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Abstract

The blood flow in the vascular with a rough wall has been investigated numerically to
examine the influence of the roughness on the vascular lesion from the hydrodynamical point
of view. As a two—dimensional model of the blood flow in the vascular with a rough surface,
the pulsatile flow in the rigid channel with several roughness elements which consist of a
series of square ribs is considered, and the blood is assumed to be a Newtonian fluid. The
Navier—Stokes equations {stream function—vorticity formulation) are solved by the finite
difference method. The calculation is performed for the range of Reynolds number 300 < Re=
2000, but both the period and the amplitude of oscillation are fixed. In this paper, particular
attension is paid to the flow pattern over the roughness elements, so the instantaneous stream
lines of pulsatile flow are presented for the neighborhood of roughness elements. The
influence of roughness on the vascular lesion is discussed from the structure of pulsatile flow
over a rough wall.

1. Introduction

The origin of vascular lesion has not been conclusively elucidated so far, in spite of
many theoretical and experimental works.”~” The present series of numerical studies
are aimed at examining the influence of roughness on the vascular lesion from
hydrodynamical point of view. In the previous paper,® ® the authors have numerically
studied the steady flow of a viscous fluid through the two—dimensional channel with
several roughness elements as a model of the blood flow in an artery with rough
surface. The pulsatile flow model is more suitable than the steady flow model for
describing the phenomena concerned with the blood flow through a blood vessel in
vivo. Therefore, the pulsatile flow of a viscous fluid through a two—dimensional
channel with roughness elements was investigated numerically in this paper, and was
examined to predict the shearing stress variation on the wall with the roughness
elements and the oscillating flow pattern. The oscillating flow over the roughness is
characterized by the five non—dimensional parameters : the two geometrical par-
amerers K/H and W/H (K, W and H are the roughness height, the space of
roughness elements and the width of channel, respectively) and the flow parameters,
the Reynolds number Re, the Womersley number « and the ratio of flow rate Q,/Qq
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( Q: and Q, are the amplitude of oscillating flow rate and the mean flow rate,
respectively ) . Since the number of parameters involved in this study is so large, we
can choose one particular channel geometry, K/H =0.1 and W /H =0.2, which closely
resembles the arterial prostheses. This geometry is similar to that in the mumerical
study for the application to arterial prostheses presented by Savvides et al. , ' but they
can not directly compared. The Womersley number « as a function of the Reynolds
number Re and the period of oscillation 7" ( cf. section 3 ) is equivalent to the Reynolds
number when T =const. , so only the case of the period of oscillation T =10 is studied
for the range of Reynolds number 300 < Re<2000. The ratio of flow rate Q,/Q, is also
fixed at the same value as the study of Kawaguti et al.. 1)

Although the maiority of results of this study has already been reported in the
Journal of JSME, '# only a part of the results for the calculated range of Reynolds
number was presented on account of restriction of the number of pages. The oscillat-
ing flow over the roughness elements is very interesting not only from the medical
point of view, but also from a purely fluid mechanical point of view. In this paper,
particular attention is paid to the oscillating flow pattern, and all that behavior of
vortex in the roughness groove, on the effect of roughness and the dependence on the
Reynolds number or the Womersley number. The influence of roughness on the
vascular lesion is discussed from the structure of pulsatile flow over a rough wall.

2 . Basic Equation and Calculation Model

Consider the unsteady blood flow in a two—dimensional channel with roughness
elements. The blood is assumed to be a Newtonian fluid and all the walls of the
channel are considered to be rigid. The governing equations for the two—dimensional
flow of a Newtonian fluid are the two momentum equations (Navier —Stokes equation)
and the continuity equation. By introducing the vorticity @ (wWhere w = ou/0y —ov/ox
) and the stream function ¢ (where u=0ovy /8y, v=—09y/0x) which automatically
satisfies the continuity equation, and eliminating the pressure from the Navier—
Stokes equation by the cross—differentiation, we obtain the vorticity transport equa-
tion in the well—known form

ow _ oY Ow 9Y Ow n 1 ( 9%w 4 2w > 1)
ot ox oy 9y ox Re ox? oy?
__ (2% oY )
@= ( w2 T oy? @)

where Re is the Reynolds number, Re= UH /v, U denotes the mean fluid velocity in the
channel, H the width of the channel and v the kinematic viscosity of the fluid,
respectively. Equations (1) and (2) are expressed in the non—dimensional forms using
the reference length and velocity being H and U, and non—dimensional time ¢ is
normalised by the advective time scale H/U.

