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The Convex–Concave Characteristics of Gaussian Channel
Capacity Functions

Han Wu Chen and Kenjiro Yanagi, Member, IEEE

Abstract—In this correspondence, we give several inherent properties of
the capacity function of a Gaussian channel with and without feedback by
using some operator inequalities and matrix analysis. We give a new proof
method which is different from the method appearing in: K. Yanagi and H.
W. Chen, “Operator inequality and its application to information theory,”
Taiwanese J. Math., vol. 4, no. 3, pp. 407–416, Sep. 2000. We obtain the
following results: ( ) and ( ) are both concave functions
of P, ( ) is a convex function of the noise covariance matrix and

( ) is a convex-like function of the noise covariance matrix. This
new proof method is very elementary and the results shall help study the
capacity of Gaussian channel. Finally, we state a conjecture concerning the
convexity of ( ).

Index Terms—Capacity, feedback, Gaussian channel, Shannon theory.

I. INTRODUCTION

The following model for the discrete time Gaussian channel with
feedback is considered:

Yn = Sn + Zn; n = 1; 2; . . .

where Z = fZn;n = 1; 2; . . .g is a nondegenerate, zero mean
Gaussian process representing the noise and S = fSn;n = 1; 2; . . .g
and Y = fYn;n = 1; 2; . . .g are stochastic processes repre-
senting input signals and output signals, respectively. The channel
is used with noiseless feedback, so Sn is a function of a mes-
sage W to be transmitted and the output signals Y1; . . . ; Yn�1.
For code rate R, the message W 2 f1; 2; . . . ; 2nRg is uni-
formly distributed and independent of Zn. The codewords are
denoted as xn(W;Y n�1), and the channel output is given by
Y n = xn(W;Y n�1) + Zn. If gn : n ! f1; . . . ; 2nRg denotes
the decoding function, then the probability of decoding error can be
written as Pe(n) = Prfgn(Y

n) 6= Wg. The signal is subject to an
expected power constraint

1

n

n

i=1

E S
2
i � P

and the feedback is causal, i.e., Si depends on Z1; . . . ; Zi�1 for i =
1; 2; . . . ; n. Similarly, when there is no feedback, Si is independent
of Zn. We denote by R(n)

S ; R
(n)
Z ; R

(n)
S+Z the covariance matrices of S,

Z , S + Z , respectively, and we denote the determinant of a matrix
A by jAj. It is well-known that a finite block length capacity without
feedback is given by [7]

Cn;Z(P ) = max
Tr R �nP
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and with feedback is given by [7]

Cn;FB;Z(P ) = max
Tr R �nP

1

2n
log

R
(n)
S+Z

R
(n)
Z

:

We can also write Cn;FB;Z(P ) using the following formula:

Cn;FB;Z(P ) = max
1

2n
log

R
(n)
X +R

(n)
Z

R
(n)
Z

where X = S � TY and T is strictly lower triangular, and the max-
imum is taken under the constraint

Tr (I +B)R
(n)
X (I +B

t) +BR
(n)
Z B

t � nP

where R(n)
X is symmetric, nonnegative definite, and B is strictly lower

triangular.
Proposition 1 (Cover and Pombra [6]): For every � > 0 there

exist codes, with block length n and 2n(C (P )��) codewords,
n = 1; 2; . . ., such that Pe(n) ! 0, as n ! 1. Conversely, for
every � > 0 and any sequence of codes with 2n(C (P )+�) code-
words and block length n, Pe(n) is bounded away from zero for all
n. (The same theorem holds in the special case without feedback upon
replacing Cn;FB;Z(P ) by Cn;Z(P ).)

When the block length n is fixed,Cn;Z(P ) is given in the following.
Proposition 2 (Gallager [11], Theorem 7.5.1):

Cn;Z(P ) =
1

2n

k

i=1

log
nP + r1 + � � �+ rk

kri

where 0 < r1 � r2 � � � � � rn are eigenvalues of R(n)
Z and k(� n)

is the largest integer satisfying nP + r1 + � � � + rk > krk .

