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Abstract

The results of an experimental and theoretical investigation on the damping action of
submarged vertical thin barrier are presented. The experimental data also are compared
with published theories. Furthermore, in this paper, a new theory is presented for the
transmission of waves passing through a submarged plane barrier.

This theory is based on a consideration of the Wave maker theory by T. H. Havelook.

Laboratory data are presented to show that these theory are useful for the engineering
stand point.

Introduction

One possible type of break water consists of a thin rigid vertical barrier from
the sea bottom to some distance below the water surface. One of the problems in
the design of such a structure is the determination of the distance above the sea bottom
to which such a structure must extend in order to function effectively. A theory of
such a structure is developed here together with the results of laboratory tests on a model
structurc under a variety of wave actions.

Theoretical Development

Three theories are given, one developed herein and two due to, R. A. Fuchs!)
and authors?). f ‘

Fuch’s Theory for Power Transmission
In 1951 Fuchs developed a theory for the partical transmission of gravity wave
for a submarged vertical thin barrier. He found that

K= sinh 2k gh—sinh 2k (h—d)+2kyd
‘ sinh 2k h+2koh :

where k denotes the wave number, h is a still water depth, d denotes a upper edge depth
of the submarged vertical barrier, and K, is a transmission coefficient.
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Momentum Transmission Theory

In 1974 authors developed a theory for the partical transmission and partial reflection
of finite amplitude wave in finite depth for a submarged vertical thin barrier. We
found that?® v

4/sinh 4k h—sinh 4k o(h—d)+4kod K =4 sinh 4ko(h—d)+4ko(h—d)

K= sinh 4% o + 4K o » K= sinh 4% o+ 4k o

where K, denotes a reflection coefficient.

Wave Maker Theory*):3):6)

Consider the partial transmission of uniform small amplitude wave in finite depth
for a submarged vertical thin barrier.

We consider a two-dimensional motion, in which a vertical plane occupies the line
x=0, d<y<h, where the axis of y is taken vertically downwards and y=0 is the
mean surface. (See Fig. 1) The wave motion, being such a could be produced from
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Fig. 1 Definition sketch of submarged obstacle
(H, L, T: Wave Height, Wave Length and Wave Period: Subscript
i and t denote are Incident and Transmitted Wave, respectively.)

rest by natural forces, is irrotational and simple harmonic. The fluid is assumed to
be incompressible and inviscid so that a velocity potential ¢(x, y t) exists. The velocity
potential satisfies

0%¢ , 0%¢ _
s gl (1)

Neglecting the square of the fluid velocity at the free surface, and omitting the
effect of capillarity, the condition at the free surface is
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0%¢ 99 ) -
< atz g ay y=0_0 (2)
and the surface elevation # is given by
___J_,,<ﬁ<?;> 3
="\ )|, (3)
For simple harmonic motion we assume a time factor €%, and equation (2) gives
0¢ )
k — =0 4
(kop+-52)] _, 4)

Furthermore, the boundary condition on the bottom y=h is that no flow occurs across
this surface, i.e.,

0¢

oy =0 (5)

y=h

The corresponding elementary solutions of equation (1) are
¢ =elet=ko¥) cosh ko(y — h) (6)
where k, is the real positive root of
gkotanh koh=02 (7
and
¢;=e"t"ki*cos k (y—h) (8)
where k; is any real positive root of
gkjtank;h+0*=0 9)

This equation has an infinite sequence of real roots, together with an imaginary root
iky.

In the case of no barrier in the water, equation (6) and (8) give a solution of equa-
tion (1). From the linearity of equation (1), also next equation is satisfied equation (1).

O=A'¢p+IB'¢; (10)

where constant A’ and B’ are decided from boundary conditions. In the case of
existing of barrier in the water, we have the additional boundary condition.

%f— _ =f)sinot (a1

where, we assume then the possibility of expanding a function f(y) in the range 0<y<h
in the form
f(y)y=Acoshky(y—h)+ZB;cosk,(y—h) (12)

where the summation extends over the real positive roots of the equations (9).
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We find that the coefficients are given by

ak | |
A=2% h+su§h2k0hg Sf(y)cosh ko(y—h)dy (13)
By= s anbsa\ f()cos k(y = Ry (14)
IT 2k h+sin 2k kYo7 VY i ) |

From equation (11) and (12), we derived next relation.

od

T ={Acosh ko(y—h)+ZB;cosk;(y—h)}sinot (15)

x=0
The other hand, we obtain next relation from equation (6), (8), (10).

