Analysis of Stresses around a Circular Shaft
in an Elastic Ground.

———1In Case the Directions of the Initial Stresses are Vertical

and Horizontal.

Shoji Ocino*

Abstract

The author treated of the analysis of stresses around a circular shaft without lining sunk in
an elastic ground, in accordance with the results of investigation elaborated by H. Suzuki, and
obtained the stress distribution by numerical calculation for some concrete examples. He then
compared the results of the calculation with the results obtained by simple equation, supposed
to be derived by treatment as a two dimensional problem, and found that the both results

coincide very well.
Being based on the fact mentioned above, he described the solution of the stresses around a

circular shaft, in case one of the principal stresses in the virgine ground is vertical, and the two

horizontal principal stresses have different magnitudes.

1. Introduction

The solution of the stresses in an ground around a circular shaft has been obtained by the
theory of elasticity, assuming that the ground in which the shaft is sunk consists of homo-
geneous elastic body, and the surface of the ground is horizontal. This solution was obtained
in 1931 by T. Sugihara under the assumptions that the stresses are produced only under the
effect of own weight of the ground and that the Poisson’s ratio of the ground is equal to 2V.
The latter assumption means, in other words, that the value of the initial stresses increase
proportionally with the depth, and have uniform magnitudes in all directions. It is one of the
important subjects of research in the field of the rock mechanics, whether above mentioned
assumtion is right or wrong. Anyway his solution was obtained assuming a special state of the
initial stresses.

Later on, in 1949, another solution for the same problem was obtained by H. Suzuki, under
more generally acceptable assumptions that the rock pressure is produced only under the effect

of the own weight of the ground and that the Poisson’s ratio of the ground can take any

2
value®.

The solution of the stresses in a ground around a circular shaft with no lining, however, has
not been definitely shown in his paper. Moreover, this_solution was obtained utilizing a
boundary condition that, in case the shaft wall is covered by the lining, the stresses on the wall
surface are equal to the stresses on the outer wall of the lining. This assumption, however,
seems to be inappropriate, because the lining is built many days after the shaft has been
excavated. Consequently, it is considered that among the solutions treated by him, the solution
relating to the shaft without the lining would be significant.

The author therefore tried to calculate the stresses around a circular shaft without the lining,

and to give the stress distribution concretely.
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2. Analysis of stresses around a circular shaft.

- Consider now a ground with horizontal top surface forming
@%@ a semi-infinite elastic body, in which a circular shaft with
Za
- S— diameter 2a¢ is sunk. Let us take a cylindrical co-ordinate
(r, 0, z) as shown in Fig. 1, having its origine at the center of
\ the top end of the shaft, and z-axis coinciding to the center
Ll line of the shaft. Then the displacements as well as the stresses
L ,l% at any point in the ground being symmetrical in respect to the
;L z-axis, the equations of equilibrium are given by
| Oe 0w
A+2u)—— +2u =0,
- ( ) or 0z ?
¥ L
z (1)
Fig. 1 A circular shaft without y @i _ ,_17¥07 —
lining sunk in an elastic 4+ 2/) 0z 24 r  Oor (r([)) +7=0,
ground.

in which 2 and # mean the Lamé’s constants, e the cubical dilatation, @ rotation component
around a normal line of rz-plane, and 7 specific weight of the ground®. Denoting by z and w

the components of displacement in r- and z- direction, we have

o — Ou Lou Ow )
b (2)

: or r 0z,
90 — Ou  Ow )

0z or,
and from Egs. (1) we find

0% 1 Oe 0%

ST Oy 3
or? + ror + 0z2 0, (3)
0w 1 oJw W 0w
I . _ e () e 4
or? + roor re * 0z° 0 (4)

Substituting Eqgs. (1), the solutions of Egs. (3) and (4) have the form

3 NLR T .}sin}. T

e = )%Jl {A,lKo(k,ﬂ) + B, Iy (k) cos ooz Tron ® (5)
= A+2 , — cos)

2“):%{ “Lﬂ ﬂ—{An K, (kyr) — B,l.ll(k,lr)} Si‘l?]osfi.c,,z, ------------------ (6)

in which 1o (k,r), I, (kur) are the modified Bessel functions of the first kind, Ko (), Ky (kar)
the modified Bessel functions of the second kind, and A,, B,, k, are the arbitrary constants.

