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Effect of the Electrical Conductivity of the Walls

on the Induction-Heating of the Electrically Conducting Fluid
Kenji EBIHARA¥*

Abstract

The temperature distribution of the inductively heated fluid is investigated for the idealized
channel-model. The model is composed of the infinite plane channel and the semi-infinite current
sheet. Two infinite plates with electrical conductivity are placed a distance 2L apart and the
conducting fluid flows through the channel with only the x component of the velocity. ;The
electromagnetic field with high frequency is supplied by the semi-infinite sheets on the plates.

The normalized temperature for that modzl is obtained by using Maxwell’s equations, Ohm’s
law and the energy equation. As a result, the effect of the conductivity of the walls is shown
by the factor S. At the high-frequency field this factor is expressed by exp (-rw!/) approximately,
where the parameter 7w is defined by 2L/8w and [ by A/L (h: thickness) and 6+« is the skin depth
of the wall.

The radiation losses and the dependency of the temperature on the fluid properties are not

considered in this analysis.

1. INTRODUCTION

It has been shown experimentally in a few worksD~49 that the temperature distribution of the
induction-coupled plasma indicates the off-axis peak. The theoretical analysis for the characteristic
was done in a previous paper®. There the electrical conductivity of the wall has not been
considered.

When conductive materials are used as wall substances in order to realize higher energy sources®,
the effect of wall conductince on the temperature of the inductively heated fluid cannot be ignored
and then some modifications must be done.

The purpose of this work is to study the effect of the wall conductance on the channel flow.
The analysis is performed for the idealized model which is shown in Fig. 1. The system is
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Fig. 1 The geometry of an idealized model for infintite
plane channel. (A) : conducting fluid, (B) : conducting wall,

(C) : current sheet.
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composed of the infinite plane channel and the semi-infinite current sheet which produces the
electromagnetic field with high frequency. The infinite plates form xz planes and the high-frequency
current passes through the sheet in the z direction. These assumptions allow the flow to be
uncoupled from electromagnetic equations. The temperature of the fluid can be obtained from the
energy equation under some boundary conditions ; the energy equivalent to Joule heating is drived
from Maxwell’s equations and Ohm'’s law.

The radiation losses and the derendency of the temperature on the fluid properties may be
important in our analysis but they are not considered. This is a preliminary report in order to

perform more detailed research.

2. BASIC EQUATIONS AND SOLUTIONS FOR UNIFORM AND PARABOLIC FLOWS

The important assumptions in this analysis are summarized as follows ;

(1) Physical properties are constant and uniform for the fluid and the wall respectively.

(2) The temperature at the surface of the outer wall is constant and equal to @o.

(8) The heat conduction in the x direction is neglected in comparison with the radial
conduction.

(4) The viscous dissipation and the radiation losses are neglected in comparison with
thermal conductance.

(5) The displacement current and the space charge are small enough to be neglected.

(6) The end effects of the field are ignored.

Under these assumptions the energy equations for the fluid and the wall may be solved.

The physical quantities are expressed as follows ;
velocity : V=(u(y), 0,0),
magnetic field : H=(H(y)ei»t, 0,0),
current density : J=(0, 0,J())),
electric field : E=(0, 0,E(»)),
temperature : ® =0(x, y).
The energy equations for the fluid with the steady convective flow and for the wall are given by

00 _ , 020 |, Js2

0 cpu W = ¥0y2 o-f ) (1)
020 Jw2
5 . - 0 @

Here 0 is mass density, ¢ electrical conductivity, k thermal conductivity, cp specific heat, J current
density. The suffix f and w denote the values for the fluid and the wall respectively. The term
(J2/g), which means Joule heat, may be drived from Maxwell’s equations and Ohm’s law and

they are represented as follows ;

rot E=—p, %Pt{ , . (3)
rot H=J, 4)
div E=0, (5)
div H=0, (6)

J=0E, @)

where the constant #, dinotes the permeability in a vacuum. From these equations, the induction
equations can be drived and written as

