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Abstract

In this note we present a simple proof of cartesian closedness of the category of topological
spaces and k-continuous maps with the universal property of evaluation maps.

Throughout of this note we assume that % is a category with finite products, ¥
is a subcategory of a category &/ with Obj% =0bj <, and the inclusion functor of
% into 7 preserves finite products. Moreover, let & be a full subcategory of €. We
define % as the subcategory of o/ with objects all objects of .« and with arrows f:
x—y all those arrows f: x—y in & for which the composite fu: s—y lies in € for any
arrow o: s—x in ¥ with se Obj.#. We can easily verify that ¥ is a subcategory of
&% and the inclusion functor of & into &% preserves finite products. We say an
object x in «7 is an &-generated object if any arrow f: x—y in % with domain x
lies in ¥. Let ¢ denote the full subcategory of ¥ with objects all #-generated
objects.

Let k: #€°Px S%— o be a functor with a dinatural transformation’ €, > :
k(y, z)x y—z in o (precisely, natural in z and dinatural in y), that is, for any arrows
g:z—z and h: y'>y in &%, the following two diagrams

k(y, z)xy Z22, 7

(1) k(m)xyl l“’

k(y’ z,)xy Ecy,z’> Z’

k(y, z)xy’ k(y,z)xk k(y, z)xy
(2) k(hrz)xl’/l ls<y,z>
k(y’, Z) Xy’ E;_,—;:) z

are commutative. (Note that a x b denotes the product of a and b in €.)

The dinatural transformation é.,..: k(y, z)x y—z is called quasi-universal if
it satisfies the following universal property: For any arrow f: xx y—z in &%, there
is a unique arrow f: x—k(y, z) in o such that f=s<y’z>(fx »).
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X XXy
1 { f
(3) i Pxy |
¥ ¥
k(y, Z) k(ya Z) X,V Ecy, z> Z

An object y in o is (&-) admissible if €., . is an arrow in (¥)% for any object
zin &. An object y in o is (&-) proper if, for any arrow f: x x y—z in (&£)%, the
unique arrow f: x—k(y, z) is an arrow in (&)%, that is, if, whenever E<y,>(h x y) lies
in (£)¥, so does h.

Throughout the rest of this note we assume that there are given a functor k: #%°p
X ¥ € -/ with a quasi-universal dinatural transformation ¢, : k(y, z) x y—z and
a full subcategory # of ¥ with & c¥ <%, satisfying the following four axioms:

(A) If sand t are two objects in &, then sx t is an &-generated object.

(B) Every object s in & is admissible.

(C) Every object u in % is proper.

(D) An arrow h: x—k(y, z) in & is an arrow in € if and only if, for any arrow

n:u—yin ¢ with u € Obj#, the composite

x s k(y, z) K2, k(u, z)

lies in Z.

Lemma 1. For any arrow n:u—y in ¥ with ueObj%, the arrow k(n, z):
k(y, z)>k(u, z) lies in €.
Proof. It is immediate from the axiom (D).

Proposition 2. If g: y'—y is an arrow in €, then k(g, z): k(y, z)-k(y', 2)
is an arrow in %.

Proof. By virtue of the axiom (D), we have only to prove that the composite
k(n, 2)k(g, z) lies in € for any arrow n: u—y’ in € withue Obj%. But k(n, z)k(g, z)
=k(gn, z), that is, the triangle

k(y, 2) 2225 k(y', 2)

k(gn,z) lk(n;z)
k(u, z)

is commutative and gn lies in &, because u is an -generated object. Hence, by
Lemma 1, k(gn, z) lies in %.

Theorem 3. Every object y in o is S-admissible.
Proof. We have to show that ., .. <o, B> lies in € for any arrow <a, > :
s—k(y, z)xy in ¢ with se0bj . In the commutative diagram
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<a,p> Eey, 2>

s — 75 k(y, ) xy =225 2

<a,>\ Ik(y,z)x[j

k(y, 2) % S jmee k(s, 2) % s,

~

Eay, 2>

three arrows <a, s>, k(B, z)xs and &, lie in ¥, by Lemma 1 (se ¥ <%) and
the axiom (B). Therefore e., .. <, > is an arrow in €, as desired.