II. CONCAVITY OF Cn;Z(P ) AND Cn;FB;Z(P ) RELATIVE TO P

Before proving the concavity of Cn;Z(P ) and Cn;FB;Z(P ) with
respect to P , we first give some known results. We denote the range of
A and the kernel of A by ranA and kerA, respectively.
Proposition 3 (Cover and Pombra [6]): Let A and B be nonnega-

tive definite matrices. For any �; � � 0 satisfying �+� = 1, we have

j�A + �Bj � jAj�jBj� :

Proposition 4 (Douglas [8]): Let H be a real Hilbert space and let
B(H) be the set of all bounded linear operators on H. And let A;B 2
B(H). Then the following assertions are equivalent:

1) ranA � ranB;
2) there exists � � 0 such that AA� � �BB� , where A� denotes

the conjugate of A;
3) there exists C 2 B(H) such that A = BC .

Furthermore when the above condition 3) holds, C is uniquely deter-
mined and the following three conditions are satisfied:

1) kCk2 = inff� : AA� � �BB�g, where k � k denotes the
matrix norm;

2) kerA = kerC;
3) ranC � (kerB)?, where ranC denotes the closure of ranC ,

and (kerB)? denotes the orthogonal complement of kerB.
Proposition 5 (Baker [1]): Let H1 (resp. H2) be a real and sep-

arable Hilbert space with Borel �-field �1 (resp. �2). Let �X (resp.
�Y ) be a probability measure on (H1;�1) (resp. (H2;�2)) satisfying

H

kxk21d�X(x) <1 resp:
H

kyk22d�Y (y) <1 :

0018-9448/$20.00 © 2006 IEEE
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Let RX and mX (resp. RY and mY ) denote the covariance operator
and mean element of �X (resp. �Y ). Let (H1 � H2;�1 � �2) be
the product measurable space generated by the measurable rectangles.
Let �XY , having R as covariance and m as mean element, be a joint
measure on (H1 � H2;�1 � �2) with projections �X and �Y . Then
the cross-covariance operator RXY of the �XY has a decomposition

RXY = RXV RY

where V is a unique bounded linear operator such that V : H2 ! H1,
kV k � 1, kerRY � kerV and ranV � ranRX .

Lemma 1: Let RS and RS be the covariance matrices of S1 and
S2, respectively. For any �; � � 0 satisfying �+� = 1, the following
formulas hold:

1) �RS + �RS = R�S +�S + ��RS �S ;
2) �RS + �RS � R�S +�S , where the equality holds if and

only if S1 = S2 (for 0 < � < 1);
3) �RS +Z + �RS +Z = R�S +�S +Z + ��RS �S ;
4) R�S +�S = (�RS + �RS ) W , where kWk � 1.

Proof of Lemma 1:

1) It is easy to obtain the following relations by the properties of
nonnegative definite matrices:

R�S +�S + ��RS �S

= �
2
RS + ��RS S + ��RS S + �

2
RS

+ ��RS � ��RS S � ��RS S + ��RS

= �(�+ �)RS + �(�+ �)RS

= �RS + �RS :

2) We can directly get the result 2) from 1), because RS �S is a
nonnegative definite matrix.

3) It is easy to see from 1). Let S1 = Ŝ1 + Z and S2 = Ŝ2 + Z ,
then

�S1 + �S2 =�(Ŝ1 + Z) + �(Ŝ2 + Z) = �Ŝ1 + �Ŝ2 + Z

S1 � S2 = Ŝ1 + Z � Ŝ2 � Z = Ŝ1 � Ŝ2:

Therefore

�RŜ +Z + �RŜ +Z =�RS + �RS

=R�S +�S + ��RS �S

=R�Ŝ +�Ŝ +Z + ��RŜ �Ŝ :

Then we have the result 3).
4) We can directly get the result 4) from 2) of Lemma 1 and 2), 3)

of Proposition 4.

By 2) of Lemma 1, we have

R�S +�S � �RS + �RS

and linear operators R�S +�S and �RS + �RS satisfy the condi-
tions of Proposition 4. Therefore by Proposition 4, there existsW such
that kWk � 1 and

R�S +�S = (�RS + �RS ) W: Q.E.D.