The calculation model is the same as for the steady and pulsatile flow given in the
previous paper,®?!? hence only the outline on the model is described as follow; the
several roughness elements are mounted on the wall of two—dimensional channel in
the region of plane — Poiseuille flow (Fig. 1), the roughness elements are of the repeated
ribs type with the spacing W =0.2H and the roughness height K =0.1H, that is, the
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pitch ratio is W /K =2 (Fig. 2) . From the numerical results of the steady flow over
the roughness elements by authors,®® it is natural to assume that the flow is symmet-
ric with respect to the center—line, and periodic corresponding with roughness per-
iodicity. So we shall consider only the lower half of the finite region which the length
along the channel is a roughness spacing W =0.2H (Fig. 2). The position of connecting
boundary (in —flow and out—flow boundaries in that computational region) can be
determined arbitrarily. But, it seems that the selection of connecting boundaty in the
neighborhood of convex sharp corner gives rise to undesirable effects for the numerical
solution, so its position is chosen at the center of roughness groove (Fig. 2) .

The pulsatile flow is expressed by applying the two—dimensional Womersley’s flow
which is the flow through a two—dimensional channel when the oscillating pressure
gradient along the channel is defined as
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—%:AJchos(znt/T) (3)

where A and B are constants, and 7T is the period of oscillation. For the channel
without the roughness elements, this problem can be easily solved analytically as
described in appendix. For the case of the channel with roughness elements, the
analytical solution on the connecting boundaty in the computational region can not be
obtained, hence the values of ¥ and @ on the connecting boundary are nor given
explicitly. For that reason, the connecting boundary values are given by using the
numerical method of periodic flow boundary condition.

In the computational region (Fig. 2), the boundary conditions are given as follows :

(i) w=0 at the wall by the non—slip condition,

(i) Yin=Yout, ®in= @out ON the in—flow and oue—flow boundarys by the periodic
flow condition,

(iii)  ¥e= v+ ¥asin@xt/T) , w. =0 on the center —line by the conditions of symmet-
rical flow with respect to the center —line and pulsatile flow. Here, w. is equivalent
to the half of flow rate through the channel in which ¥, and v, are the corresponding
to the value of mean flow of averaging time 7" and amplitude of oscillating flow,
respectively. The stream function on the center —line . as a function of time can be
obtained by the integrating the velocity # (solution of Womersley’s flow) over the
channel width (cf. appendix).

The difference equations are derived from the differential eqgs. (1) and ( 2) , using the
forward—time and centered—space differences, as the FTCS method. The mesh
constant A/ and the time step At are taken to be Ah=0.01 and A¢=0.005 throughout
the numerical work in this paper. Using the FTCS difference equations of eqgs. (1) and
(2) , the numerical computation is carried out according to the following steps:

(i) At the time =0, we put the values of y» and @ for the steady flow, that is,
these values of initial condition are used numerical results for the steady flow under
considering the Reynolds number.

(i) Proceed to the next time #=A¢, and the boundary value of ¢. on the center —
line is replaced with the calculated value of . at t=A¢ determined from the equation
of Y as a function of time (cf. boundary condition (iii)) .

(iii) At the time t=At, calculate the values ¢ from the inflow boundary to the
out — flow boundary in the computational region using the difference equation of eq. (2).

(iv) The values of 4 on the in—flow boundary are replaced with the newly
calculated values of ¢ on the out—flow boundary.

(v) Iterative procedure (steps (iii) and (iv)) for the values of ¥ is continued until
a sufficient convergence is accomplished; i. e. , until the differences in the values of
at the succesive loops at the several points ( to be ten points in this work ) become less
than 1x 1075, simultaneously.

(vi) Calculate the values of @ on the wall and then in the computational region at
the time ¢t=A¢, in turn using the difference equations of eqgs. (2) and (1), respectively.