From Egs. (2) we find the following equations:

7 Ozu 1 OL u 0%u Oe 0w

or* +-T7uar 7t + 0z> —  Or T2 0z ’

(?210 1 ow 702w Oe _2< ow W >

Vol. 15, No. 1 (1965)



Analysis of Stresses around a Circular Shaft in an Elastic Ground 3

Solving these equations we obtain

w= =S A 4K () + CuKy () + AL B 1y (i)
n=1 2/'4 Q/l
4 D” [1 (knr)} s(l)rsl } kﬂz’ ............................................. ( 8 )

w= AL 4K Gy = 224, Ko )y

At u , A+ou Lo(kyr) - 1 cos } -
7*’é‘ﬁ‘* Bnr [1 (lﬁ,ﬁ) + 1 l}n ]ﬁn Dn 1() Ufnr)} —sin l‘fné
1 rs°
- e, 9
2 A42u , (9)

where C, and D, are the arbiturary constants.

Denoting /1 and [ the depth of the shaft and a depth a little smaller than /;, in which /
means the depth of points on the shaft wall where the influence of shaft bottom becomes
negligibly small. We shall carry on the analysis within the range of 0 <<z <_/. Practically, the
length of [ are considered to be several times of the shaft diameter shorter than /,.

The boundary conditions for the shaft wall, for the infinite distance and for the ground
surface are given as follows:

for r =— «,

Tz ou Ow

_nre = 7t i e =0, e e
2 o= T o (10)
ou
(yyzxc_kg/g“*:o’ ................................................ (11>
Or
for r = oo,
T )
=0, = - T 192
. v 9 (A + 21) (12)

and for z = 0,

T _ Ou | Ow _
© " o: o "O’?
....................................... (13)
. ow g‘
O.=le+ 21" =0,
0z

Substituting Egs. (8) and (9) into Egs. (12), we have
Bn:D,,:O, ............................................................ (14)
and we find from Egs. (5), (8), (9) and (13)

cOSs knz:() ............................................................ (15)
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Whences from Eqgs. (8) and (9), v and w are expressed by the following equations:

-3 {ﬁ/i A Ko (har) + CoK (k,@} Sin Foz, (16)
S At Ao Ko(kar)
S { L2 A K () 2 g, e
. . LT e
+ C Ko () } sin fons — Lo (17)

Substituting Eqgs. (16) and (17) into Eq. (10), it is found that

‘“;” ATy Ko () — “ﬂ”‘ A, K, () + 2Colin Ky () = 0. (18)

Also from Egs. (5), (16) and the boundary condition Eq. (11)

S {_ 1Ay Ko () &+ A+ 1) Ayt Ky (on) + 204yl Ko (hnct)

n=1

rlz Bt [ T
+4c Kl(kna)}sm b — 1 =0, (19)

Eliminating C, from Egs. (18) and (19), we have

iion = {Ko (knat)}*
= A2 S A, m kK () — (o ) T U2 L

+ (A+2u0) > Kl <kﬂa’>] SN Joyz. oo (20)
ko

Developing z in a Fourier series over — <z <[,

oo _1y—-1
z= 2l S‘( D sin (k, 2),
n

T n=1

irl Wthh ....................................... (2 1 )

We obtain, from Egs. (20) and (21)

4, — (="t ort 2 H(l-}—ﬂ)kna+

! }K )
k.a

) T A+2u
C AK @Y T

Substituting Eq. (22) into Eq. (18), C, is derived in the following form:
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_ (=1t A a
C,= o T H o) {(2+2ﬂ)K1(kn>

— A+ Dk K, (k,,a)} H(Hu) kv + (A-+ 220) kia } {Kl (kna,)}z

— A+ Wk {Ko(kna)}z]_l ................................................... (23)

Denote by ¢,, 0y, 0., T,9, T, and 7,, the stress components in the ground, then we have

Ou

o, =%+ "L Go=2le+on Y
ar ’ T
. jw _ ( ou 70107) .............................. (24)
0, = Ae+ 21 Py Ty, =M 5z + ).

Tr9 = To, = 0.
Substituing Eqs (5), (16) and (17) into Egs. (24), we obtain

oo

G, =) [— A, Ko (ko) + (A4 20 ke A, Ky (o)

n=1

‘ K LQ?!'L),,} ik A
+ 2AtCn.{k,,Ko(knr) + = . ]sm knz Trou

RN 2 : __Ti
Gy = 7;3:_{ {ﬂA,,KO (kur) + C, - K, (k,,r)} sin k,z Txou z,

0o = — 3 {— B+ 42) A, Ko (ko) + (At 1) Jepr Ay Ky (o)
n=1
+ 24k, C,Ko(k,r)} sin kyz — 7z,

Tre = — S {QA+ ) kur A Ko (k) — (A4 222) A, Ky (ot
n=1

+ 21k, C K, (kyr)} cos kyz.

