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Order-Disorder and Displacive Transitions in a Quantum Ising Model
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A ferrodistortive phase transition is analyzed for a quantum particles in a simple quartic

potential. The interactions are taken into account by the mean-field approximation. A quan-

tum thermodynamic treatment gives analytic expressions for the static susceptibility, the

specific heat and the soft mode frequency. The Rhodes-Wohlfarth ratio is a measure whether

the system is order-disorder or displacive, however, the border is fuzzy depending on the

interaction strength. The quantum effect is discussed when the transition takes place at low

temperature. Whether the atomic density is a single or multiple peak distributions seems to

be a definite criterion for the character of the structural phase transition.
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1. Introduction

In order to understand the difference between two kinds of mechanism of order-disorder

(OD) and displacive (DP) type transitions in ferroelectric crystal, a unified anharmonic-

oscillator model was investigated by using the mean-field approximation for interactions be-

tween classical particles.1 The single particle potential is quartic in the atomic coordinate

as

V (x) = ax4 + bx2, a > 0. (1)

It was shown that the system behaves DP-like if b > 0 or the mean kinetic energy of the

particle exceeds the potential barrier of b2/4a (b < 0). On the other hand, if b < 0 and the

kinetic energy is below the potential barrier, then the dynamic behavior was shown to be

OD-like.1

Although the treatment was rigorous in classical mechanics with the mean-field approxi-

mation, the quantum effect that a particle can tunnel the wall barrier was ignored. Another

approach is to adopt a self-consistent phonon approximation to describe the feature whether

the system is OD or DP. The criteria is summarized that if the Rhodes-Wohlfarth (RW) ratio

r is higher than unit, the ferroelectric crystal is DP, while it is OD if RW ratio is of order of
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unit. 2,3 Here the ratio r is defined as

r =
paraelectric moment pc evaluated from Curie constant

saturation moment ps at T = 0
. (2)

The results are deduced by using quantum statistical mechanics, however, the self-consistent

phonon approximation can be applicable when the phonon picture gives good description.

On the other hand, some empirical criteria have been postulated so far; OD-type crystals

are characterized by i) transition entropy per atom ΔS is order of kB ln 2 where kB is Boltz-

mann constant, ii) Curie constant C is a few times of the transition temperature Tc, and iii)

atoms occupy equivalent positions with equal probability above Tc, while DP-type crystals

by i’) ΔS � kB ln 2, ii’) C � Tc, and iii) a soft mode is observable.4 Another statement was

proposed that pressure dependence of Tc is positive and negative for OD- and DP- types, re-

spectively.5 The relation between the RW ratio and the specific heat anomaly or the transition

entropy ΔS was discussed with the anharmonic potential (1), but a continuous change from

DP- to OD-type was recognized.6,7

We have adopted a two-Morse potential and developed a quantum treatment instead of the

classical anharmonic-oscillator model.8 The static susceptibility for the model is the Barrett’s

relation originally introduced for perovskite crystals.9 The border of the OD- and DP-types

was smeared because of the tunneling of quantum particles within the double well potential.

In order to elucidate the difference between OD- and DP-types of phase transitions in

dielectric crystal, we investigate the unified anharmonic-oscillator model by using the quantum

linear response theory.10 In next section, a formulation is reviewed. Numerical results for the

transition temperature, susceptibility, specific heat and soft mode frequency are also shown.

The potential parameter dependences are discussed in section 3. The theoretical predictions

are discussed in relationship to the empirical rules as well as to previous theoretical works in

final section.

2. Formulation

Let’s consider a quantum particle in a self-potential V (x) with bilinear interactions:

H =
∑

j

{
p2

j

2m
+ V (xj) − hxj

}
− 1

2

∑
j,k

Jjkxjxk , (3)

where h is an external field. The scalar amplitude xj represents the normal coordinate relevant

to the structural transition.11 Thus m is an effective mass of the coordinate. We adopt a mean-

field approximation for ferrodistortive transitions, and obtain the single-particle Hamiltonian

as

H =
p2

2m
+ V (x) − (gξ + h)x . (4)

Here ξ = 〈x〉 and g =
∑

k Jjk are the order parameter and the interaction parameter, respec-

tively.
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Now, let us write quantum states and wave functions as following;{
− �

2

2m

d2

dx2
+ V (x)

}
|n〉 = εn|n〉 . (5)

When molecular field term H1 = −(gξ + h)x exists, wave functions will be represented

Ψl =
∑

n

cln|n〉 . (6)

According to the standard quantum mechanical method, the energy levels are given as

El =
ε1 + ε0

2
±

√(
ε1 − ε0

2

)2

+ |〈0|H1|1〉|2 , (7)

if only ground and first excited states are predominant. This may be a good approximation if

the system is at low temperature kBT � ε2 − ε1.

