A Construction of Cartesian Closed Categories

Yasuo KAWAHARA* (Received July 14, 1976)

Abstract

In this note we present a simple proof of cartesian closedness of the category of topological spaces and k-continuous maps with the universal property of evaluation maps.

Throughout of this note we assume that $\mathscr C$ is a category with finite products, $\mathscr C$ is a subcategory of a category $\mathscr A$ with $Obj\mathscr C=Obj\mathscr A$, and the inclusion functor of $\mathscr C$ into $\mathscr A$ preserves finite products. Moreover, let $\mathscr S$ be a full subcategory of $\mathscr C$. We define $\mathscr S\mathscr C$ as the subcategory of $\mathscr A$ with objects all objects of $\mathscr A$ and with arrows $f\colon x\to y$ all those arrows $f\colon x\to y$ in $\mathscr A$ for which the composite $f\alpha\colon s\to y$ lies in $\mathscr C$ for any arrow $\alpha\colon s\to x$ in $\mathscr C$ with $s\in Obj\mathscr S$. We can easily verify that $\mathscr C$ is a subcategory of $\mathscr S\mathscr C$ and the inclusion functor of $\mathscr C$ into $\mathscr S\mathscr C$ preserves finite products. We say an object x in $\mathscr C$ is an $\mathscr C$ -generated object if any arrow x in x with domain x lies in x. Let x denote the full subcategory of x with objects all x-generated objects.

Let $k: \mathscr{SC}^{op} \times \mathscr{SC} \to \mathscr{A}$ be a functor with a dinatural transformation $\varepsilon_{\langle y,z\rangle}$: $k(y,z) \times y \to z$ in \mathscr{A} (precisely, natural in z and dinatural in y), that is, for any arrows $g: z \to z'$ and $h: y' \to y$ in \mathscr{SC} , the following two diagrams

(1)
$$k(y, z) \times y \xrightarrow{\varepsilon_{\langle y, z \rangle}} z$$

$$k(y, g) \times y \downarrow \qquad \qquad \downarrow g$$

$$k(y, z') \times y \xrightarrow{\varepsilon_{\langle y, z' \rangle}} z'$$

(2)
$$k(y, z) \times y' \xrightarrow{k(y, z) \times h} k(y, z) \times y$$
$$\downarrow^{k(h, z) \times y'} \qquad \qquad \downarrow^{\epsilon_{\langle y', z \rangle}} z$$

are commutative. (Note that $a \times b$ denotes the product of a and b in \mathscr{C} .)

The dinatural transformation $\varepsilon_{\langle y,z\rangle}$: $k(y,z)\times y\to z$ is called *quasi-universal* if it satisfies the following universal property: For any arrow $f: x\times y\to z$ in \mathscr{SC} , there is a unique arrow $\hat{f}: x\to k(y,z)$ in \mathscr{A} such that $f=\varepsilon_{\langle y,z\rangle}(\hat{f}\times y)$.

^{*} Department of Applied Science

(3)
$$\begin{array}{ccc} x & x \times y \\ \downarrow & \uparrow \times y & \downarrow \\ k(y, z) & k(y, z) \times y \xrightarrow{\varepsilon_{\leq y}, z_{>}} z \end{array}$$

An object y in \mathscr{A} is $(\mathscr{S}-)$ admissible if $\varepsilon_{< y,z>}$ is an arrow in $(\mathscr{S})\mathscr{C}$ for any object z in \mathscr{A} . An object y in \mathscr{A} is $(\mathscr{S}-)$ proper if, for any arrow $f: x \times y \to z$ in $(\mathscr{S})\mathscr{C}$, the unique arrow $\hat{f}: x \to k(y, z)$ is an arrow in $(\mathscr{S})\mathscr{C}$, that is, if, whenever $\varepsilon_{< y,z>}(h \times y)$ lies in $(\mathscr{S})\mathscr{C}$, so does h.

Throughout the rest of this note we assume that there are given a functor $k: \mathscr{SC}^{op} \times \mathscr{SC} \to \mathscr{A}$ with a quasi-universal dinatural transformation $\varepsilon_{\langle y,z\rangle}: k(y,z) \times y \to z$ and a full subcategory \mathscr{U} of \mathscr{C} with $\mathscr{S} \subset \mathscr{U} \subset \mathscr{SG}$, satisfying the following four axioms:

- (A) If s and t are two objects in \mathcal{S} , then $s \times t$ is an \mathcal{S} -generated object.
- (B) Every object s in \mathcal{S} is admissible.
- (C) Every object u in \mathcal{U} is proper.
- (D) An arrow $h: x \to k(y, z)$ in $\mathscr A$ is an arrow in $\mathscr C$ if and only if, for any arrow $n: u \to y$ in $\mathscr C$ with $u \in Obj\mathscr U$, the composite

$$x \xrightarrow{h} k(y, z) \xrightarrow{k(n,z)} k(u, z)$$

lies in \mathscr{C}.