Denote by v the Poisson’s ratio of the ground, then, substituting Eqs. (22) and (28) into Eq.
(25), each stress components are given by the following equations:

Y 2 Y

Or=—q_T:+ 1, rl%l [Kln(:kna)Ko(knr_) + {knr \

4+« };l)} K (en@) Ky (or) — Jona Ko (i) {Ko (Far)

n
1

+ kr

K G} (=17 0 fra+ 202D Lk ]

271-1
—k,a {Ko (k,,a)} J sin k,,z,
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Oy = — v Tz — '?7 i 7l i} [(1 42V)K1 (k,,a)Ko (knr)
1—vy T 11—y =1

+ 2{(1 =) K (kutt) — b Ko (k) E.lk(_’fr@)_]

x [ 1y {k,,a + 3%%’)} (K, ()} ?

1
—kpa {KO (kna>} 2] sink, z,

0, = —Tz+——2— Y rli}[{knaKO(knCO
T 1—v n=1

+ 2K1 (kna)} KO (knr) - Kl (kna) knr Kl (knr)]

x (=1 {Ifa n 2%;7”)} (K, (kpat)}?

~1
— kya {KO (kna)} 2] sink, z,

e — 2 Y S K (k) Ko Ko (r)
T 11—y n=1

2(1 —vy) |

— kpa Ko (kya) Ky ()} [( —1)""'n {k,lcz +
k.a

-1
x {Kl (kﬂ“)} — IC”CL {KO (kna)} 2] cos k‘nz,

Tro = Toz — 0.

3. Numerical example for the stress distribution

around a circular shaft.

The stress distribution in an elastic ground around a circular shaft is given by Egs. (26).
The author then tried to calculate the stresses numerically giving an example, in which 7a/!
= 0.05 and Z/?a. — 31.4. The results of caluculation for 0,, 0y and 0. are shown in Figs. 2, 3
and 4, where the ratios of the stresses to (—71) and r/a are taken on the ordinate and abscissa
respectively. As the value of ¥ 1/8 and 1/5 were taken.

The relation between the ratios of each stress components at any point to the initial principal
stresses at this point and r/a are shown in Fig. 5 by three full lines. Those ratios are nearly
independent of either the Poisson’s ratio or the depth.

Stress ratios J:/pl, (f(,/pz and (7,/])2 are taken on the ordinate of this figure, where p;

and p; denotes the vertical initial stress (— 7z) and the horizontal initial stress (— Ty Tz)
respectively.

It is found from Fig. 5 that the stresses around a vertical shaft with circular cross section are
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r/a lz/z=(f.3
Fig. 2 Distribution of ¢, around a circular 0] 2 3 : 5
shaft in a ground where the state of the r/a
initial principal stresses is symmetrical Fig. 3 Distribution of ¢y around a circular shaft
in respect to the vertical axis. in a ground where the state of the initial
principal stresses is symmetrical in respect
to the vertical axis.
10
2.0
08
z/1=08 \
15—,
%
\\1 |
=05 1.0
z/L=0 payys —
4
0 ol Pe
Z2/L=03 05 A4
0.2 / from Egs.(26)
B — y=1/3 B ———~ from Egs.(27)
-———— y=1/5 0 | | i |
0 I ! 2 3 Y r/a 3
] 2 3 4 r/a 5
Fig. 5 The ratios of each stress components to the
Fig. 4 Distribution of o, around a circular initial principal stresses around a circular
shaft in a ground where the state of the shaft in a ground where the state of the
initial principal stresses is symmetrical initial principal stresses is symmetrical in
in respect to the vertical axis. respect to the vertical axis.

determined by r/a, the ratio of distance from the center line of the shaft to the radius of cross
section of the shaft, and are nearly independent of the values of v or z/l. The shearing stress
vanishes on the shaft wall, and is also very small in the groud as compared with the other

stress components.
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4. Stress distribution obtained by two dimensional treatment.

The following simple equations giving the stresses around a circular shaft have been proposed
by Refnetsky®,

: 2
et ()
1—vy r

BN
1—vy r

It is infered that these equations were derived by putting 0, and 0y equal to the stresses which
are produced around the opening in a slice by cutting the ground around the shaft by many

horizontal planes, when this slice is loaded on the periphery at the infinite distance by compres-

1

when each slice is compressed in the direction of z-axis by compressive load of the intensity

(—72).

