厚い異方性 Single-Negative スラブ状媒質のモード解析 Modal Analysis on Thick Conductor-Backed Anisotropic Single-Negative Slab

村井 渡,小川 良太,堀田 昌志,羽野 光夫 Wataru Murai, Ryota Ogawa, Masashi Hotta, Mitsuo Hano 山口大学大学院理工学研究科

1. まえがき

電気的・磁気的な性質を持つ微小セルを電磁波の 波長よりも短い周期で配列させることで、これまで にない電磁的特徴を持った人工媒質を構成できる. その一例として、通常環境下でも媒質の材料定数で ある透磁率あるいは誘電率のどちらか一方が負の値 をとる Single-Negative 媒質がある.

これまで,Single-Negative 媒質中では電磁波は伝 搬できないものと考えられてきたが,著者らの一人 は異方性を有する対称スラブ状 Single-Negative 媒質 において,材料定数テンソル成分の正負の組み合わ せ方によっては電磁モードが存在し,電磁波が伝搬 できることを明らかにしてきた[1],[2].また,スラ ブ厚さが薄い場合には,その伝搬定数が周波数に対 して単調減少し,後進波になることも確認している [3].これに対してスラブ厚さを厚くしていくと,次 数の低いモードから順に分散曲線の湾曲が見られた. この湾曲により,Single-Negative 媒質でも前進波が 存在できる可能性が出てきた.

また、対称スラブ構造のように、自由空間中に媒 質が挟まれた構造では、媒質を保持することができ ないため、これらの媒質を実際のデバイスへと応用 するためには、スラブ面のどちらか一方を接地した 構造の方が高い実用性を持つと考えられる.

以上の点から、本研究では、片面を導体接地した 厚い Single-Negative スラブ状媒質の特性をこれまで に得られている接地なしスラブ状媒質の結果と比較 しながら詳細に調べる.なお、本稿では負透磁率テ ンソルを持つ Single-Negative 媒質における TE 体積 モードについて主に検討する.

2. 自由空間中に置かれたスラブ状負透磁率媒質 2. 1 構造と固有値方程式

図1に示すような厚さ2Tの負透磁率媒質が空間 中に置かれている場合を考える.負透磁率媒質は文 献[2]に示されたものと同じ異方性を有し,その材料 テンソルは次式で与えられるものと仮定する.

$$\hat{\varepsilon} = \begin{pmatrix} \varepsilon_x & 0 & 0\\ 0 & \varepsilon_y & 0\\ 0 & 0 & \varepsilon_z \end{pmatrix}, \quad \hat{\mu} = \begin{pmatrix} \mu_x(\omega) & 0 & 0\\ 0 & \mu_y & 0\\ 0 & 0 & \mu_z \end{pmatrix}$$
(1)

この時の TE 体積波モードに対する固有値方程式は, $\left(\mu_{2}^{2}\delta_{2}^{2} - \mu_{2}^{2}\delta_{2}^{2}\right)\sin\delta_{1}T = 2\mu_{0}\mu_{0}\delta_{1}\delta_{2}\cos\delta_{1}T$ (2)

$$\mu_0 v_1 - \mu_z v_0 \operatorname{psin} v_1 - 2\mu_0 \mu_z v_0 v_1 \cos v_1$$
 (2)
 $\varepsilon t_2 \delta$. $\varepsilon \varepsilon \varepsilon$,

$$\delta_{0} = \sqrt{\beta^{2} - \omega^{2} \varepsilon_{0} \mu_{0}}, \delta_{1} = \sqrt{\frac{\mu_{z}}{\mu_{x}(\omega)}} \left(\omega^{2} \varepsilon_{y} \mu_{x}(\omega) - \beta^{2}\right) (3)$$

である。式(2)を変形し、電界分布が奇対称および偶

対称性を持つモードに関する式に分解すると,次式 を得る[2].

$$\mu_0 \delta_1 \cos \frac{\delta_1 T}{2} + \mu_z \delta_0 \sin \frac{\delta_1 T}{2} = 0 \quad (\text{Odd Mode}) \quad (4)$$

$$\mu_0 \delta_1 \sin \frac{\delta_1 T}{2} - \mu_z \delta_0 \cos \frac{\delta_1 T}{2} = 0 \quad \text{(Even Mode)} \quad (5)$$

一方, TM 体積モードについては, 今回検討して いる負透磁率テンソルでは解を与えるような固有値 方程式は導出できず,自由空間中に置かれたスラブ 状負透磁率媒質でTM 体積モードは存在できないこ とが明らかになっている[2].