0P
Ox

= —A'kye'" cosh ko(y—h) ~2B'k et cos k;(y—h) (16)

x=0
From equation (15) and (16), further more we .obtain
A'=Aky', B'=Bk;! (17)
Substituting equation (17) into equation (10), we obtain after development.
@ = Aky! cos(at—kyx)cosh ko(y—h)
—2XB;k; e **singtcosk (y—h) (18)

Equation (18) gives a velocity potential in the case of existing barrier in the water.
Considering the partial standing wave will arise on the barrier, We use a vclosﬂy
distribution of partial standing wave for the boundary condition.

od _ gTa [, coshky(y—h)
U] oo=-22 —-gla(j-a

i (
0x lx=0 a cosh k gh sin ot (19)

where a, and a denote a reflected wave amplitude and incident wave ampritude, res-
pectively. ' ‘
From equation (19) and (11), we obtain next relation for f(y)

d<y<h  f(y)=0 (20)

coshky(y—h)

0<y<d  f=-21%(1-y1-k?) e (21)

where K, is a wave transmission coefficient.
The values of 4 and B; follow from equation (13) and (14), and from equation
(18) we deduce the velocity potential in this case: :

p= _ 9781 = 1—=K7) sinh2koh—sinh 2ko(h—d) +2kod
Lko COSh koh : Slnh 2k0h+ 2k0h

-cosh ko(y—h)cos (gt —kgx) A ()
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v
3J
a

where we neglect the flow disturbance neighboring the vertical barrier.
Substituting equation (22) "into surface conditions we leads to a next relation
for surface elevation.

smh 2koh—sinh 2ky(h—d) +2kd

n=a(l—/1- sinh 2K Jh 4 K oh sin(at—kyx) (23)

On the other hand, we postulate the transmitted wave form by next relation
n,=a,sin(ot—kox+e) (24)

Considering the continuous of wave form at x=0, we derive the following equation
from equation (23) and (24) ‘

sinh 2k gh+ 2k od —sinh 2k 4(h—d)
sinh 2k h+2koh

a,=a(l—\/1-K?) (25)
where we neglect the phase angle e.
From equation (25), we derive the next relation for the transmission coefficient
Kt
2F sinh 2k oh+ 2k od —sinh 2ko(h—d)

Ki=1xpr> I= sinh 2k i+ 2k oh

(26)

In the equation (26), it is a interesting point that function F is coincide with the Fuchs’s
theory.

Experimental Equipment and Procedure”)-®)

The experiments were performed using a 0.7 meter wide, 0.9 meter deep and
20 meter long wave test channel at the Yamaguchi University in Ube.
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Fig. 2 Arrangement for the Test Channel (wl....w2: Wave gauge).

The rigid vertical thin barrier was fitted into the channel about halfway between
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the wave generator and the opposite edge. The wave generator was set to give a
wave train of given height and period. The wave height were measured with the
barrier installed in the desired position. The wave generator was started and measure-
ments were made on waves. The reflected wave height was measured by the Healy’s
method. Only the data obtained on the lee side wave meter used in computing the trans-
mission coefficient, K,. In analyzing the data, the first few waves were passed by as
these were not of constant period, thereafter the analyzing was made for the next
few waves. Considerable care was exercised in placing the barrier so that there would
be no leakage between the barrier and the wall of the wave channel.

Experimental conditions were as follows Table 1. Fig. 3 shows some examples
of measurements.

Table 1. Term of experiments.

h 40.0 (cm)

d 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 (cm)

AL 0.11 ~ 0.43 (7)

HIL 0.004 ~ 0.099 (32)

7 8 9

Q.05 o 13

0.89

82+ 25=328sec

Infront of barrier

In lee of barrier

Fig. 3 Sample wave record.

Results

The experimental results are shown in Fig. 4, compared with the wave maker theory,
momentum transmission theory and Fuchs’s theory.
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Fig. 4 Comparison of the Experimental Results with Calculated Results.

In Fig. 4, we use jointly with experimental results by T. Hino and Fuchs.

It

appears that these theory is useful to the engineering, but any improvement in the

theory is needed. The trend of increase in the value of the transmission coefficient
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K, with increasing relative depth h/L is consistent. This would be expected from the
fact that, all other conditions being equal, the transported wave momentum into lee
of barrier increase as the relative depth is increased. The range of long wave, momen-
tum transmission theory predicts the transmission coefficient more closely than does
-the Fuchs’s theory and wave maker theory (equation (26)). Fuchs’s theory and wave
maker theory predicts the transmission coefficient closely for shallow water wave,
but Fuchs’s theory predicts the smaller value of transmission coefficient than does
the wave maker theory. These would be expected from the experimental results by
T. Hino and Fuchs.

Conclusion

The wave maker theory predicts the transmission coefficient adequately for shallow
water wave, and the momentum transmission theory does closely for long wave.
Fuchs’s theory predicts the smaller value than does the others. But these theory is
useful to some engineering standpoint. A consistent trend of increasing transmission
coefficient with increasing relative depth is evident in the laboratory measurement.
This would be expected from the by T. Hino and Fuchs.
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