(22) 共役高分子系の光励起と金属相に関する研究

1. 研究目的

共役高分子系は強い光学的非線形性を示すことか ら、オプトエレクトロニクスデバイスの材料として、 また、ドーピングによって金属と同程度の電気伝導 度を示すようになることから、電気伝導材料として も有望視されている。一方、共役高分子系は、その 1次元性に由来する、多体電子相関効果や、ソリト ンのような特徴的な非線形励起が重要な役割を果た すことなど、基礎的な面からも興味深い物質である。 本報告会では、特に半導体としての未ドープポリア セチレン鎖の光励起後の緩和過程について得られた 結果を報告する。ポリアセチレンはその単純な構造 の為、光励起後の緩和過程について特徴を捉えやす く、他のより複雑な共役高分子のそれを理解するた めの基礎になるであろう。また、その包括的理解は 光学素子としての性能向上の為にも有用と思われる。

ポリアセチレン鎖において光励起により荷電ソリ トンが生成されることは実験的に確かめられており、 理論的には Su, Schrieffer 及び Block, Streitwolf のシミュレーションにより示されている。しかし、 彼等の計算はクーロン相互作用、鎖間電子移動を無 視しており、現実的とは思われない。本研究におい てはこれらを考慮して、共役高分子の光励起後の緩 和過程の特徴を調べ、荷電ソリトンの生成、消滅の 様子を明らかにすることを試みる。

2. 研究成果

電子間クーロン相互作用が有る場合の中性のポリ アセチレン1本鎖の光パルス励起後の緩和過程につ いて調べる為、ハミルトニアンとしては長距離クー ロン相互作用を含み、電子間輸送積分が結合長の変 化に線形に依存するモデルを用いた。以後、n 番目の 炭素原子(サイト)上の電荷密度(CD)を d_n, n 番目 のサイト間結合長の平均結合長からのずれを y_nと書 く。d_nを n と共に符号の変わる電荷密度波的成分と n と共に緩やかに変化する成分に分離し (d_n= \bar{d}_n +(-1)ⁿ d'_n), d'_nを Alternating CD (ACD)、 \bar{d}_n を Non -alternating CD (NCD) と呼ぶ。y_nについても同様 に分離し (y= \bar{y}_n +(-1)ⁿ y'_n), y'_n を Lattice Order Parameter (LOP)と呼ぶ。

ハートレー・フォック(HF)近似によるこの系の基 底状態は電荷密度はゼロで結合長が交互に長、短を

研究代表者 工学部 相原正樹

繰り返す結合交代相であり、nによらない有限の y'n で特徴づけられる(図1)。HF 近似による荷電ソリ トン解はその中心付近に局在した電荷密度波的構造 を持ち、全電荷は1でスピンは持たず、格子構造はそ の中心の両側に逆位相の結合交代相が現われる状態 として特徴付けられる(図2)。即ち、LOP が符号を 変える点で ACD、NCD がピークを形成するような 電子格子構造を持つ。

光パルス励起過程及び励起後の緩和過程を断熱近 似を用いずに調べるため、電子については時間依存 HF(TDHF)近似により得られる密度行列に関する閉 じた運動方程式を、また格子についてはニュートンの 運動方程式を同時に数値的に解き、電子格子構造の時 間発展を数値計算した。TDHF 近似は電子相関効果 の取扱いに関して乱雑位相近似(RPA)より優れてお り、クーロン相互作用の効果で振動子強度が著しく増 大する共役高分子の最低エネルギー励起子(1Bu 状 態)を良く記述できる。この系の1Bu 状態は電荷密度 波的構造が光子エネルギー1.91eV に対応する周期 2.16 femto s (fs)で振動するものであり格子構造は 変化しない。その d'n と dn の振幅を図 3 (a), (b)に示 す。

光パルスの振動数は $1B_u$ を励起するように定め、パルス幅は9.9fsとし、振幅(E_o)を変化させて計算したところ、系の応答は光パルスの振幅に大きく依存することが分かった。

i) E₀ < 0.001V/A では1Buが共鳴励起され振動の
様子は単純で線形応答が実現している。

ii) 0.001V/A < E₀ < 0.01V/A ではi) と類似の
振動をするが線形応答は成り立たない。

iii) $E_0 > 0.02 V/A$ では緩和過程は i) と著しく 異なる。図4(a)、(b)に $E_0=0.1V/Å$ の場合の60サイ ト (n=60) における d'n, y'nを示す。光パルスは t= 0 でピーク値をとる。t<0では d'60は1Buと良く似た 振動を示し y'60は t=-8fs で減少し始める。t=0 で y'60=0となると同時に d'60の振動の様子が急激に複 雑なものになる。d'nの緩和過程に対する格子構造の 変化の寄与を調べるため y'nを HF 基底状態の値に固 定して計算した場合の d'60の振動を図4(c)に示す。(a) のような複雑な振動への変化が起こらないことから この電子状態の緩和において電子格子相互作用に由 来する非線形性が重要な役割を果たすことが分かる。

図4 $E_0 = 0.1 V/A の光パルス印加時の60サイトでの (a) ACD、(b) LOP の振動の時間依存性。$ (c) 格子を固定した場合のACDの振動の時間依存性。

