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Pair Connections on Homogeneous spaces which

are Invariant under Tangential Transformations

Shun-ichi Hozyo *

Abstract

Two types of invariant pair connections are considered, one has an invariant horizontal

subspace and parallel translations with respect to some curves in tangent space are represented

by left translations and the otner has an invariant horizontally horizontal subspace and projec

tions of one parameter subgroups are paths of a base manifold.

Introdnction

In the formulation of Finsler geomet-
ry, M. Matsumoto” and T. Okada® have
introduced a notion of a pair connection
on a tangent vector bundle of a differen-
tiable manifold. The purpose of this
paper is to study a pair connection on a
homogeneous manifold invariant under
a suitable differentiable transformation
group which was introduced by S. Ko-
bayashi®” as a tangential group. Pair
connections of a manifold M are origi-
nally considered in a bundle @ on a tan-
gent vector bundle B which is induced
by a projection t : B>M. But in this
paper we give our definition in a bundle
T(P)for our purpose. K. Nomizu® gave
the definition of ordinary invariant con-
nection on a homogeneous space as the
connection invariant under transforma-
tions of a basemanifold. This seems too
general for our case, because we treat a
bundle on B.

sider transformations on B induced from

Therefore, here we con-

transformations of base manifold M, re-
presented with multiplication of tangent
vectors to the transformation grop. Two

types of invariant connections are de-
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fined in this paper, one has an invariant
horizontal subspace.and the other has an
invariant horizontally horizontal sub-
space. These connections correspond to
invariant connections of the first kind
The
author wishes to express his sincere gra-

titude to Prof. M. Matsumoto for his

and the second kind of K. Nomizu.

encouragement and advice during the

preparation of this paper.

Let Pbe a Lie
group, P its Lie algebra, and 7(P) a

1. Preliminaries % -

tangent bundle space of P, that is, a
space of all tangent vectors to P. T(P)
can be identified with Px p by an iso-
morphism which maps a vector X, to a
pair (2, A) where A=L,_, X,.

Let ¢ : Px P—> P be a map of multi-
plication of group P, then the induced
map 0¢ : T(P)x T(P)—>T(P) defines
multiplication in the space T°(P), that
1s, in £2X P,

For two pairs (p,, Xy), (pp, Xz) in P
X p their product is given by

(p1, X1) » (12, Xo) = (22, ad(g2Y)

Xi+Xp)
and this multiplication makes 7'(P) into

a Lie group, called a tangential group
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over P.

Let P be a Lie grup, acting transi-
tively and effectively on a manifold M.
Let G be an isotropic subgroup of P ata
point X,&M.  Then the manifold M
can be identified with a quotient space

P'G. 1If we let G act on P on the right,

we can get a principal fibre bundle

P(M,G) over Mwith astructural group
G.

Now let 7: P->M be a bundle projec-
and let r: Px G—>P be aright
translation. Then their differential
maps d7: T(P)>T (M) and dr: T(P) X
T (G)—>T(P) together define a principal
bundle structure 7 (P)(T' (M), T(G)),
called tangential bundle of P(M, G).

We donote 7’ for o7,

tion,

A tangerit bundlé (or tangent bundle
space) of M is denoted by T(M) or B,
and an induced bundle of P(M, G) by
the mapping ©: B—>M is denoted by
Q (B, G).

A principal bundle T(P)(B, T(G))
is uniquely determined as an extension
of Q(B, G).

Let ¢ be theclass ¢G of P/G. A
tangent space 1z(M) is isomorphic to a
vector space F=p/g. Let B be an
associated bundle of Q, with fibre F,
then B is a product of B.  The operation
of T(G)=Gxg on F is defined by (g,
U)-f = is(g)+f for ¢EG, g, fEFL,
then a bunile space of an associated
bundle of 7 (P) with fibre F coincides
with a bundle space of B. So we denote
it by 1~3

For the convenience,
T(T(M)) as T?(M). We have isomor-
phic relations T(M)=T(P)/T(G) and
T2(M)=T*P)/T*G).

we abbreviate
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To identify T%(P) with (Pxp) x (b
+9@) we denote a left translation of 7(P)
by an element (p,X)ET(P) by L.x,.
Then by this translation -7%(F) can be
identified with 7(P) x T%,,(P), and
T ,,(P) with pP +p@, where (¢,0) is a
unit of 7°(P).
72(P) can be denoted in a form (p, X;
A,B), peP, Xep, AEH®, B&pPand an
adjoint transformation by an element of
T(G), operated on (4, BYET? o, (P) is

ad (g, U)-(4,B)=(ad(®)-4, ad(9
B—ad(g)-(4,U)) for (g, U)ET(G).