Lemma 1. For any arrow $n: u \rightarrow y$ in \mathscr{C} with $u \in Obj \mathscr{U}$, the arrow $k(n, z): k(y, z) \rightarrow k(u, z)$ lies in \mathscr{C} .

Proof. It is immediate from the axiom (D).

Proposition 2. If $g: y' \rightarrow y$ is an arrow in \mathcal{GC} , then $k(g, z): k(y, z) \rightarrow k(y', z)$ is an arrow in \mathcal{C} .

Proof. By virtue of the axiom (D), we have only to prove that the composite k(n, z)k(g, z) lies in \mathscr{C} for any arrow $n: u \to y'$ in \mathscr{C} with $u \in Obj \mathscr{U}$. But k(n, z)k(g, z) = k(gn, z), that is, the triangle

$$k(y, z) \xrightarrow{k(g,z)} k(y', z)$$

$$\downarrow^{k(n,z)}$$

$$k(u, z)$$

is commutative and gn lies in \mathscr{C} , because u is an \mathscr{S} -generated object. Hence, by Lemma 1, k(gn, z) lies in \mathscr{C} .

Theorem 3. Every object y in \mathscr{A} is \mathscr{G} -admissible.

Proof. We have to show that $\varepsilon_{< y,z>} < \alpha$, $\beta >$ lies in $\mathscr C$ for any arrow $<\alpha$, $\beta >$: $s \rightarrow k(y, z) \times y$ in $\mathscr C$ with $s \in Obj \mathscr S$. In the commutative diagram

$$s \xrightarrow{\langle \alpha, \beta \rangle} k(y, z) \times y \xrightarrow{\varepsilon_{\langle y, z \rangle}} z$$

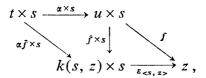
$$\uparrow^{k(y, z) \times \beta} \uparrow^{\varepsilon_{\langle y, z \rangle}} k(s, z) \times s$$

$$\downarrow^{k(y, z) \times s} \downarrow^{k(\beta, z) \times s} k(s, z) \times s$$

three arrows $\langle \alpha, s \rangle$, $k(\beta, z) \times s$ and $\varepsilon_{\langle s, z \rangle}$ lie in \mathscr{C} , by Lemma 1 $(s \in \mathscr{S} \subset \mathscr{U})$ and the axiom (B). Therefore $\varepsilon_{\langle y, z \rangle} < \alpha$, $\beta >$ is an arrow in \mathscr{C} , as desired.

Theorem 4. If u is an \mathcal{S} -generated object and s is an object in \mathcal{S} , then $u \times s$ is an \mathcal{S} -generated object.

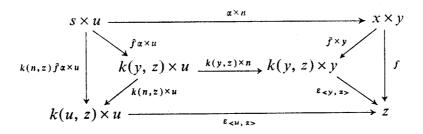
Proof. To prove this theorem, it suffices to show that every arrow $f: u \times s \rightarrow z$ in \mathcal{SC} lies in \mathcal{C} . Let $\alpha: t \rightarrow u$ be an arrow in \mathcal{C} with $t \in Obj \mathcal{S}$. In the commutative diagram in \mathcal{A}



 $f(\alpha \times s)$ lies in \mathscr{SC} ($\alpha \times s \in \mathscr{C}$, $f \in \mathscr{SC}$) and hence $f(\alpha \times s)$ lies in \mathscr{C} since $t \times s$ is an \mathscr{S} -generated object from the axiom (A). Applying the axiom (C) to $s \in \mathscr{S} \subset \mathscr{U}$, we have $\alpha \hat{f}$ is an arrow in \mathscr{C} . This states that \hat{f} lies in \mathscr{SC} . But u is an \mathscr{S} -generated object, so \hat{f} lies in \mathscr{C} . From the axiom (B), $\varepsilon_{< s,z>}$ lies in \mathscr{C} and consequently so does $f = \varepsilon_{< s,z>}(\hat{f} \times s)$. This proves the theorem.

Theorem 5. Every object y in \mathscr{A} is \mathscr{G} -proper.

