(3) 非接触型自動表面検査システムの開発

理工学研究科 機械工学専攻 M2 渡邊 隆夫

1. はじめに

近年、加工技術の向上、高精度化のため、形状誤 差や表面粗さに対する要求精度は、ますます厳しく なってきている。最近では表面形状を検査すること も頻繁に行われており、各分野において行われてい る表面形状に関する検査は、触針式及びレーザー計 測などが主流となっている。これらの方法では精密 に表面形状を測定することができる。しかし欠点と して、触針式では対象物表面を直接走査するため、 表面に傷をつける可能性があること、走査距離が短 いことや走査速度が遅い等の理由から全数検査は困 難であるといえる。またレーザー式では周囲環境の 影響やコスト面での問題が生じることがある。これ らのことから、工業界では、簡易にかつ高速に表面 形状を測定し、傷の判別を行うシステムの必要性が 叫ばれている。

そこで本研究では、加工物の表面粗さ、傷の判別 を容易に、かつ高速に行うことのできる、非接触型 自動検査システムの実現を目的とし、その第一歩と して非接触型表面検査装置を製作した。表面の凹凸 の検出に、渦電流式変位計を使用している。このセ ンサをACサーボモータ及びボールねじを使用した アクチュエータで対象物表面を走査する機構とし、 走査距離の延長を図るとともに走査速度の向上を実 現している。また本装置の性能評価を行うにあたり 試験片を製作し、表面形状計測を行なった。その結 果をもとに、強調関数を使用した形状再現法を考案 し、表面形状の把握を試みた。さらに、従来用いら れている触針式表面粗さ計での測定結果との比較に より、本システムの有効性を検討した。

2.実験装置及び実験内容

2.1 非接触型表面検查装置

Fig. 1に実験装置の概略を示す。本装置は大きく センサ部、駆動部、試料台にわけられる。表面の凹 凸を計測するセンサは、渦電流式非接触変位計(電 子応用製)を使用した。センサの分解能は0.8µm、 センサヘッド径は ¢0.93、プローブカバーを含める と ¢1.8となっている。このセンサーを LM ガイド アクチュエータ(THK 製)のインナブロックに取り 付け、試験片表面を走査する機構としている。スト ローク範囲は300mmであり駆動には AC サーボモー タを使用している。試料台は10µm で位置決めが可 能なX-Yステージ及び試料取り付け用のアングル から構成されている。

Fig. 1 Experimental apparatus

2.2 試験片

本実験装置の性能評価を行うにあたり、試験片を 製作した。Fig.2に製作した試験片の一部を示す。試 験片はアルミニウム製であり、ウェットエッチング を使用して、1100 μ m 毎に幅100 μ m の溝を設けた、 格子状の形状をしている。深さD=56,23,21,12 μ m の4種類を製作した。(以下深さの大きい試験片から 順に1-1、2、…と番号をつける。)試験片はアング ルに取り付けたアームによって固定している。

Fig. 2 Specimen

性能試験ではセンサー試験片距離を40µm、セン サの走査速度5,10,20mm/sとして、測定を行った。 なお、測定は上から下に走査しており、位置は試験 片中央部である。本装置の性能評価を行うにあたり、 今回は形状測定試験、信号再現性試験、走査速度の 違いによる出力波形の比較を行なった。

3.実験結果及び考察

3.1 形状測定結果

試験片1-1(深さD≒56µm)の測定結果をFig.
3,4に示す。Fig.4はFig.3の拡大図である。Fig.3,
4の測定条件は走査速度5 mm/s、走査位置

Fig. 3 Output voltage vs. Measurement position

Fig. 4 Output volage vs. Measurement position (detail)

は試験片中央、サンプリング周波数は512 Hz としている。

Fig.3を見ると、まず、試験片の厚みほど出力が立 ち上がり、試験片形状を測定した後、試験片端部に 至り、出力が下がっている。Fig.4を見ると周期的な 出力が得られており、その周期 はほぼ1100µmと なっている。しかし、形状や大きさは正確には把握 できず、谷から山への立ち上がり、また山部での乱 れが大きくなっている。これは試験片の形状が急激 に変化するために渦電流が安定して発生しないこと や、試験片製作時においてバフ研磨しており、その 過程で発生した部位による透磁率の変化、また周辺 機器からのノイズ等も影響していると考えられる。

また、他の試験片、速度条件においても、ほぼ同 様な結果が得られており、本実験結果からは形状や 大きさは正確に判別できないが、周期的な波形が得 られていることから、幅100μm、深さ12μm までの 欠陥の検出が可能であることがわかった。