The partition function for a N -particle system is

Z = Tre−H/kBT = (e−E0/kBT + e−E1/kBT )N , (8)

and the free energy per atom is

F = −kBT

N
lnZ +

g

2
ξ2 = −kBT ln

[
2 cosh

Λ
kBT

]
+

ε0 + ε1

2
+

g

2
ξ2 , (9)

where

Λ =

√(
ε1 − ε0

2

)2

+ (gξ + h)2x2
0 , (10)

and the transition matrix is defined by

x0 = 〈0|x|1〉. (11)

Minimizing (9) with respect to ξ, we obtain the self-consistent equation

ξΛ = (gξ + h)x2
0 tanh(Λ/kBT ) . (12)

In the paraelectric phase, the susceptibility is written from (12) as the Barrett’s equation:

χ = lim
h→0

ξ

h
=

x2
0/kB

T1
2 coth T1

2T − T0

, (13)

where

kBT1 = ε1 − ε0 , kBT0 = gx2
0 , (14)

are the energy gap and the interaction energy, respectively. The susceptibility diverges at the

second order transition temperature

Tc = T1/ ln
2T0 + T1

2T0 − T1
. (15)

From (12), the spontaneous order parameter is the solution of the following equation:
Λ0

kBT0
= tanh

Λ0

kBT
, (16)
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where Λ2
0 = (kBT1/2)2 + (kBT0ξ/x0)2. Just below Tc , the order parameter is given by

ξ2 ∼= x2
0

(
1 − T

Tc

) [
1 −

(
T1
2Tc

)2
]

T 2
1

2T0Tc

1 − T0
Tc

[
1 −

(
T1
2Tc

)2
] . (17)

At T = 0, the order parameter saturates to the value of

ξ(0)2 = x2
0

{
1 −

(
T1

2T0

)2
}

. (18)

The ferroelectric susceptibility is given by the following analytic form

χ =
x2

0

Λ0

Ξ
− kBT0

, (19)

where

Ξ =
Λ0

kBT0

[
1 +

(
kBT0

Λ0

ξ

x0

)2
{
−1 +

T0

T cosh2 Λ0
kBT

}]
. (20)

The entropy per atom is

S = −∂F

∂T
= kB ln

(
2 cosh

Λ
kBT

)
− Λ

T
tanh

Λ
kBT

, (21)

and the specific heat is given by

c = T
∂S

∂T
= kB

(
T1

2T

)2

sech2 T1

2T
(T > Tc), (22)

and

c =
Λ2

kBT

T cosh2 Λ
kBT − T0

(T < Tc). (23)

Finally the frequency of the elementary excitation (soft phonon) ωp is given by the pole

of the dynamic susceptibility.10 If we neglect the coupling of the relevant mode with other

degree of freedom and a damping mechanism of the mode, the Γ-point frequency is calculated

straightforwardly:

�ωp = kBT1

√
1 − 2T0

T1
tanh

T1

2T
(T > Tc) , (24)

�ωp = 2kBT0
ξ

x0
(T < Tc) . (25)

Some of the relations from (8) to (25) have already been derived for the quantum Ising

model previously.12–15 In this report, all analytic equations are expressed compactly by us-

ing three parameters x0, T1 and T0. Thermodynamic properties depend on the ratio of two

characteristic temperatures T0 and T1. The normalized order parameter ξ/x0, the normalized

susceptibility kBχ/x2
0 and normalized specific heat c/kB are given as functions of T/T0 and

T1/T0. In other words, they do not depend on the detail of the self-potential V (x), but through
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Fig. 1. (Color online) The temperature dependence of the susceptibility and the inverse suscepti-

bility for five parameter cases T1/T0 = 0.5, 1.4, 1.9, 1.999 and 2.01 . The temperature and the

susceptibility are normalized by T0 and x2
0/kBT0, respectively.
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Fig. 2. (Color online) The temperature dependence of the order parameter and the specific heat

for three parameter cases T1/T0 = 0.5, 1.4, 1.9. The order parameter and the specific heat are

normalized by x0 and kB , respectively.

the energy gap between the ground and excited states, and the interaction strength gx2
0, where

the transition matrix x0 depends on wave functions slightly. The temperature dependence of

the susceptibility (13) and (19) is shown in Fig. 1. If the interaction energy is stronger than

the energy gap (T0 > T1), the system is classical so that Tc ∼ T0, and the Curie-Weiss relation

gives a classical exponent 1. On the other hand, if T0 < T1 then the transition temperature

lowers and the deviation from the classical Curie-Weiss relation takes place; the exponent

approaches 2. The susceptibility takes a large value within the ferroelectric phase because of

quantum fluctuations. At last, the transition disappears if 2T0 < T1; it is quantum paraelectric

at low temperature.
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Fig. 3. (Color online) The parameter T1/T0 dependence of the transition temperature Tc/T0, the

jump of specific heat Δc(T = Tc)/kB , the saturation value of the order parameter ξ(0)/x0 and

the Rhodes-Wohlfarth ratio r.

