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Concavity of the Auxiliary Function Appearing in
Quantum Reliability Function

Jun Ichi Fujii, Ritsuo Nakamoto, and Kenjiro Yanagi, Member, IEEE

Abstract—Reliability functions characterize the asymptotic behavior of
the error probability for transmission of data on a channel. Holevo intro-
duced the quantum channel, and gave an expression for a random-coding
lower bound involving an auxiliary function. Holevo, Ogawa, and Nagaoka
conjectured that this auxiliary function is concave. Here we give a proof of
this conjecture.

Index Terms—Quantum information theory, quantum reliability func-
tion, random coding exponent.

I. INTRODUCTION

In classical information theory, there are two commonly used
methods for proving the channel coding theorem. One uses typical
sequences (see [4]), the other is a direct method involving reliability
functions (see [8]). In quantum information theory, the channel coding
theorem for classical-quantum channels was obtained by Holevo in
[10] by means of a generalization of the typical sequence method.
So far, there is no proof based on quantum reliability functions. In a
classical-quantum channel, each symbol i of our alphabet f1; 2 . . . ; ag
is transmitted in the form of a density operator Si. The receiver can
infer which word of a code (a set of words) is transmitted by making
a joint quantum measurement on the channel outputs. For such a
channel, the quantum reliability function is defined by

E(R) � � lim inf
n!1

1

n
logPe(2

nR
; n); 0 < R < C (1)

where C is the classical-quantum capacity obtained by Holevo, R is
the transmission rate R =

log M

n
with n the length of the code and M

the number of code words, andPe(M;n) is the minimum average error
probability �P (W;X ) or the worst-case error probabilityPmax(W;X ).
These are defined by

�P (W;X ) =
1

M

M

j=1

Pj(W;X )

Pmax(W;X ) = max
1�j�M

Pj(W;X )

where W = fw1; w2; . . . ; wMg ranges over codes, X =
fXig( iXi � I) ranges over (partial) positive operator valued
measurements, and

Pj(W;X ) = 1� TrSw Xj
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is the usual error probability associated with X = fXjg, where Sw
is the density operator corresponding to wj . Let E denote expectations
with respect to codes W whose codewords are chosen i.i.d with prob-
ability P(wi = (i1; i2; . . . ; in)) = �i . . .�i for an a priori proba-
bility distribution � = f�ig. In [3], it was conjectured that the random
coding bound on the channel capacity is determined by the following:

E min
X

�P (W;X )

� c inf
0<s�1

(M � 1)s Tr

a

i=1

�iSi

1+s n

(2)

This bound holds for pure states Si, in which case Si = Si and
c = 2. For commuting Si it reduces to the classical bound of Theorem
5.6.2 in [8] with c = 1. By setting M = 2nR, it implies a lower bound
on the quantum reliability function defined in (1). In particular

E(R) � E
q
r (R) � max

�
sup

0<s�1
[Eq (�; s)� sR]

where

Eq (�; s) = � logTr

a

i=1

�iSi

1+s

with� ranging over probability distributions. In analogy to the classical
case, we expect that Eq satisfies the following properties

a) Eq(�;0) = 0.
b) @E (�;s)

@s
js=0 = I(X;Y ), where I(X;Y ) presents the mutual

information.
c) Eq(�; s) > 0(0 < s � 1). Eq(�; s) < 0(�1 < s < 0).
d) @E (�;s)

@s
> 0; (�1 < s � 1).

e) @ E (�;s)

@s
� 0; (�1 < s � 1).

Of these properties, (a), (b), (c), and (d) are proven in [11][12]. Property
(e) was conjectured in [11][12] and implies concavity of the auxiliary
function Eq(�; s) in s. Before this work, (e) was shown to be true for
the case where theSi are pure [3], and where instead of random coding,
one uses the expurgation method [11].

II. CONCAVITY OF Eq(�; a)

We state the main theorem.
Theorem 2.1: Eq(�; s) is concave in s for s 2 [0; 1].
However we still have the conjecture that Eq(�; s) is concave in

s for s 2 (�1; 0]. A sufficient condition on concavity of the auxil-
iary function Eq(�; s) is the following proposition proven in [7]. Here
H(x) = �x log x is the matrix entropy.

