= 3 Si Aeg {(Bn—wn) .i+an} s dA/(Bn—an)

r1
b= S 0 g{(ﬁn“an) A+arz} s dA—an s a
x=a - y+b D
n=1: (aly Bl) ...CI:an, b=bn_
n=3: (as, B3) Sa=a’n, b=b"y,

From (4) and (8, we must vanish the unknown boundary temperatures f(z) and ¥(z),
and we obtain simultaneous Integro-differential equations of 2z, To solve the first
approximations of these equations, firstly, neglecting small terms and taking linear terms
only, these are reduced to sitnultaneous Volterra’s integral equations of z.

In the Volterra’s integral equation, we can find the value at z= 0 exactly and easily,
and by the approximation of @), the only value at 2= is accurate in this case, and so the
simultaneous Volterra’s integral equations are reduced to the simultaneous algebraic
equations of x0(0)={f(z)/ar}:~09 and 30(0)={¥(2)/a’z}2—09. There is no need to solve the
Volterra’s integral equation at the whole values of z, but it is sufficient to find the x0(0)
and y,(0) only, by the method of the fine intervals (@n, Bn) and the approximation of @)

as a whole,
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fo<o)=xo(o>——fl§ -

/7

70(0)= y0(0) =" : @

We can find the boundary temperatures f(z=0)of (7) and ‘Z(z=0) of @), By the
repetitions-of the above-mentioned methods, taking some places to find the temperature

as the point of z=0, the temperatures of all the some parts of the multiple layers of pipes
are determined,

3. Numerical Calculations

The author could not find the accurate experimental data on this research and so assumed
the values of thermophysical constants for numerical calculations as follows,

The burning gas (temperature 7;=1200°C)"contains CO2=11% (&c0,=0.135) and HeO=8%

(eH:0=0.19).

The inside wall with inner radius 1 =1840mm is constructed by coating 10 mm thick

(A1=0.36kcal/m h °c, ew,=0.80), middle wall 150 mm thick is made by fire-proof brick {22
=0.72(1 +0.06 02)} and outside wall 25 mm thick is made by iron plate {23=77(1 —0.203),
swe=0.4}. The emissivity of gas eq=:C0,+Cw * eH,0—A<:=0.315,

The angle factor 1/¢cc=1/s¢+(1/2w,—1), .. &cc=0.292
Heat transfer coefficient of inside surface a=10 kcal/m2 h °C,

Heat transfer coefficient of outer surface «=8 kcal/m2 h °C,

The air temperature of outside=30°C. By these assumptions, K, B and C of @), Jo, J1,

Y, and V3 of the finite Hankel Transform are calculated, an, bn and a’a, b’n of @ are

found at the fine intervals (a1=4.70, R1=4.65) and (as=3.27, A3=3.25) which are assumed

from the form of @) The results of numerical calculations : dimensionless gas temperature

=4 87, dimensionless temperatures of boundary surfaces among 01, 02 and 03 :
fo(0)=4.666, ¥o(0)=4.165,

The temperature differences at fine intervals : 13°C at (a1, £1), 4.5°C at (as, Bs).

In the above case for the simplification of numerical calculations, gas temperature and
heat transfer cosfficient of inner surface were assumed, and so fo(0) and %,(0) were
fouad, but when we want to calculate the gas temperature cor heat tranfer coefficient of
inner surface, if the outer surface temperature is given, we need to reverse the order of
calculations or apply the trial methods,

In the case of which the influence of temperature upon s, and sw; must be considered,

we need to expand (K—B0,4—C0z) of @9 to Ps,
4. Summary

Heat Transfer Problems of cylindrical coordinates are determined by the method of finite
Hankel Transforms,

The first point in these analyses is the linearization of non-Knear ‘boundary conditions,

The second point is to determine the unknown boundary temperatures,

The simultaneous Integro-differential equations are reduced to the simultaneous Volterra’s

integral equations, which are reduced to the simultaneous algebraic equations,
We need to solve only the linear algebraic equations by this method of fine interval and

approximation as a whole, instead of non-linear Integro-differential equations or non-linear
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Fredholm intezral equation of the other thermal radiation problems as usual,
In the present paper, one part of the basic researches on cement kiln and centrifugal

casting is described,
Nomenclature

F(Z), temperature at x1=1, (r=rg), (°K3

Jo, Bessel function

/i, Bessel function

L, length of heating surface, fm)

To, atmospheric temperature at the outside of pipe, °K]J
Ty, gas temperature, (°K])

P, Legendre’s polynomials

Y5, Neumann function

Y1, Neumann function

Z , coordinate of axial direction, (m)

a , constant contained radiation constant?,

an, constant

b, constant contained heat transfer coefficient

bn, constant

a’n, constant

b’n, constant

d , constant contained radiation constant? and heat transfer coefficient
d’, constant contained radiation constant? and heat transfer coefficient,
Jo(2)=F(Z)/T,

(2) =an + fo(z) +bn

&(x), function of x

(=1, 2, 3,

r , radial length

ra, radial length (n=1, 2, 3, 4)

x , variable

Xny, =(r+rn)/(Fns 1 +ra)

y , variable

z , variable=Z/D

Greek symbols

@,, constant (n=1, 3)

Bn, constant (n=1, 3)

cw;, emissivity

twgy, €missivity

Zu, thermal conductivity (kcal/mh °C), (n=1, 2, 3)
4, variable

» , variable

/# , variable

0u, =T2/To, dimensionless temperatuvre

Orn, dimensionless temperature (n=1, 3)

¥(Z), temperature [°K)
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¥ (z), function of z=a"n « ¥o(2)+b'n
Vo(2), =¥(2)|To
&:.n, Eigen-values (1=1, 2, 3, -)
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