Figure 2 displays the temperature dependence of the order parameter ξ. The specific heat

contributed from the relevant mode is drawn also in Fig. 2. The anomalous part rides on the

Schottky type specific heat. The heat anomaly becomes small with increasing the ratio T1/T0.

The magnitude of the specific heat jump at Tc is plotted in Fig. 3; the jump Δc approaches

to the classical Ising value of 1.5kB as the ratio T1/T0 vanishes.

The temperature dependence of the soft mode frequency (24) and (25) is plotted in Fig.

4. At high temperature, the frequency approaches the gap energy, and it vanishes in the

classical Ising limit. At zero temperature, the frequency is finite even in the OD-type system.

Just around the transition temperature Tc, ωp ∝ √|T − Tc| as expected from the mean-field

approximation. In the DP-type system, the ratio

|dω2
p

dT
|T>Tc/| −

dω2
p

dT
|T<Tc (26)

at Tc is one half; however, it becomes smaller in the OD-type system. The overall temperature

dependence deviates from the simple relation because of the quantum effect.

Now we introduce the Rhodes-Wohlfarth (RW) ratio r as 2,3

r =
x0

ξ(0)
= 1/

√
1 −

(
T1

2T0

)2

, (27)

which is also plotted in Fig. 3. In the classical Ising limit of T1 � T0, r → 1 and Tc → T0.

The order parameter grows up to the local minimum of the self potential at T = 0. The

susceptibility obeys the Curie-Weiss relation, and the specific heat takes a large discontinuity

at Tc; the transition entropy is as large as kB ln 2 .

On the other hand, T1 ≈ 2T0, r � 1 is the displacive limit, and Tc is small as compared

to T0. Since the quantum fluctuation disturbs the development of the order parameter even
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Fig. 4. (Color online) Temperature dependence of soft mode frequencies for five parameter cases

T1/T0 = 0.5, 1.4, 1.9, 1.999 and 2.01. The temperature and the frequency are normalized by T0

and kBT0, respectively.

T = 0, the saturated value ξ(0) � x0. The susceptibility deviates from the Curie-Weiss

relation near Tc if Tc is low enough. The discontinuity of the specific heat at Tc is small. The

transition entropy is small, however, the entropy increases gradually within the paraelectric

phase and becomes kB ln 2 as T → ∞.

In the middle range of r, the macroscopic character changes only continuously. Since Tc, Δc

and the entropy S(Tc) in the paraelectric phase are also given by T1/T0, we can give other RW

plot as given in Fig. 5. Our results are essentially in agreement with the classical prediction

by Onodera and his coworkers.6,7 The quantum treatment can give the really unified picture

between OD- and DP-type transitions.

Here let’s show another RW plot shown in Fig. 6. The ratio (26) at Tc is indicated as

temperature derivative by ordinate. The ratio ωp(T = ∞)/ωp(T = 0) is indicated as saturated

frequency. Both quantities decrease monotonically with decreasing the RW ratio, and vanish

at the classical Ising limit (r = 1).

3. Potential Parameter Dependence

So far, we have shown how the OD-type transition changes to DP-type one continuously

by using quantum Ising model. Now in order to elucidate the opaque change from OD-type

to DP-type, let us consider the Onodera potential (1), concretely. Here atomic mass unit,

Angstrom, and electron Volt are the units of mass, length and energy, respectively. Then the

Schrödinger equation (5) is rewritten as

d2

dx2
Ψn = 478.46M

{
Ax2(x2 − B) − En

}
Ψn . (28)

This equation is solved numerically. Because mass number M is considered as energy scale,

we put M = 16, hereafter.
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Fig. 5. (Color online) Rhodes-Wohlfarth plot for the quantum Ising model. (a) Rhodes-Wohlfarth

ratio is plotted against Tc/T0, and (b) the ratio is plotted against the transition entropy normalized

by kB ln 2 or the specific heat jump normalized by 1.5kB , the classical Ising value.

The quantum states can be characterized by the energy gap T1 (in unit of Kelvin) and

the variance of the ground-state wave-function;

σ =
∫

x2|Ψ0|2dx = x2
0 +

∞∑
n=3

|〈0|x|n〉|2 . (29)

With neglecting the upper energy states, σ can be approximated to x2
0. At low temperature,

σ is related to the Debye-Waller factor of the atom. By solving (28) numerically for given

potential parameters A and B, the variance σ and the energy gap T1 are calculated as given

in Table I. The relation between them is represented in Fig. 7.