Proposition 2.2 ([7]): Let Si (i = 1; . . . ; a) be density
matrices and � = f�ig

a
i=1 a probability distribution such that

A(s) = a
i=1 �iS

1=(1+s)
i is invertible. If the trace inequality

Tr A(s)s
a

j=1

�jSj logSj

2

�A(s)�1+s
a

j=1

�jH Sj

2

� 0: (3)

holds for s with �1 < s � 1, then the auxiliary function Eq(�; s) is
concave at s.

We note that our assumption that A(s) is invertible is generic, be-
cause A(s) becomes invertible if we have at least one invertible Si.
Moreover,A(s) may be invertible even if none of the Si are invertible.
It suffices that the span of the support of the �iSi is the full space. In
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[13], Yanagi, Furuichi, and Kuriyama proved the concavity ofEq(�; s)
in the special case a = 2 with �1 = �2 = 1

2
under the assumption that

the dimension ofH is two by proving the trace inequality (3). And re-
cently in [6], Fujii proved (3) in the case a = 2 with �1 = �2 = 1

2
for

any dimension ofH. In this paper we prove (3) for all a, any dimension
ofH and 0 � s � 1, which, according to Proposition 2.2, implies that
Eq(�; �) is concave on [0; 1].

Definition 2.3 ([1], [2]): Let f; g be real valued continuous func-
tions. Then (f; g) is called a monotone (resp., antimonotone) pair of
functions on the domain D � if

(f(a)� f(b))(g(a)� g(b)) � 0 (resp. �)

for all a; b 2 D.
Proposition 2.4 ([1], [2], [6]): If (f; g) is a monotone (resp. anti-

monotone) pair, then

Tr [f(A)Xg(A)X] � Tr [f(A)g(A)X2] (resp. �)

for selfadjoint matrices A and X whose spectra are included in D.
Proofs of Proposition 2.2 and 2.4 are given in Appendix for the

reader’s convenience.
Proof of Theorem 2.1: We recall the following operator Jensen’s

inequality (e.g., [5], [9]):

If
a

i=1

C
�

i Ci = I , then

a

i=1

C
�

i X
2

i Ci �

a

i=1

C
�

i XiCi

2

holds for all Hermitian operators Xi, since f(x) = x2 is operator
convex on any interval. We put

Xi = logAi; Ci = (�iAi)
1=2

a

k=1

�kAk

�1=2

for i = 1; 2; . . . ; a. Since
a

i=1

C
�

i Ci = I , we have

a

i=1

a

k=1

�kAk

�1=2

(�iAi)
1=2(logAi)

2

� (�iAi)
1=2

a

k=1

�kAk

�1=2

�

a

i=1

a

k=1

�kAk

�1=2

(�iAi)
1=2 logAi

� (�iAi)
1=2

a

k=1

�kAk

�1=2 2

:

And so we have

a

k=1

�kAk

�1=2 a

i=1

(�iAi)
1=2(logAi)

2

� (�iAi)
1=2

a

k=1

�kAk

�1=2

�

a

k=1

�kAk

�1=2 a

i=1

�iAi logAi

�

a

k=1

�kAk

�1=2 2

:

Hence it follows that

a

i=1

(�iAi)
1=2(logAi)

2(�iAi)
1=2

�

a

i=1

�iAi logAi

a

k=1

�kAk

�1

�

a

i=1

�iAi logAi :

Since (�iAi)
1=2(logAi)

2(�iAi)
1=2 = �iAi(logAi)

2, we have

a

k=1

�kAk

s=2 a

i=1

�iAi(logAi)
2

�

a

k=1

�kAk

s=2

�

a

k=1

�kAk

s=2 a

i=1

�iAi logAi

�

a

k=1

�kAk

�1 a

i=1

�iAi logAi

�

a

k=1

�kAk

s=2

:

Thus

Tr

a

k=1

�kAk

s a

i=1

�iAi(logAi)
2

� Tr

a

k=1

�kAk

s a

i=1

�iAi logAi

�

a

k=1

�kAk

�1 a

i=1

�iAi logAi :

Since f(x) = xs (s � 0) and g(x) = x�1, it is clear that (f; g) is an
antimonotone pair. By Proposition 2.4,

Tr

a

k=1

�kAk

s a

i=1

�iAi(logAi)
2

�

a

k=1

�kAk

s�1 a

i=1

�iAi logAi

2

� 0:

Q.E.D.