Theorem 1: Let S1 and S2 be two statistically independent, zero-
mean random vectors, and let Z be the zero-mean random vector. For
any �; � � 0 satisfying �+ � = 1, the following formula holds:

Rp
�S +

p
�S

+RZ � jRS +RZ j�jRS +RZ j� :

Proof of Theorem 1: Since

Rp
�S +

p
�S

=E
p
�S1 + �S2

2

=E �S
2
1 + �S

2
2

=�ES
2
1 + �ES

2
2 = �RS + �RS

then

Rp
�S +

p
�S

+RZ =�RS + �RS +RZ

=�(RS +RZ) + �(RS +RZ):

By taking determinants on both sides of the above equality, we have

Rp
�S +

p
�S

+RZ = j�(RS +RZ) + �(RS +RZ)j
(a)

� jRS +RZ j�jRS +RZ j� : (1)

Here, (a) follows from Proposition 3. Q.E.D.
Corollary 1: Cn;Z(P ) is a concave function with respect toP . That

is, for any P1; P2 � 0 and for any �; � � 0 satisfying � + � = 1

Cn;Z(�P1 + �P2) � �Cn;Z(P1) + �Cn;Z(P2):

Proof of Corollary 1: We can write Cn;Z(P ) as the follows:

Cn;Z(P ) = max
S2�(P )

1

2n
log

R
(n)
S +R

(n)
Z

R
(n)
Z

where �(P ) = fS;Tr[RS ] � nPg. By Theorem 1, dividing by the
determinant of R(n)

Z and taking the logarithm on both sides of (1), we
have

1

2n
log

R
(n)
p
�S +

p
�S

+R
(n)
Z

R
(n)
Z

� �
1

2n
log

R
(n)
S +R

(n)
Z

R
(n)
Z

+�
1

2n
log

R
(n)
S +R

(n)
Z

R
(n)
Z

: (2)

Let S1 attain Cn;Z(P1) with S1 2 �(P1) and let S2 attain Cn;Z(P2)
with S2 2 �(P2). Then the right-hand side (RHS) of (2) equals

RHS = �Cn;Z(P1) + �Cn;Z(P2):

Since
p
�S1 +

p
�S2 2 �(�P1 + �P2), we maximize the left-hand

side (LHS) of (2) over �(�P1 + �P2) and get

Cn;Z(�P1 + �P2) = LHS:

Thus we have

Cn;Z(�P1 + �P2) � �Cn;Z(P1) + �Cn;Z(P2): Q.E.D.
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Theorem 2: Let RS be the covariance matrix of a zero-mean
random vector Si, where i 2 f1; 2g. For any �; � � 0 satisfying
� + � = 1, the following formula holds:

j�RS +Z + �RS +Z j = jR~S + U + U
t +RZ j

� jRS +Z j
�jRS +Z j

�

where

R~S =�RS + �RS

and

U =(R~S) WV RZ ; kWk < 1; kV k < 1:

Proof of Theorem 2: By Lemma 1 1), we have

�RS +Z + �RS +Z

= R�S +�S +Z + ��RS �S

= R�S +�S +R�S +�S ;Z

+RZ;�S +�S +RZ + ��RS �S

(b)
= �RS + �RS +R�S +�S ;Z +RZ;�S +�S +RZ

(c)
= �RS + �RS +R�S +�S V RZ

+RZV
t
R�S +�S +RZ

(d)
= �RS + �RS + (�RS + �RS ) WV RZ

+RZ (WV )t(�RS + �RS ) +RZ

= R~S + U + U
t +RZ :

Here (b) follows from the Lemma 1 1), and (c) follows from Proposi-
tion 5, where kV k � 1, and (d) follows from the fact that we can obtain
R�S +�S � �RS + �RS by Lemma 1 (ii) and (R�S +�S ) =

(�RS +�RS ) W by by Lemma 1 (iv), where kWk � 1. By taking
determinants on both sides of the equality above, we have

R~S + U + U
t +RZ = j�RS +Z + �RS +Z j

(e)

� jRS +Z j
�jRS +Z j

�
: (3)

Here (e) follows from Proposition 3. Q.E.D.
Corollary 2: Cn;FB;Z(P ) is a concave function with respect to P.