02H 2i H
ea-2y, ®
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where both ¢ ,=(2/1 070)"/2 and dw=(2/n, Cww)'/? are called skin depth.
It is assumed that magnetic field H becomes Ho at the surface of the outer wall and that
magnetic field is continuous at the boundary surface between the fluid and the wall. An

appropriate solutions for magnetic field is

Hocosh (1+i L) . cosh(ﬂy)
0w 6]‘
H= 1+i 1+i,\ for | yI =L, 10
cosh ( - (L+h)) -cosh(rfL)
0w 0w
Hocosh(l—(;r—iy )
H:———f—#~ for L<|y|<<L+h. (1
cosh ( - (L+h))
o w
The expressions of the current density J are obtained from Eq. (4). These are
Ho(1 +i>cosh(16i’i ) - sinh (\1_5t’y)
Jr=— S T for |y| <L, 12
0 s cosh (— (L+h)) . cosh(~— L)
S 6/

Ho (1+1) sinh (117 ) |
Jo=— T for L<<|y|<<L+h. a3
0w cosh (550 L+ )

w

Therefore the energy equivalent to Joule heat is given by

Js2 Hy?

Py RO 1
Jut _ 2He o

o = G s S0 =

In these equations, 7 and g(7) are defined by

frme _y* I5 )
n T > \18
/()= cosh rw+cos 7w . cosh(y 1) —cos(r ;1) 1
N cosh(rw (1+0D)) +cos(rw(1+1)) coshy ;+cos 7 ? .
_ cosh {ywn)—cos(Twz) 18
g (1) cosh(rw (1+1))+cos(rw (1+1))’ g
2L _ 2L __ h . .
where rw= 5=, ry = == and [=—— (thickness ratio).
Ow 0r L

If we use the quantities defined by

_ 2kay o _ _ 1 L
0 = TTHR? (0—00), u=unf(n), un= 5L g L4 dy,

Pe' = Qﬁ%é (Pe’ clet Number),

- X - & x ,
$ =7 and y Pe — Pel’ 19
the energy equations for the fluid and the wall can be written as
2
fay 30 = 80y mg ), 20
b 07
9% s 2 =
5z T (O'w) Tw2guw (%) 0. @n
The boundary condition for the wall (Eq.@D) is
0=0 for y=+(1+1). 02
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And we obtain as the solution

_{(9or _ cosh(7w7) +cos(rw7) _
0 ( aw) (1 cosh(rw(l+1))+cos(rw(1+1)))- @

The temperature at the inner surface of the wall becomes

on = (91 _ cosh rw +Cos 1w
B (aw)(l cosh (yw (1 +1))+cos(rw(1l +l)))- o

Since, at the contact surface between the fluid and the wall, the wall temperature is equal to the

fluid temperature, Eq.(20 will be solved. When we introduce a new variable of temperature

T=0—-08, @5
Eq.©0) and the boundary conditions have the following forms

oT _ 0°T .
f(ﬂ)ﬁ o +rs gf("?).; ‘ @6
T =0 for y=0, (17a)
T =0 for y=+1, (270)
T _ for 7=0. (21¢)

0y :

At infinity downstream the heat flux in the x direction is assumed to be neglected in
comparison with that in the y direction. Thus there we have the temperature T determined by

the following equation.

2
fzii—ﬂéT—Jrrf’gf(ﬂ):O. 2
An appropriate solution is
Tw =S ( 1 —Cosh (7 7) +cos(r 1) ) 09
cosh rr+cos ry /s
where S= cosh 7w+cCoSrw : 60

" cosh(rw(1+D))+cos(rw(1+D)
When the variable ¢=T—To is introduced here, Eqgs.@ and @7 are simplified in the following

forms
o¢ _ 02¢
) —07 = “_6772 s @D
¢=—Tw for x=20, (312)
é6=0 for y==+1, (31b)
%: for 7=0. (32¢)

This differential equation may be solved by using the solutions which were obtained in the
previous paper®.