APPENDIX A

Proof of Proposition 2.2 from [7].: This is a copy of the proof in
[7]. We put

Eq(�; s) = � logG(s);

G(s) = Tr A(s)1+s ;

A(s) =

a

i=1

�iSi :
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Since

@Eq(�; s)

@s
= �G(s)�1G0(s)

we have

@2Eq(�; s)

@s2
= G(s)�2 G

0(s)2 �G(s)G00(s) :

By the use of the formula [11] for the operator valued function A(s)
w.r.t. the real number s

d

ds
Trf(s;A(s)) = Trf 0s(s;A(s)) + Trf 0A(s;A(s))A

0(s)

we have

G
0(s) = Tr A(s)s A(s) logA(s) + (1 + s)A0(s)

= �Tr [A(s)s�H(�; s)] ;

where

�H(�; s) = H(A(s))�

a

i=1

�iH(Si ):

By some simple calculations, we have

G
00(s)

= Tr A(s)s�1 A(s)2(logA(s))2 + s(1 + s)A0(s)2

+Tr A(s)s�1 A(s)(2(1 + (1 + s) logA(s))A0(s)

+ (1 + s)A00(s)) (4)

where

A
0(s) = �

1

(1 + s)2

a

i=1

�iSi logSi (5)

A
00(s) =

1

(1 + s)4

a

i=1

�iSi (2(1 + s) logSi + (logSi)
2):

(6)

Substituting (5) and (6) into (4), we have

G
00(s)

= Tr A(s)s�1 H(A(s))2 +
s

1 + s

a

i=1

�iH(Si )

2

� 2H(A(s))

a

i=1

�iH(Si )

+
1

1 + s

a

i=1

�iSi

a

j=1

�jSj (logSj )2

= Tr A(s)s�1 H(A(s))2 � 2H(A(s))

a

i=1

�iH(Si )

+

a

i=1

�iH(Si )

2

+
1

1 + s

a

i=1

�iSi

a

j=1

�jSj (logSj )2

�
1

1 + s

a

i=1

�iH(Si )

2

(7)

By the Cauchy–Schwarz inequality, we have

G
0(s)2 �G(s)G00(s) � 0

where

G00(s) = Tr[A(s)�1+s�H(�; s)2]: (8)

Therefore if we have

G
0(s)2 �G(s)G00(s) � G

0(s)2 �G(s)G00(s)

that is,

G00(s) � G
00(s) (9)

then the theorem holds. From (7) and (8), (9) can be deformed,

Tr A(s)s�1 �H(A(s))

a

i=1

�iH(Si )

+

a

i=1

�iH(Si )H(A(s))

+
1

1 + s
Tr A(s)s�1

a

i=1

�iSi

�

a

j=1

�jSj (logSj )2

�

a

i=1

�iH(Si )

2

� 0: (10)

Since H(A(s)) commutes with A(s)�1+s, the first term of (10) equal
to 0 so that (10) can be rewritten in the following:

1

1 + s
Tr A(s)s�1

a

i=1

�iSi

a

j=1

�jSj (logSj )2

�

a

i=1

�iH(Si )

2

� 0

which implies the proposition. Q.E.D.
Proof of Proposition 2.4: We may assume that A is diagonal. Let

A = diag(t1; t2; . . . ; tn) and X = (xij).
If (f; g) is a monotone pair, then

f(a)g(b) + f(b)g(a) � f(a)g(a) + f(b)g(b)

for any a; b 2 D. Then we have the following;

Tr [f(A)Xg(A)X]

=

n

k=1

f(tk)g(tk)x
2

kk +
k<j

ff(tk)g(tj) + f(tj)g(tk)gx
2

kj

�

n

k=1

f(tk)g(tk)x
2

kk +
k<j

ff(tk)g(tk) + f(tj)g(tj)gx
2

kj

= Tr f(A)g(A)X2
:

If (f; g) is an antimonotone pair, then we obtain the result by the
same method. Q.E.D.
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