Theorem 4. If u is an &-generated object and s is an object in &, then uxs
is an &-generated object.
Proof. To prove this theorem, it suffices to show that every arrow f:uXxs—z

in #% liesin €. Leta:t—u be an arrow in ¢ with te Obj&. In the commutative
diagram in &/

Ixs 25 s uxs

SN

kzs, Z)XS S 2

f(axs) lies in € (axse ¥, fe S€) and hence f(axs) lies in € since ¢t x s is an S~
generated object from the axiom (A). Applying the axiom (C) to s€ ¥ <%, we have
of is an arrow in #. This states that f lies in £%. But u is an &-generated object,
so f lies in €. From the axiom (B), e~ lies in ¥ and consequently so does f=
€<s.>(fxs). This proves the theorem.

Theorem 5. Every object y in &7 is &-proper.

Proof. To prove this theorem we will show that, for any arrow f: x x y—z in ¥,
the unique arrow f: x—k(y, z) lies in ¢. Consider the commutative diagram

axn

sXu > XXy
\f‘axu fX:/
k(n,z) Faxu k(y, z)xu _ko2xn k(y, z) Xy 4
/(n,z)Xu 8<y.x
k(u, z)xu > Zz

Ecu, 2>

for all arrows o:s—x in ¥ with se€0bj& and n:u—y in ¥ with ue Obj#. Since
sxu is an & -generated object by Theorem 4, f(a x n) lies in €. On the other hand,
u is proper from the axiom (C). Hence k(n, z) fo lies in % and fa lies in % from the
axiom (D). This proves that f lies in #¢.

Theorem 6. If g:z—z' is an arrow in %, then k(y, g): k(y, 2)—k(y, 2') is
an arrow in €.

Proof. Consider the commutative square
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k(y, z)xy sz, ,

k(y,g)Xyl ‘ ly

k(y, z')xy rrrradb A

Since g is an arrow in #% from the hypothesis and €<,.> IS an arrow in % by Theorem
3, the composite ge<y,.> lies in € and so the arrow k(y, g)= {9e<; >} lies in €
by Theorem 5, as desired.

As a consequence of Proposition 2, Theorem 6 and Theorem 3, we can conclude
the following

Theorem 7. The category &% is cartesian closed.

From the standard arguments in cartesian closed categories, we have the exponential
laws: For all objects x, y, z in &, there exist natural isos

k(x x y, 2)~k(x, k(y, z))
and
| k(x, y x 2)>k(x, y) x k(x, z)
in €.

Example 8. Let ¥ be the category of topological spaces and continuous maps,
«/ the category of topological spaces and set maps, and & the full subcategory of %
consisting of compact Hausdorff spaces. Then #¢ is the category of compactly gener-
ated spaces [5]. Further, let  be some full subcategory of € with & c# .
Denote by F(X, Y) the function space of all continuous maps X —Y with compact
open topology, and by k(Y, Z) the function space of all maps Y—Z in &% with the
initial (or smallest) topology determined by the family of set maps

k(Y, Z) 1, F(U, Z): f+> fn,

where UeObj# and n: U—-Y is a continuous map. (Note that n* is well defined
because UeObj&%.) It is trivial that k(U, Z)=F(U, Z) for UeObju, k: £€°°
X #€—sf is a bifunctor and the axiom (D) is satisfied. Next, define Ecyz>: k(Y,
Z)x Y—Z to be the usual evaluation map. Then it can be checked without difficulty
that e.y ;. is a quasi-universal dinatural transformation and that the axioms (A), (B)
and (C) follows from the familiar properties of compact open topology. Hence, the
category &% is a cartesian closed category by Theorem 7.
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