(vii) The above procedure (steps (ii) ~(vi) is continued over a period of oscillation
T.

The computational loop mentioned above is repeated until a convergence criterion
for a state of pulsatile flow can be satisfied. The convergence criterion was defined
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as | @Y —w™ | £107° wher n is the period ondex such that @™=w(n7T). This
numerical procedure for the pulsatile flow is almost the same as the previous papers
by authors. #9139

3. Results and Discussions

The calculation of the pulsatile flow in the two—dimensional channel with roughness
elements was performed for the cases of the oscillating period of 7°=10, the amplitude
of oscillating flow rate of Q, =0.5Q, and the Reynolds number of Re =300, 600, 1200 and
2000,

The Womersley number « is defined as

a=05H (2n/vT)'" (4)
where T is dimensional period of oscillation. By introducing the Reynlods unmber
Re=UH /v and non—dimensional period of oscillation 7°=7 /(U/H) , we obtain the
a as a function of Re and T,

a=(0.5zRe/ T)"? (5)
Therefore, each Reynolds number of Re=300, 600, 1200 and 2000 for 7" =10 coresponds
to the Womersley number of a =6.85, 9.71, 13.73, and 17.72, respectively. These ranges

of Re or a are closely related to the physical condition for the blood flow in the human
main artery.

In Figs. 3~5, the oscillating flow paftern is presented by drawing the instantaneous
stream lines at the interval time of 7°/8=1025 in a flow cycle. In these figures, the
scale in y —direction was doubled relative to the scale in x —direction and the stream
line for the value of ¢ =0 was indicated by the dotted line.

The oscillating flow pattern for the case of Re =300 (« =6.85) is shown in Fig. 3, and
we will firstly discuss the pulsatile flow for this case. As the flow rate increases for
t=0~t=2.5, the development of recirculating stream lines (separation vortex) in the
roughness groove is seen, but the location of separation vortex center dose not move
in its groove. As the flow rate decreases, the decay of this vortex is seen, and the
recirculating region grows in size and bulges to more than a full of the roughness
groove (see for /=2.5~¢=5 in Fig. 3). At £=6.25, this separation vortex gets half out
from the roughness groove. As the flow rate approches the minimum volume at /=
7.5, this separation vortex falls into decay in the roughness groove. Then the newly
vortex in the roughness groove is developing with increasing flow rate for {=7.5~ =
10. From the flow pattern described above, we consider that the flow in this case (a
is small) can be regarded as quasi—steady flow.

Turning now Fig. 4 which is shown for the case of Re=600 (« =9.71), we can see the
effects on increasing @. As can be seen in Figs. 3 and 4, the flow patterns are quite
little different for =0~ ¢=5, but the difference of the flow patterns at /=5 in the two
figures is seen, that is, the separation vortex for the case of Re=600 gets half out from
the roughness groove at the early stage sbout 7°/8 compared with the case of Re=300.
After t=5, as the flow rate approaches the minimum volume at /=7.5, the separation
vortex moves out from the roughness groove and eventually disappeares at ¢ between
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Fig, 3(a) Instantaneous stream lines of pulsatile flow ;
Re=300, « =6.85,t=1.25~t=5.
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7.5 and 8.75. During the times ¢ =5~ ¢t=7.5, the back flow occures near the roughness
wall and the flow in the roughness groove becomes stagnant (Fig.4) .

The flow patterns shown in Figs. 5 and 6 are for the cases of Re=1200 (@ =13.73) and
Re=2000 (@ =17.72), respectively. It can be seen in Figs. 5 and 6 that the back flow
near the roughness wall becomes cleary to be caused by the increasing the Womersley
number. At £=7.5 in Fig. 5 and at +=6.5 and 7.5 in Fig.6, the reverse recirculating
separation vortex which is formed by the back flow can be seen in the roughness
groove. And this back flow washes out the fluid in the roughness groove. After the
time /=7.5 when the flow rate becomes the minimum volume, the flow near the
roughness wall starts to flow to the downstream, and the fluid in its groove is also
washed out by the back flow at this stage. From the flow patterns described in Figs.