Therefore, elements of

2. Pair conunections Let Q be a bund-
le over B as above. If at each point ¢
inQ atangent space 7,(Q) is decomposed
into a direct sum satisfying the following
conditions (a)~ (f), then we say that a
pair connection is defined in the bundle
Q:

(a) T,0)=Q4+1"y, where Q) isa
tangent space to a fibre through ¢ in Q..
(b) RJI',=I",, for “" ¢=Q, gCG.
(¢) [', depends differentiably on ¢.
(d) 1',=07+1"y, wherel'; covers a

vertical space of 7,(B). b=mq.

(e) RI'G=lg,

(f) [I" depends differentiably on ¢.

Obviously an ordinary connection is
induced on Q(B, G) by the above condi-
tions (a)~(¢). Once a pair connection
is defined on Q, the injectionQ, —>7T (F)
induces the pair connection on T'(P),
so we shall confine ourselves to the study
of a pair connection on 7'(P) and denote

by the same symbols [", x), 't x), UGy

on T'(F).

3. Invariant pair connections of the

first kind on T(P) (B, T(G)) Assume
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that a pair connection is defined on 7T
(P). The condition that a vector (p,
X; 4, B) in T'(P) belongs to the class O
in T2(F)/T%G) i, e.

a vector (p,X; A, B) is a vertical vector

the condition that

is
Proposition (9, X; 4, B) is vertical
if and only if 4 and B arein g
proof. (p, X; A, B) is vertical if
there exist ¢&=G, and U, V, WEg such
that ad (¢ A+ V=0, (ad(gH)4, U+
ad(g')B+ W=0, and conversely .
Similarly, we have
(p,X; A4, B)El", 4, if and only if
(1) (p,X; A, B) is horizontal
(2) Aeg

Now we shall study a pair connection

on I'(F) which is invariant under the
transformation of B induced from the
transformation of M.  We begin with

the following definition.

Definition If a pair connection on
T(P)(B, T(G)) satisfies the following
condition, we call it (Cl) —connection.
(C1)  Loppxpl ' tmxp = ['ipy xpipp.xp for
any p,, p.—=P and any X}, X;&p

From this definition we have
If there exists a (C,1)-
connection on 7 (P), the Lie algebra of
T(P), i, e. pV+p®,
position into a direct sum (D1)

(D1) D4 p@ =gh 4 g® 90, pDHg®
where a vector subspace W satisfies
ad(T(G)) M=M

A pair connection is de-

Theorem

admits a decom-

Remark.
termined by (D1) if we give nonlinear
conneciion on B(M,G)

Proof.

element (¢,0) and invariance under a

The decomposition at unit

left translation L, y, lead us .to the
result (D1).

If P/G is reductive we can define
(C1) — connection as follows.

From reductivity of P/G we have p=
g+m, ad(G)m=m thus as for W we put
M=mD+ m?® where mP— p®, m® —p@
and for [™ we take a lift of invariant
horizontal subspace of B in the sense of
K. Nomizu.

The pair connection obtained in this
way is called a canonical (CI)— connec-
tion.

Proposition On a reductive homo-
geueous space P/G let @ be a connection
form of an ordinary invariant connection
Then
the conection form ® of the canonical
(G1)
nary conneclion is given by

5(p,X;4,B) = (w(e,A), w(e,B))

Proof. For a horizontal vector (p,
X;4,B) A,Bem, w(p,X; A, b) is equal
to (O, O) and for a vertical vector (p, X,
U, VYU, Ve (p, X, U, V) is equal to
U, 1.

adjoint transformation, R, ,, @ = ad((g,

defined by this decomposition.

connection induced by this ordi-

We have, by a formula of

U)™)+@, so this proposition is valid.
Similar to the case of ordinary con-
nections we have
Propostion On a reductive homo-
geneous space P/G the horizontal space
of a (Cl) -connection is uniquely deter-
mined by the following pair of R-linear
mappings.
P Mog,  prad(g,U) (4,B)
—ad(&)+p,(4,B)
o, Mg, p,ead(g,U)(A,B)
—ad(9)+ (A, B) —ad ()L,
(4,B), U]
If (Cl)—connection is given on
1(F), then we can define a pair connec-

tion on B, this is done by mapping Ry,
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in?, and there arises the notion of para-
1lel translations.

The parallelism is defined as follows;
A 1ift b(t) =(b(0), d(®)) on B of a curve
b(t) on Bis uniquely determined if we
give d(0), and we call d(¢) the parallel
translation of d(0) with respect to 6(?).