2.2 分散特性

式(4)および(5)を数値的に解き, 伝搬定数の分散特 性を求める.まず, 式(1)の材料テンソルの x 成分の 比透磁率が文献[2]の式(28)で与えられるものと仮定 すれば, 13.48GHz から 13.92GHz の周波数帯で $\mu_x(\omega) < -\mu_0$ の値を示す[4].また, 他のテンソル成分は $\mu_y = \mu_z = \mu_0, \epsilon_x = 1.14\epsilon_0$ および $\epsilon_y = \epsilon_z = \epsilon_0$ とする.なお, μ_0 および ϵ_0 は真空の透磁率および誘電率である.

まず,スラブ厚さが 2T=1.0mm である薄い場合の 伝搬定数の分散特性を求めた結果は文献[2]の図5に 示されている.全てのモードの分散曲線が 13.92GHz の Cut-off 周波数へ向けて単調減少しており,後進波 の性質を持つことが分かる.

次に,スラブ厚さを厚くして 2T=10.0mm とした場 合の伝搬定数の分散特性を求めた結果を図2に示す. なお、縦軸は波数 kg で規格化した伝搬定数である. ここで、 TE_1^s 、 TE_3^s および TE_5^s モードが偶対称モー ドであり、 TE_2^s 、 TE_4^s および TE_6^s モードが奇対称モ ードである.厚さが薄い場合と比較すると、全体的 に規格化伝搬定数の値が低いことが分かる.また, TE₁^Sモードよりも高次のモードは2T=1.0mmの場合 と同様に分散曲線が右下がりの特性を示し、後進波 の性質を示している.しかし、TE₂^Sよりも低次のモ ードでは分散曲線に湾曲現象が観測され、薄い場合 の分散曲線と異なる特性を示している.ここで,TE₁^s モードについては周波数変化が小さいので、その特 徴を見やすくするために拡大して同図(b)に示して いる.この湾曲により、分散曲線の傾きが右下がり および右上がりの領域が現れるので、これらのモー ドに関しては前進波と後進波の性質を持つ領域に分 割できる.

3. 片面を導体接地したスラブ状負透磁率媒質

3.1 構造と固有値方程式

ſ

次に,図3に示すように,厚さTの負透磁率媒質の片面を完全導体で接地した構造を示す.

まず,Maxwellの方程式より波動方程式を導出し, 各領域で解くと,次式のような TE 体積モードにつ いての電磁界成分式が得られる.

$$\begin{cases}
H_z = A_1 \cos \delta_1 x + B_1 \sin \delta_1 x \\
H_x = -\frac{j\mu_z \beta}{\mu_x \delta_1} \left(-A_1 \sin \delta_1 x + B_1 \cos \delta_1 x \right) \\
E_y = \frac{j\omega\mu_z}{\delta_1} \left(-A_1 \sin \delta_1 x + B_1 \cos \delta_1 x \right)
\end{cases}$$
(7)

負透磁率媒質 $(-T \le x \le 0)$

ただし,式中の *A*₁, *B*₁および *C*₁は任意定数である. 次に, *x* =0 および-T における境界条件を適用すると,TE 体積モードに対する固有値方程式が得られる.

$$\mu_z \delta_0 \sin \delta_1 T + \mu_0 \delta_1 \cos \delta_1 T = 0 \tag{8}$$

一方, TM 体積モードについても同様の検討を行ったが, 対称スラブ構造の場合と同様に, 解を与えるような固有値方程式は導出できなかった.従って, 負透磁率媒質の片面を完全導体で接地した構造において TM 体積モードは存在できないことが明らかとなった.

図3 導体接地構造

3.2 分散特性

スラブ厚さ T=5.0mm として、式(8)の固有値方程 式を数値的に解き、分散特性を求めた結果を図4に 示す.なお、同図中には、低次から $TE_1 \sim TE_3$ モード のみを記している.

同図を図 2 と比較すると、奇対称モードである TE₂^s, TE₄^sおよび TE₆^sモードと導体接地した場合の TE₁^c, TE₂^cおよび TE₃^cモードがそれぞれ一致し、偶 対称モードである TE₁^s, TE₃^sおよび TE₅^sモードに 対応するモードが消失している.これは、接地導体 面が電気壁の役割を果たすために、自由空間中に置 かれたスラブの中心軸上に電界の腹を持つモードに 対応する偶対称モードは存在できなくなったためで ある.また、導体接地構造における固有値方程式(8) が、対称スラブ構造の奇対称モードに対する固有値 方程式(4)のスラブ厚さTを2倍にした場合と等しく なっていることからも同様の説明ができる.