4~6,the flow for the cases of Re=600~2000 shows the oscillating flow patterns, snd
the flow becomes more clear oscillating flow pattern as the Reynolds number Re (or
the Womersley number «) increases.

These numerical results by authors agree qualitatively with the numerical results of
Savvides.!? From the flow patterns described above, it could be understood the effects
of the Womersley number a on pulsatile flow, namely if @ was small the flow would
be quasi—steady flow, and observed the back flow near the roughness wall, the
development and the decaying of separation vortex in the roughness groove and the
existence of stagnant flow region and of flow stage to wash out in its groove for a
pulsatile cycle. Further, we suppose that the stagnant flow exsits at the region of
bottom in the roughness groove for the all stages of a pulsatile cycle.

4, Conclusions

From the numerical results and discussions given above, the following conclusions
concerning the pulsatile flow through a two—dimensional channel with the roughness
elements are summarized;

(1) The flow for the case of Re=300 (e =6.8D)is quasi—steady flow.

(2) The flow for the case of Re=600 (a =9.71) shows the oscillating flow pattern, and
the flow becomes more clear oscillating flow pattern as the Reynolds number Re (or
the Womersley number «) increases.

(3) The back flow is observed near the roughness wall except for the case of Re=
300 (a =6.85).

(4) The development and the decaying of separation vortex in the roughness groove
can be seen, and this separation vortex moves out from its groove and disappers during
a pulsatile cycle except for the case of Re=300.

(5) The flow to wash out the fluid in roughness groove exists for a pulsatile cycle
except for the case of Re=2300. :

(6) There is the stagnant flow region in the roughness groove, especially at the
bottom in its groove.

It is well known that the atheroma and the throbsis are encounterd most frequently
where the flow separation can occurs, as evidenced by the works of Fry(1968),? Caro
et al. (1971)® and Fox et al. (1966). The blood clotting (thrombus formation) is more
likely in the region of stasis or the region of flow not washed out at each cycle of the
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heart beat. From this point of view, our numerical results suggest that the blood flow
over the roughmess wall is likely to produce the crotting of blood because of a stagnant

flow region in the roughness groove.

The authors would like to acknowledge the helpful suggestions and encouragements
of Professor I. Nakamura of Nagoya University, Department of Mechanical Engineer-
ing.
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Appendix

Consider the two—dimensional Womersley’s flow through a straight channel of which dimension-
less width is 1, when the oscillating pressure gradient along the x —axis

~ 28— 4+ Beos(eat/T) (A, 1)
is applied. This problem can be easily solved analytically (1), and the velocity is given as
u(t) = (y) + s (v)sin 2t/ T) 4 uc (y) cos(2nt/ T) (A, 2)

y(y) =(1—y"?) ReA/ 8

us(y) = (ReB/ 8 £%) (1—2c¢,sinhBy’ -sinBy’ +2¢,coshBy’ - cosgy’),

u.(v) = (ReB/ 8 B?) (2¢, coshBy’«cosBy’ +2¢sinh By’ +sinfy”) (A, 3)
where

B=(27Re/8T)", y'=2y—1,

C,=sinhg+sing/ (cosh28 +cos28),

C,= —coshg-cosB/(cosh2B+cos2p) (A, 4)
Integral of u(y) over the channel width gives the flow rate @ as a function of time

Q=Q+Qsin2xt/T + ) (A, b)

Q=ReA/12, Q= (&+&5)"Y, d=tan"'& /& , (A, 6)
where

&= (ReB/4B") (1 —%(sinhﬂ-coshﬂ+sinﬁ-cosﬁ) /(cosh2+cos28)),

&= (ReB/4B%) [%(sinhﬂ-coshﬁfsinﬂ-cosﬁ)/(cosh2ﬁ+c032,6) J. (A, 7)

The mean flow rate Q, is chosen to be Q,=1, then the constant A is determined to be equal to 12/
Re, and the value of constant B can be determined from giving the amplitude of flow rate Q,/Q,. Here,
the calculation method in this paper dose not need to use the explicit value of B, and the time of
starting point can be determined arbitrarily, so its point is chosen at the time of t=—4T /2z.