Theorem Consider 7(P) on which
(C1)—connection is defined. Let (4, B)
The
one-parameter subgroup (p(). X(¢))=
expt (4, B) generated by (4, B) induces
b(t) = (p(), X)) on B.
Then, a parallel translation of a vector
(e,fy) tangent to P/G at ¢ with respect to

be an arbitrary element in .
a curve

b(1) is the same-as the lefttranslation of
(e,f) by the element p(¢), thatis L,y

(e, /o)
Proof.
ately if we show that the horizontal curve
I;(t) on B through (e, f;) which covers
b(t) is given by '
b(ty=("(p(t), X)), (p(D, 1))

The result follows immedi-

4. Invariant pair connection of the
second kind on T(P) (B,T(G)) we
shall define (G2) — connection by

Definition If a pair connection on
T (P) satisfies a condition
(C2) L(p1.X1)I ‘?pz.Xz) :[Y?pl.xl)(pz.xz) for any
p1,0.&P and any X, X,Ep, we call it
(C2) —connection.

For the (C2) — conncc-
we have the following

Theorem
tion on 1(P),
decomposition of the Lie algebra
(D2) pD +p@=gD +g@ 4+ M, +IN,
where PP g?, yW,C P M=M=~ F

ad(T(G))W, =T, 7
to the p’ —component.

Proof. This is easily shown if we
take as W,

is a projection

the vertically horizontal

Vol. 14. No. 1 (1%4)

subspace at unit (e, '0) and for M, the

horizontally horizontal subspace at

(e,0). ‘

As for the property of a homogeneous
space which admits a (C2) —connection,
we have

Theorem  If PG admits on its
tangential bundle, the decomposition
shown in the above proposition, then G
is an invariant subgroup of P.

Proof. Spaces W, and W, are both
isomorphic to /. Therefore, there exists
Let # be a

projection to P®—component and we

isomorphisms j; : F>IN,;.

denote two mappings y°J; and fFoj; with
JiP ajd ji? respectively .
These

spaces.

are mappings onto linear
If we project both sides of de-
composition (D2) by projection y, then
their images are pV=g® + W,

On the right hand side of this rela-
tion the sum is a direct sum. Denote
7 by my, then dim 11 is equal to dim
F, and so ji¥ is regular. Let J be a
mapping j{Z)Ojll—’l. An element of M, can
be represented uniquely in the form (X,
7X) where X&=m,.

The condition ad(T(G)) W, =W, shows

ad(g, U) (X, jX) = (ad(9) X, ad (g)jX

—ad(g)-(X,U))
for any ¢=G, and any U&g.

Therefore, we have (X,jX (X, U])
cm, for any U&g.

Because of uniqueness of this repre-
sentation we have

(X.U)=0 for any U&g, any Xcm,.

This implies [m;,g3=0
r,83C(8,93C3

The last relation shows that ¢ is an

and hence

ideal of P, and that G is an invariant

subgroup of P.?
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(C 2)—connection is called (SC 2) —

connection if the following condition
(SC 2) is satisfied.

(SC2) AW =0

Theorem  Assume that on 7(P)

(SC 2) —connection is defined. Let (4,
O) be an arbitrary element in ¢, and
let expt (4, O) be an one-parameter sub-
group generated by (4,0). Then x(¢)
=zcox’ expt (4, O) is a path on P/G.
If a lift 6() on B of a
curve x(¢) of M, coincides with a tangent
vector field x'(¢), then x(¢) is called a
path on M.

Proof. Letexpt(4,0)be (p(¢),0).
The tangent vector of this curveis (p(¢),
0)Y =L py.0(e,0;4,0). Letb(¢) bea
curve 7 (p(t), 0), b(t) is a curve on B
and its tangent vector at b(¢) is

b'(t) == (p(8),0) = L p4),07(e,0;
A, 0).

Let x(¢) be a curve t+b0(f). Then its
tangent vector at x(¢) is given by

Kty =7 b (f) =7 L(pm.O) 7' (e, 0; A4,

Remark.

0)=L,,r-7"(e,0;4, 0) =L, rey(e,

0;4,0)=L,, w(e, A)==(p (), A).

The curve x'(¢) in B covers x(¢), that
is 7+x’(¢) =x(¢), and its tangent vector
at x"(t) is

x"(8) =7+ Lipay.0, (£(0), 4)'= Lyay.o
7'(e, A; A,0)=L .4 7' (e, 0; A, 0).

(e, O; A, O) is a horizontal vector,
and (SC 2) means that x”(¢) is also hor-
Therefore, x'(¢) is a

And x(¢) is a path of

izontal vector.

horizontal curve.

M.
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