3.2 再現性試験結果

検査装置として使用するにあたり、1回の測定で 確実に出力を得ることが、試験の高速化及びデータ の信頼性に対して重要であるといえる。そのため繰 り返し測定を行い、再現性試験を行った。Fig.5に結 果を示す。本試験では同一箇所を6回測定し、1つ の出力を基準に5つの相関係数を求めている。

Fig. 5 Comparison of Profiles

Fig. 5より、毎回出力波形は類似していることが わかる。また相関係数も計算の結果、ほぼ1に近い値 となっており、安定した出力が得られていることが わかる。また、各試験片、走査速度条件においても、ほ ぼ同様な結果が得られており、本実験の範囲内では 高い実験再現性を有していることがわかった。

3.3 速度による出力波形の比較

工業界において品質を検査するにあたり、検査の 高速化は非常に重要な要素であるといえる。本装置 において走査速度を高速にした場合、形状変化に追 従した出力が得られるかどうか調べるため、速度に よる出力の類似性を調べ、相関係数を求めた。Fig. 6,7に走査速度の違いによる出力波形の比較を示 す。

Fig. 6 Comparison of Profiles

Fig. 7 Comparison of Profiles

Fig. 6、7より、走査速度を5 mm/s から10mm/s 及 び20mm/s にした場合でも、類似した波形出力が得 られていることがわかり、相関係数も1 に近い値と なった。各試験片においても、同様の結果が得られ ており、本実験の範囲内では、走査速度20mm/s まで の測定が可能であることが示された。

4. 強調処理による表面外形の把握

試験片1-1の実験結果である Fig. 3を断面曲線 とみなし、更正を行ない、粗さ曲線を求めた。Fig. 8 に試験片1-1の粗さ曲線を示す。粗さ曲線は断面 曲線から所定の波長より長い表面うねり成分を除去 するような特性を持つフィルタを通して求めた曲線 である。フィルタにはガウシアンフィルタを使用し ている。

Fig. 8 Roughness Profiles

この結果では、更正をしても実際の深さとは一致 していない。このためフィルタを通したのち、移動 平均をとった後、強調関数を用いた形状再現法を考 案、使用し外形の把握を試みた。Fig.8の出力信号を 見ると、谷部から山部への立ち上がりの部分が素早 く立ち上がっておらず、緩やかに出力されているこ と、また山部では一定の出力が得られておらず、変 動していることがわかる。したがって、強調処理は 立ち上がりでの出力を拡大し、山部での出力は拡大 率を小さくし、ノイズ成分を圧縮するするように行 なった。

強調処理で今回使用した関数を Fig. 9に示す。 関数は、

$$y = 4ax^{2} \qquad (0 \le x \le Average)$$
$$y = -a(x - Max)^{2} + 4a(Average)^{2} + a(Max - Average)^{2}$$

 $(Average \le x \le Max)$

とした。a は各試験片に対する補正係数である。強調 処理の結果を Fig.10に示す。また触針式表面粗さ計 で測定した、試験片 1 – 1の粗さ曲線を Fig.11に示 す。 強調処理の結果、触針式表面粗さ計の出力である 粗さ曲線と類似した波形が得られており、周期的な 格子状の形状であることが判別できている。各試験 片においても同様な結果が得られており、本研究で 提案した形状再現法により表面形状の把握が可能で あることが示された。

Fig. 9 Emphasis function

Fig. 10 Surfas from

Fig. 11 Roughness profile

- 5 . おわりに
- (1) 従来型より高速で測定が可能な非接触型表面検 査システムの試験装置を開発することができ た。製作した試験装置は、高い実験の再現性を 有している。
- (2) 本研究で提案したシステムより、原信号からは 幅100 µm、深さ12 µm 程度までの欠陥の検出が 可能であることが明らかとなった。
- (3) 走査速度 5 mm及び10mm/s 及び20mm/s を比較し た場合、若干の差は認められるが出力波形が類 似しており、表面検査に関しては20mm/sまでの 測定が可能であることが示された。
- (4) 本研究で提案した形状再現法により、幅100 µm、深さ12µm までの欠陥外形は触針式表面 粗さ計の測定結果と定性的な一致が見られ、外 形の把握が可能であることが明らかになった。 これより、本実験で行った範囲内では、本シス テムは加工物の自動表面検査システムとして有 効であることが示された。

研究発表

- 1) 渡邊隆夫:自動表面検査システムの開発
 - :日本機械学会中国四国支部第37期総 会・講演会