Proof. To prove this theorem we will show that, for any arrow $f: x \times y \to z$ in \mathscr{SC} , the unique arrow $\hat{f}: x \to k(y, z)$ lies in \mathscr{SC} . Consider the commutative diagram



for all arrows $\alpha: s \to x$ in $\mathscr C$ with $s \in Obj \mathscr S$ and $n: u \to y$ in $\mathscr C$ with $u \in Obj \mathscr U$. Since $s \times u$ is an $\mathscr S$ -generated object by Theorem 4, $f(\alpha \times n)$ lies in $\mathscr C$. On the other hand, u is proper from the axiom (C). Hence $k(n, z)\widehat{f}\alpha$ lies in $\mathscr C$ and $\widehat{f}\alpha$ lies in $\mathscr C$ from the axiom (D). This proves that \widehat{f} lies in $\mathscr S\mathscr C$.

Theorem 6. If $g: z \rightarrow z'$ is an arrow in \mathcal{SC} , then $k(y, g): k(y, z) \rightarrow k(y, z')$ is an arrow in \mathcal{SC} .

Proof. Consider the commutative square

$$k(y, z) \times y \xrightarrow{\varepsilon_{\langle y, z \rangle}} z$$

$$k(y, g) \times y \downarrow \qquad \qquad \downarrow g$$

$$k(y, z') \times y \xrightarrow{\varepsilon_{\langle y, z' \rangle}} z'.$$

Since g is an arrow in \mathscr{SC} from the hypothesis and $\varepsilon_{\langle y,z\rangle}$ is an arrow in \mathscr{SC} by Theorem 3, the composite $g\varepsilon_{\langle y,z\rangle}$ lies in \mathscr{SC} and so the arrow $k(y,g)=\{g\varepsilon_{\langle y,z\rangle}\}^{\wedge}$ lies in \mathscr{SC} by Theorem 5, as desired.

As a consequence of Proposition 2, Theorem 6 and Theorem 3, we can conclude the following

Theorem 7. The category SE is cartesian closed.

From the standard arguments in cartesian closed categories, we have the exponential laws: For all objects x, y, z in \mathscr{C} , there exist natural isos

$$k(x \times y, z) \simeq k(x, k(y, z))$$

and

$$k(x, y \times z) \simeq k(x, y) \times k(x, z)$$

in \mathscr{SC} .

Example 8. Let $\mathscr C$ be the category of topological spaces and continuous maps, $\mathscr A$ the category of topological spaces and set maps, and $\mathscr C$ the full subcategory of $\mathscr C$ consisting of compact Hausdorff spaces. Then $\mathscr C\mathscr C$ is the category of compactly generated spaces [5]. Further, let $\mathscr C$ be some full subcategory of $\mathscr C$ with $\mathscr C = \mathscr C = \mathscr C = \mathscr C = \mathscr C$. Denote by F(X, Y) the function space of all continuous maps $X \to Y$ with compact open topology, and by k(Y, Z) the function space of all maps $Y \to Z$ in $\mathscr C = \mathscr C$ with the initial (or smallest) topology determined by the family of set maps

$$k(Y, Z) \xrightarrow{n^*} F(U, Z): f \mapsto fn,$$

where $U \in Obj \mathcal{U}$ and $n: U \to Y$ is a continuous map. (Note that n^* is well defined because $U \in Obj \mathcal{U}\mathcal{S}$.) It is trivial that k(U, Z) = F(U, Z) for $U \in Obj \mathcal{U}$, $k: \mathcal{S}\mathcal{C}^{op} \times \mathcal{S}\mathcal{C} \to \mathcal{A}$ is a bifunctor and the axiom (D) is satisfied. Next, define $\varepsilon_{\langle Y,Z\rangle}: k(Y, Z) \times Y \to Z$ to be the usual evaluation map. Then it can be checked without difficulty that $\varepsilon_{\langle Y,Z\rangle}$ is a quasi-universal dinatural transformation and that the axioms (A), (B) and (C) follows from the familiar properties of compact open topology. Hence, the category $\mathcal{S}\mathcal{C}$ is a cartesian closed category by Theorem 7.

Acknowledgment

The author wishes to express his hearty thanks to Professor T. Kudo for useful

discussions.

References

- 1) Day, B. J., A reflection theorem for closed categories, J. Pure Appl. Algebra, Vol. 2 (1972), 1-11.
- 2) Dugundji, J., Topology, Allyn and Bacon, Inc., Boston, 1965.
- 3) Kawahara, Y. and Kudo, T., A construction of closed categories related to k-spaces, Mem. Fac. Sci., Kyushu Univ., Ser. A, Math., Vol. 30 (1976), 113-121.
- 4) Mac Lane, S., Categories for the working mathematician, Springer-Verlag, Berlin, 1971.
- 5) Steenrod, N. E., A convenient category of topological spaces, Michigan Math. J., Vol. 14 (1967), 133-150.
- 6) Vogt, R. M., Convenient categories of topological spaces for homotopy theory, Arch. Math., Vol. 22 (1971), 545-555.