That is to say, taking a rectangular co-ordinate x, ¥, in a plane perpendicular to the z-axis,

. . . v . . .
sive load of the intensity (—7-—)) sz and putting 0, equal to the stress which is produced

if the principal stresses p2 and pj exist in the directions of x- and y-axis at the infinite distance,
and p3 is equal to zero, the stress components at any point in the ground around a shaft can be

expressed by the following equations:

o[ () () (Y]
0o = [{1+<%>} - {1+3<f>4} cos 20| 1% JRRRRR (28)
et

where r and 6 denote the distance of this point from the origin and the angle between a straight

line connecting the point with the origin and x-axis, respectively.

In the same manner those stress components for p; = 0 are given by

e e e S R R Ee ¥
o= (e G e ) ool 5 @
o= (e () o (5 Tpmeel

P
Consequently, if p; and p3 exist simultaneously and p> = p3 = — 11—y 7z, the stress components
0,, 0p and T,y take the form shown in Eqs. (27). These equations have very simple form as
compared with Eqgs. (26).

If we illustrate the ratios of the stress components to the initial stress against 7/¢ in order to
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compare the stresses obtained by Eqs. (26) and (27), however, we can find the stresses obtained
by both equations coincide very well. Accordingly, when we calculate the stresses around a
circular shaft without the lining, nearly equal results are obtained using either Egs. (26) or
Eqs. (27).

For the wall surface of the shaft, follwing expressions for the stress components are obtained :

(0,)r-a=0, (Cp)ya= — kl,% T2, o == — T2 oo (30)

5. Stresses around a circular shaft in an elastic ground where
the directions of the three initial principal stresses are
vertical and horizontal, and the two horizontal principal
stresses have different magnitudes.

Denote by p1, p2 and p; the three initial principal stresses, then, if the direction of JARBE
vertical, and that of p, and pj, the magnitudes of which are not equal, are horizontal, the
stresses around a circular shaft are obtained as described below.

Let us now consider a rectangular co-ordinate x, ¥, z, in which z-axis coincides with the
center line of the shaft, and the directions of x- and y-axis coincide with the directions of P

and ps. The treatments described in 1, 2 and 3 are the analysis relating to the case that the

principal stress p; is equal to (— 7z) and P2, P3 are equal to (\ - é; Tz)

As described in 3, the stresses around a shaft in an elastic ground under such state of initial
stresses can be obtained by either Eqs. (26) or (27), both of which give nearly equal results.
Egs. (27) mean, however, that, among the three stress components, 7. is equal to the vertical
intial stress p; at any point in the ground and that horizontal stresses 0,, 0y are equal to the
stresses which are produced around the shaft when p2 and p3, the magnitudes of which are
equal, act at the infinite distance in a plane perpendicular to z-axis.

It is admitted without difficulty, even when the magnitudes of p; and p; are not equal,
that we can obtain the magnitudes of 6r and ¢, as the sum of the stresses around the shaft,
when the principal stress p, acts at the infinite distance in the direction of ax-axis and the
principal stress p3 acts at the infinite distance in the direction of y-axis, utilizing the principle
of superposition. '

Let us now take a point on a straight line in a plane perpendicular to z-axis and denote by r
and 0 the distance from the center line of the shaft to this point and the angle between x-axis
and the straight line. Then, the stresses which are produced around the shaft when the principal
stresses p» and p3 act in a plane perpendicular to the z-axis at the infinite diststance, in the
direction of x-axis and y-axis respectively, can be obtained, utilizing the principle of super-
position as sum of stresses which are produced by the action of p2 only and the stresses which

are produced by the action of p; only. Hence, from Egs. (28) and (29), we find

1 2 1 4 , 2 4 \
(e L s w32

1 o\ 1 i\
Ty = 7—27{1—{— (—(:—> JZ»(pg+p3)— -2—-—{1+3<<—(r—b—> }(pg—pg)cos 20,

62:[)1, (
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N2 4
T = ——712-7{1+2<L) - 3(-‘:—) }(pz—pg)singﬁ,

r

fgz:sz:O. /

6. Summary

The author treated the stress analysis for a circular shaft without lining sunk in an elastic
ground in accordance with the results of investigation published by H. Suzuki, and gave the
stress distribution obtained by numerical calculation for some concrete examples. He then
compared the results of the calculation with the results obtained by simple equations, supposed
to be derived by treatment as a two dimensional problem, and found that the both results
coincide very well,

Being based on the fact mentioned above, he described the solution of the stresses around a
circular shaft, in case the principal stresses in the ground are vertical and horizontal and the
two horizontal principal stresses have different magnitudes.

The work described in this paper was carried out at the Department of Mining, Kyoto
University, as a part of research on the rock mechanics relating to the mine shaft. Acknowledge-
ments are due to Professor Hiramatsu and Assistant Professor Oka, who took the leadership

throughout this investigation.
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