That is, for any P1; P2 � 0 and for any �; � � 0 satisfying �+� = 1,

Cn;FB;Z(�P1 + �P2) � �Cn;FB;Z(P1) + �Cn;FB;Z(P2):

Proof of Corollary 2: We can write Cn;FB;Z(P ) as follows:

Cn;FB;Z(P ) = max
S2�(P )

1

2n
log

R
(n)
S+Z

R
(n)
Z

;

where �(P ) = fS;Tr[RS ] � nPg. By Theorem 2, dividing by
the determinant of R(n)

Z and taking the logarithm on both sides of in-
equality (3), we have

1

2n
log

R
(n)
~S

+ U + U t +R
(n)
Z

R
(n)
Z

�
1

2n
log

R
(n)
S +Z

�

R
(n)
S +Z

�

R
(n)
Z

:

(4)

Let S1 attain Cn;FB;Z(P1) with S1 2 �(P1) and let S2 attain
Cn;FB;Z(P2) with S2 2 �(P2), then the RHS of (4) is

RHS = �Cn;FB;Z(P1) + �Cn;FB;Z(P2):

Since

Tr �R
(n)
S + �R

(n)
S =�Tr R

(n)
S + �Tr R

(n)
S

��nP1 + �nP2 = n(�P1 + �P2)

and kWV k � kWkkV k � 1, we maximize the LHS of (4) over
�(�P1 + �P2) and we get

Cn;FB;Z(�P1 + �P2) � LHS:

Thus, we have

Cn;FB;Z(�P1+�P2) � �Cn;FB;Z(P1)+�Cn;FB;Z(P2): Q.E.D.

III. OPERATOR INEQUALITY

Before proving thatCn;Z(P ) andCn;FB;Z(P ) are convex functions
of the covariance matrix of additive Gaussian noise Z , we need to in-
troduce some operator inequalities of the real Hilbert space.

Let H be a Hilbert space. Let B(H) be the set of all bounded linear
operators on H and B(H)+ = fA 2 B(H);A � 0g. Let J be any
interval of and S(A) be spectrum of A 2 B(H).
Definition 1: Let f : J ! be continuous.

1) f is called operator monotone if for any self-adjoint A;B 2
B(H) satisfying S(A); S(B) � J ,

A � B implies f(A) � f(B):

2) f is called operator convex if for any self-adjoint A;B 2 B(H)
satisfying S(A); S(B) � J

f
A+B

2
�

f(A) + f(B)

2
:

By the continuity of f , it is equivalent to

f(�A + (1� �)B) � �f(A) + (1� �)f(B)

for any 0 � � � 1.
3) f is called operator concave if �f is operator convex.

Proposition 6 ([12]): Let f be nonnegative continuous function on
[0;1). Then f is operator monotone if and only if f is operator con-
cave.
Proposition 7 ([12]): f(t) = t�1 is operator convex on [0;1).
Definition 2 (Kubo and Ando [15]): � is called operator connection

if � is binary operation on B(H)+ satisfying the following axioms.

1) (Monotonicity)

A � C and B � D implies A�B � C�D:

2) (Transform Inequality)

C(A�B)C � (CAC)�(CBC):

3) (Upper Continuity)

An # A and Bn # B implies An�Bn # A�B
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where An # A represents

A1 �A2 � � � �

and

An !A(strong operator topology):

� is called operator mean if � is operator connection satisfying
I�I = I .

Proposition 8 ([15]): For any operator connection �, there exsits a
unique nonnegative operator monotone function f on [0;1) such that

f(t)I = I�(tI); t � 0:

Then we have the followings:

1) � ! f is an affine order isomorphism between the class of con-
nections and the class of nonnegative operator monotone func-
tions on [0;1).

2) For invertible A 2 B(H)+

A�B = A
1=2

f(A�1=2
BA

�1=2)A1=2
:

3) � is operator mean if and only if f(1) = 1.

Proposition 9 ([15]): Let � be operator connection and A;B;C 2
B(H)+.

1)For any invertible C

C(A�B)C = (CAC)�(CBC):

2)For any � � 0

�(A�B) = (�A)�(�B):

Definition 3 (Kubo and Ando [15]): For invertible A;B 2 B(H)+,
parallel sum is difined by

A : B = (A�1 +B
�1)�1

:

In general for A;B 2 B(H)+, it is defined by

A : B = s� lim
�#0

(A+ �I) : (B + �I)

where s� limAn represents the limit ofAn relative to strong operator
topology. Harmonic mean is defined by

A!B = 2(A : B):

Proposition 10 ([15]): Let � be operator connection and
A;B;C;D 2 B(H)+. Then

(A�B) : (C�D) � (A : C)�(B : D):