図5 $E_0=0.1V/A$ の光パルス印加時の ACD, NCD, LOP の振動の時間依存性。ACD, NCD の図の上の矢印 は HF 荷電ソリトン解のピークの各々の値を示し、LOP の図の上の矢印は HF 荷電ソリトン解の LOP の一様な部分での値を示す。

図5にE₀=0.1V/Åの時のACD, NCD, LOPの 時間変化の様子を示す。LOP の図中の黒線は LOP= 0の線を示す。5fs <t <10fs でソリトン対的な LOP が実現するが ACD, NCD は複雑な振動を示しソリ トン的でない。これはこの系が光から吸収したエネ ルギーがソリトン対の生成エネルギーより遥かに大 きい為と考えられる。30fs<t<230fs で再びソリトン 対的 LOP が現われる。この時励起子の非局在的な電 荷分布が LOP=0の点に局在しソリトン対が形成さ れる。これは電子系のエネルギーが局在した格子振 動等に移る為と考えられる。(これが一つの特徴的な 緩和のパターンであるが、別の特徴的パターンとし てソリトン対が形成されないまま電荷密度の複雑な 振動が続く場合もある。)ソリトン対は t=160fs 頃に 鎖の端で反射されt=240fs頃に互いに衝突する。そ の後、ソリトン対の電荷密度は急速に0になり正負 が入れ替わり振動する。これはブリーザと呼ばれる 荷電ソリトン対の束縛状態で、15 fs 程後に電荷密度 が複雑に振動する状態へと緩和する。このように、 荷電ソリトン対はブリーザへと緩和し、対消滅する。 その寿命は200fs 程で、実験とコンシスタントである。 $E_0 = 0.024 V/A$ の場合には光吸収エネルギーが $E_0 =$ 0.1V/A の場合より小さく、LOP がソリトン対的な 構造になると同時に電子状態も荷電ソリトン的にな る。しかし、 $E_0 = 0.0241 V/A$, $E_0 = 0.02 V/A$ の場合 には荷電ソリトン対は現われない。1Buからの緩和 が電場の振幅 Eaに強く依存し、荷電ソリトン対の生 成がこのように Eoのいくつかの値のまわりのごく狭 い領域に限られるのは、エキシトンから荷電ソリト ン対への緩和の安定な経路が存在しないためと考え られる。

クーロン相互作用のないモデルについても同様に 調べたところ、光励起状態の緩和過程はクーロン相 互作用がある場合と同様に電場の振幅に強く依存し、 LOP=0となった後で電子状態が著しく複雑になる ことが分かった。また、いくつかの特定の電場に対 して光励起状態は荷電ソリトンへと緩和し、荷電ソ リトン対の衝突によりブリーザが生じるという点も 共通である。しかし、クーロン相互作用がない時に はブリーザは再び荷電ソリトン対に緩和する場合が 多く、この点はクーロン相互作用がある場合に荷電 ソリトンが常に対消滅して電荷密度の複雑な振動状 態に緩和するのと対照をなしている。

その他、クーロン相互作用が有る場合に中性ソリトン(全電荷はゼロ、スピンは1で、格子構造はソリトンの両側が逆位相の結合交代相)状態を含む101サイトの1本鎖を光パルス励起した後の緩和過程を調べたところ、特定の振幅(0.05V/Å)の電場に対し

て新たに中性ソリトンが対生成し約90fsの後に対消 滅することが初めて見い出された。ポリアセチレン 2本鎖に対し鎖に垂直に偏極した光パルスを加えた 場合の緩和過程における鎖間相互作用の効果につい ての研究は現在進行中である。

3. 産業技術への貢献

ポリアセチレンを始め、共役高分子は大きな三次 の非線形光学特性をもち、非常に早い緩和を併せも つことから、超高速の光論理演算素子、光スイッチ への応用が期待されている。それらは高度情報化社 会における大容量情報を高速に処理する必要に応え 得る可能性がある。また光ルミネセンス・電界ルミ ネセンスに関しても高性能の材料が開発され共役高 分子によるフルカラー・ディスプレーが実用化され つつある。

これまでの研究によりクーロン相互作用を含む現 実的なモデルで、ポリアセチレンの光励起状態が如 何に緩和するか、荷電ソリトンの生成消滅はどのよ うに起こるかについての知見が得られた。これは他 の共役高分子の光励起状態の緩和過程を理解するた めの基礎となる。荷電ソリトンは100fs以下の短時間 に生成し、光誘導吸収や分極及び三次の非線形光学 特性などに著しい変化を生じると考えられる。これ らの物理量を計算し、この系の特性に対する荷電ソ リトンやブリーザ等の寄与を明らかにすることによ り、高性能の電気光学素子の開発に指針を与えうる ものと思われる。

研究発表

- A. Yamashiro and A. Takahashi : 'The Photoexcitation and Relaxation Process in Polyacetylene'; submitted to J. Phys. Soc. Jpn.
- 2) 山城、高橋:光パルス励起によるポリアセチレン鎖の非線形振動(II)、日本物理学会秋の分科会 1997年10月5日

グループメンバー

氏	名	所属	職(学年)
相原	正樹	工・機能材料	教授
高橋	聡	工・機能材料	助教授
山城	敦	工・機能材料	非常勤研究員

連絡先

T E L : 0836-35-9042 F A X : 0836-35-9965 E-mail : ya@po.cc.yamaguchi-u.ac.jp taka@po.cc.yamaguchi-u.ac.jp