図4 伝搬定数の分散特性 (T=5.0mm)

3.3 界分布

分散特性の湾曲部におけるモードをより詳しく調 べるために、後進波および前進波に相当する図4中 の点AおよびB(スラブ厚さT=5.0mm,周波数f= 13.75GHz)における TE₁^c 体積モードの電界分布を 求めた結果を図5に示す.ここで、同図の薄墨色部 分がスラブ領域であり、薄斜線部が導体を示している.また、縦軸は電界の最大値がそれぞれ1となるように規格化している.この結果から、前進波と後進波の両者ともに、スラブ中で正弦的に変化しており、体積モードであることが分かる.また界分布の拡がりは異なるものの、腹の数や形状は似通っていることが分かる.

3.4 電気的・磁気的エネルギー

一般に、磁性体中の静磁波は後進波となる.また 静磁波は磁気的エネルギーが電気的エネルギーより も大きいことが知られているので、本稿で示した体 積モードの特性をより詳細に知るために、モードが 持つ電気的および磁気的エネルギーを求めた.

電磁界が持つ電気的・磁気的エネルギーはそれぞ れ次式で表される[5].

$$W_e = \frac{\varepsilon_0}{4} \int_{-\infty}^{+\infty} \mathbf{E} \cdot \mathbf{E}^* \frac{\partial \omega \varepsilon_r(\omega)}{\partial \omega} dx \tag{9}$$

$$W_m = \frac{\mu_0}{4} \int_{-\infty}^{+\infty} \mathbf{H} \cdot \mathbf{H}^* \frac{\partial \omega \mu_r(\omega)}{\partial \omega} dx \tag{10}$$

ここで,スラブ厚さ T=5.0mm の場合について,材 料定数および数値的に求まった界分布を用いてエネ ルギー比率を求めると図6のようになった.この結 果より,前進波および後進波の各領域でともに磁気 的エネルギーが電気的エネルギーよりも大きいこと が分かった.

以上の結果から、今回検討した体積モードの後進 波領域においては、スラブ厚さを厚くした場合にお いても磁気的エネルギーが電気的エネルギーより大 きく、これまでに無い非磁性体中での静磁波である 可能性が高い.

4. あとがき

本論文では,異方性材料定数を持つ厚いスラブ状 負透磁率媒質を導体で接地した構造において,TE 体積モードが伝搬する場合について解析を行った. 伝搬定数の分散特性を求めてみると,スラブ厚さが 薄い場合と比較して全体的に伝搬定数の値が減少し た.さらに,低次のモードにおいて分散曲線に湾曲 現象が発生し,後進波に加えて前進波が存在するこ とも明らかになった.また,分散曲線はスラブ厚さ が2倍の対称スラブ構造における奇対称モードに対 応するモードと一致し,偶対称モードに対応するモ ードは消失した.これは,導体と媒質の境界条件に よるものであると考えられる.

次に、今回検討したモードにおいて電気的および 磁気的エネルギーを求めた結果、前進波および後進 波の領域で両者ともに磁気的エネルギーの方が電気 的エネルギーよりも大きい値をとった.この結果か ら、この体積モードは静磁波である可能性が高いと 言える.

今後の課題として、湾曲現象の物理的意味や発生 のメカニズムを詳細に解明すること、および導体接 地構造におけるモードを静磁近似によって求めて、 今回得られたモードと照合して比較することが挙げ られる.

参考文献

- M.Hotta, M.Hano, and I. Awai, "Surface Wave along a Boundary of Single Negative Material", IEICE Trans. Electron., vol.E88-C, no.2, pp.275-276, Feb. 2005.
- [2] M.Hotta, M.Hano, and I. Awai, "Modal Analysis of Finite-Thickness Slab with Single-Negative Tensor Material Parameters", IEICE Trans. Electron., vol.E89-C, no.9, pp.1283-1290, Sept. 2006.
- [3] W.Murai, S.Fukuyama, M.Hotta, M.Hano, I.Awai, "Modal Analysis along Anisotropic Single-Negative Slab", 第 8 回 IEEE 広島支部 学生シンポジウ ム論文集, pp.116~118, Nov.2006
- [4] J.B.Pendry, A.J.Holden, D.J.Robbins, and W.J.Stewart, "Magnetism from Conductors and Enhanced Nonliner Phenomena", IEEE Trans. on Microwave Theory & Tech., vol.47, no.11, pp.2077-2082, Nov. 1999.
- [5] R.E.Collin, Foundation for Microwave Engineering Second Edition, pp.33~34, McGraw-Hill, 1992.