Lemma 2: Let f be nonnegative continuous function on [0;1). If
f is operator monotone, then for any A;B 2 B(H)+

f(A!B) � f(A)!f(B):

Proof of Lemma 2: By Proposition 10, let U; V;X; Y 2 B(H)+
then

(U�V ) : (X�Y ) � (U : V )�(X : Y ):

Let U = I; V = A;X = I; Y = B then

(I�A) : (I�B) � (I : I)�(A : B)

= (I�1 : I�1)�(A : B)

= (2I)�1
�(A : B)

=
1

2
I �(A : B)

=
1

2
I �

1

2
(2(A : B))

=
1

2
(I�(2(A : B)))

=
1

2
(I�(A!B)):

Then

2((I�A) : (I�B)) � I�(A!B):

Hence

(I�A)!(I�B) � I�(A!B):

By Proposition 8, for this operator connection �, there exists a
unique operator monotone function f � 0 let f(A)I = I�(AI),
therefore

f(A)!f(B) � f(A!B): Q.E.D.

Lemma 3: Let f be positive continuous function on [0;1). If f(t)
is operator monotone, then f(t�1) is operator convex.

Proof of Lemma 3: For any invertible A;B 2 B(H)+, we have

f
A+B

2

�1

= f(A�1!B�1)

(g)

� f(A�1)!f(B�1)

=
(f(A�1))�1 + (f(B�1))�1

2

�1

(h)

�
1

2
f(A�1) +

1

2
f(B�1):

Here (g) following from the Lemma 2 and (h) following from the
Proposition 7. Q.E.D.
Remark 1: We remark that it is shown that f(x) = log(1 + 1

x
) is

operator convex in [21].

IV. CONVEXITY OF Cn;Z(P ) AND Cn;FB;Z(P ) WITH RESPECT TO

THE NOISE COVARIANCE

Theorem 3: Let RZ and RZ denote covariance matrices of zero-
mean random vectors Z1 and Z2, respectively. For any �; � � 0 sat-
isfying � + � = 1, we set R~Z = �RZ + �RZ , then the following
formula holds:

log
jRS +R~Z j

jR~Z j
� � log

jRS +RZ j

jRZ j
+ � log

jRS +RZ j

jRZ j
:
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Proof of Theorem 3: Let RS and RZ denote covariance matrices
of random vectors S and Z with mean zero. Thus we have

jRS +RZ j

jRZ j
= jRS +RZkRZ j

�1 = R
1=2
S R

�1
Z R

1=2
S + I : (5)

Let A = R
�1=2
S RZ R

�1=2
S and B = R

�1=2
S RZ R

�1=2
S . Then

�A + �B = R
�1=2
S R~ZR

�1=2
S . Let f(x) = log(1 + x); x 2 [0;1).

Then f(x) is a positive continuous function on [0;1). It is well
known that f(x) is operator monotone. By Lemma 3, f(x�1) is
operator convex. Then we have

f((�A+ �B)�1) � �f(A�1) + �f(B�1):

That is

log I +R
1=2
S R

�1
~Z
R
1=2
S

= log I + R
�1=2
S R~ZR

�1=2
S

�1

� � log I + R
�1=2
S RZ R

�1=2
S

�1

+ � log I + R
�1=2
S RZ R

�1=2
S

�1

= � log I +R
1=2
S R

�1
Z R

1=2
S

+ � log I +R
1=2
S R

�1
Z R

1=2
S :

By taking the trace on both sides

log I +R
1=2
S R

�1
~Z
R
1=2
S � � log I +R

1=2
S R

�1
Z R

1=2
S

+� log I +R
1=2
S R

�1
Z R

1=2
S :

It follows from (5) that

log
jRS +R~Z j

jR~Z j
� � log

jRS +RZ j

jRZ j
+� log

jRS +RZ j

jRZ j
: Q.E.D.