The solution for the uniform flow is given by

T:Tco+¢
_ _ cosh(r;n)+cos(rsn) | B —wn2 :
=S {1 cosh 7s+cos 77 +n§1An eXp (—on?y) cos (wnn) } ’ o
where L, Y 20n Brr2—ael® 2
An—-("“l) { a Tf4 — wnpt Wn }’

a=cosh ys-+cos ry, B=cosh 7y —cos 7/,

a)n:(n— ; )T[.

The solution for the parabolic flow is also given by

_ __cosh(rsn)+cos(rrn) | 2 _
r S{l cosh rs + cos 7y g Bn exp(—anp)0n (1) }; 9
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where ,
B,= L (1! (y __cosh(ysr7)+cos(rsn) 2
C. 11 (1 cosh 77 +cos rs ) On(n) (1 =7 2)d7,

unnz){1+m§1 (1—@)(5—(;1;)”-1;!(4"1—3_”") tn ng}

0 () = exp | —

2

1
2
Cu={ ! (@n(1)2(1 —%)ay,

HUn= (—g—ln)l/z.

In Egs. (33) and (34), the parts of the curly brackets become the solutions® which have been
obtained without cosidering the wall conductance. Thus the effect of the wall is included in the

factor S which is determined by the parameters of 7. and /.

3. NUMERICAL RESULTS

Numerical calculations will be limited in the case when the fully ionized gases can be treated as
the conducting fluid. The electrical conductivity for fully ionized gases is assumed to obey the
theoretical equation given by Spitzer and Harm?”. The conductivity is 1~502-lcm-! for
temperature T~10000°K and number density of electron Ne~1016 in the case of Argon. The
approximately same values are experimentally obtained for the induction-coupled Argon plasmas at
atmospheric pressure®®. The conductivity of copper and iron are about 1062-lcm-! and
1052-1cm~1 respectively.

If the frequency of the electromagnetic field is 1 MHz and half depth of the channel is 5 cm,
skin depth become 1~10 cm for fully ionized gases and 10-?~10-3 cm for the wall (copper or
iron). The parameter 7 s becomes 1~10 and 7. 103~104.

In the high-frequency field the parameter 7. has the very large value. Therefore in this case
the factor S is given by the approximate expression ;

S~exp(~7wl),
—exp(—/ 2t A/ Tw = N0+ ). 5
The part of the exponent is composed of the product of the wall thickness, the square root of

the wall conductivity and the square root of the frequency. When the value 3x10-3(4=0.15mm)
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Fig. 2 The temperature profile of the plane channel for 7;=10. The
dashed curves correspond to uniform flow and the full curves to parabolic

flow. The numbers next to the curves give the values of 1(=x/(Pe’L)).
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is used for the thickness ratio, the modification factor S and thus temperature of the fluid become
so small as to be a few tenths.

The normalized temperature(7/T«(0)) is calculated for y ;=10 and shown in Fig. 2. The dashed
curves correspond to the uniform flow and the solid curves to the parabolic flow. The number
belonging to the curves gives the value of x. For small value of x the temperature distribution
have an off-axis peak as having been shown in experimental worksD~4, With the increase of y the
location of the peak moves towards the channel axis and at infinity downstream the distribution
becomes monotonic. The temperature is shown to be higher near the wall in the case of the
parabolic flow than the uniform flow but the situation is reversed in the vicinity of the axis.

4. CONCLUSION

The temperature of the conducting fluid which is inductively heated is effected extremly by
wall conductance and wall thickness. In conclusion, the influence is shown by the modification
factor S, which has approximately the form of exp (—7«l) in the case of the high-frequency
field. It is expected that the same idea developed here is applied to an analysis of the ring
discharge which is composed of the two zones apparently ; the layers of high and low
conductivity.

If we choose the fully ionized gases as the conducting fluid, the situation will be complicated.
In this case the radiation losses and the dependency of the temperature on the electrical and the
thermal conductivity become serious problems. Some analytical studies of the induction-heating in

the presence of these effects are now in progress.
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