Corollary 3: Cn;Z(P ) is a convex function of the noise covariance
matrix. That is, for any Z1; Z2, for any P � 0 and for any �; � � 0

satisfying � + � = 1, let R(n)
~Z

= �R
(n)
Z + �R

(n)
Z , where R(n)

Z and

R
(n)
Z denote the covariance matrices of Z1 and Z2, respectively, then

the following inequality holds:

Cn;~Z(P ) � �Cn;Z (P ) + �Cn;Z (P ):

Proof of Corollary 3: We define Cn;Z(P ) as the following:

Cn;Z(P ) = max
Tr R �nP

1

2n
log

R
(n)
S +R

(n)
Z

R
(n)
Z

:

By Theorem 3, then

1

2n
log

R
(n)
S +R

(n)
~Z

R
(n)
~Z

� �
1

2n
log

R
(n)
S +R

(n)
Z

R
(n)
Z

+�
1

2n
log

R
(n)
S +R

(n)
Z

R
(n)
Z

: (6)

Let S 2 �(P ) attain Cn;~Z(P ), where �(P ) = fS;Tr[RS ] � nPg.
By taking the maximization of the RHS of (6), we get

max
Tr R �nP

1

2n
log

R
(n)
S +R

(n)
~Z

R
(n)
~Z

� max
Tr R �nP

�
1

2n
log

R
(n)
S +R

(n)
Z

R
(n)
Z

+ max
Tr R �nP

�
1

2n
log

R
(n)
S +R

(n)
Z

R
(n)
Z

:

We obtain the proof. Q.E.D.
Now we have the following convex-like property of Cn;FB;�(P ).
Corollary 4: For any Z1; Z2, for any P � 0 and for any �; � � 0

satisfying�+� = 1, there existP1; P2 � 0 satisfyingP = �P1+�P2

such that

Cn;FB;~Z(P ) � �Cn;FB;Z (P1) + �Cn;FB;Z (P2):

Proof of Corollary 4: We can write Cn;FB;Z(P ) as follows:

Cn;FB;Z(P ) = max
1

2n
log

R
(n)
X +R

(n)
Z

R
(n)
Z

where X = S � TY and T is a strictly lower triangular, and the
maximum is taken subject to the constraint

Tr (I +B)R
(n)
X (I +B

t) +BR
(n)
Z B

t � nP

where R(n)
X is symmetric, nonnegative definite, and B is strictly lower

triangular. By Theorem 3

1

2n
log

R
(n)
X +R

(n)
~Z

R
(n)
~Z

� �
1

2n
log

R
(n)
X +R

(n)
Z

R
(n)
Z

+�
1

2n
log

R
(n)
X +R

(n)
Z

R
(n)
Z

: (7)

Let (X̂; B̂) 2 �(P ) attain Cn;FB;~Z(P ), where

�(P )= (X;B); Tr (I +B)R
(n)
X (I +B

t)+BR
(n)
~Z
B
t � nP :

Since

Tr (I + B̂)R
(n)

X̂
(I + (B̂)t) + B̂R

(n)
~Z

(B̂)t

= �Tr (I + B̂)R
(n)

X̂
(I + (B̂)t) + B̂R

(n)
Z (B̂)t

+ �Tr (I + B̂)R
(n)

X̂
(I + (B̂)t) + B̂R

(n)
Z (B̂)t

we have �P1 + �P2 = P , where

Tr (I + B̂)R
(n)

X̂
(I + (B̂)t) + B̂R

(n)
Z (B̂)t =nP1

and

Tr (I + B̂)R
(n)

X̂
(I + (B̂)t) + B̂R

(n)
Z (B̂)t =nP2:

By taking the maximization of the right hand side of (7), we have the
result. Q.E.D.
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Finally we state the following conjecture.
Conjecture: For any Z1; Z2, for any P � 0 and for any �; � �

0(� + � = 1)

C
n;FB;~Z(P ) � �Cn;FB;Z (P ) + �Cn;FB;Z (P ):

V. CONCLUSION

We gave several inherent prperties of the capacity function of
Gaussian channel with and without feedback by using operator in-
equalities and matrix analysis. By using the operator concavity of
log x we showed that Cn;FB;Z(P ) is a concave function of P . And
also by using the operator convexity of log 1 + 1

t
we showed that

Cn;FB;Z(P ) is a convex-like function of the noise covariance RZ .
The operator convexity of log 1 + 1

t
is generalized to the operator

convexity of f(t�1) as a function of t, where f(t) is operator mono-
tone. Though the nonfeedback capacity Cn;Z(P ) is a convex function
of RZ , the feedback capacity Cn;FB;Z(P ) is a convex-like function
of RZ . Strict convexity of Cn;FB;Z(P ) as a function of RZ remains
an open problem.
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