Both for B < 0 (a single minimum potential) and for B > 0 but the double minimum

potential is so shallow that the ground state energy ε0 is above the potential barrier εb (equal

to zero in the present model), the ground state wave-function takes a single peak. In such case,

with increasing the potential parameter A, the variance σ decreases inversely proportional to

T1. The σ − T1 curve rides on almost a universal relation (σ ≈ 1.49/T1) irrespective to the

potential parameter B.

Further increasing A, the double well potential becomes deeper enough so that the ground

state energy is below the potential barrier, i.e. ε0 < 0, the ground state wave function becomes
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Fig. 6. (Color online) Soft mode frequency derivative and the saturated frequency against the Rhodes-

Wohlfarth ratio.
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Fig. 7. (Color online) The relation between the inverse variance σ and the characteristic temperature

T1. The effective mass is fixed to M = 16. The inverse variance is almost proportional to T1, if

the ground state is represented by a single peak wave-function (broken lines).

double peaks. Then the energy gap T1 decreases with increasing A, and the variance σ turns

to increase a little. In Fig. 7, single- and double-peak cases are indicated by broken and solid

lines, respectively. For a given B, the σ − T1 relation gets a turning point when ε0 crosses εb

as A changes.

From the structural point of view, single and double peak wave-functions correspond to

DP- and OD-type situations. Therefore, whether ε0 is higher or lower than εb is the criterion

of DP- or OD-type transition, which was first demonstrated by Onodera in classical model.1

However, the DP-type transition changes continuously to the OD-type one in quantum model

as described in the previous section.

It should be noted again that Fig. 7 is displayed for the effective mass M = 16. The
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Table I. The energy gap T1 and the variance σ of the ground state wave-function. The values are

obtained for M = 16 and B = 0 or 0.1, by solving Schrödinger equation (27) numerically. If B is

magnified by ν, then A, T1 and σ should be multiplied by ν−3, ν−1 and ν, respectively.

B = 0 A 0.1 1 10 100

Single T1 37.8 81.5 175.6 378.5

Peak σ 0.0395 0.0183 0.0085 0.0039

B = 0.1 A 0.1 0.5 1 1.25

Single T1 30.7 43.4 47.3 49.9

Peak σ 0.0481 0.0336 0.0303 0.0297

B = 0.1 A 2.5 5 10 20

Double T1 46.8 38.6 23.2 8.1

Peaks σ 0.0290 0.0311 0.0362 0.0421

characteristic temperature T1 is 73 K for σ = 0.02 Å2. If the mass changes to 18, for example,

the parameter T1 becomes 65 K even if all other parameters are kept the same. Assuming

that T0 =36 K, we can estimate the transition temperature as Tc =22 K for M = 18, but the

transition does not take place for M = 16 system. This shows that the mass isotope effect is

critically important for the low temperature phase transition in some oxide crystals.

4. Summary and Discussion

In order to discuss the successive change between order-disorder(OD) and displacive(DP)

type transitions, we have considered the quantum Ising model(QIM). Both typical cases cor-

respond to unit and a large value of the Rhodes-Wohlfarth (RW) ratio. The thermodynamic

quantities depend on two energy T1 and T0, irrespective to the potential parameters A and B.

As it was demonstrated previously,8 even in the OD case, the dynamic susceptibility may take

a resonance character, if the damping of the soft mode is weak enough, because the quantum

tunneling motion gives the resonance frequency. The OD or DP character is reflected definitely

in the shape of the wave function, whether it has double peaks or a single peak. In the former

case the ground state of the relevant mode is below the potential barrier and it is above in

the latter case. This criterion is consistent with the classical picture predicted previously.1

In this report, we considered the quartic potential (1),1 concretely. Since the quantum

states are not sensitive to the detail of the potential function, the theoretical results are char-

acterized by T1, T0 and x0 as shown in section 2, irrespective to the details of the self-potential

V . For instance, the similar results can be calculated for double-Morse potential(DMP).16 The

similar σ − T1 relation of Fig. 7 is also obtainable for DMP.

Once quantum states in the self-potential are solved, the free energy, entropy, specific heat
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and susceptibility are obtained by quantum thermodynamics. If the phase transition takes at

low enough temperature, only two quantum states are decisive for the thermodynamic quanti-

ties; this is a QIM limit. Another tractable method is to replace V (x) by an effective harmonic

potential; this is called here as quasi-harmonic model (QHM), where the effective frequency is

determined by a self-consistent relation.17,18 Both QIM and QHM give the Barrett’s relation

for the susceptibility. Therefore the quantum behaviors at low temperature are able to take

into account in the simple QIM. The anomalous part of the specific heat of QHM is similar to

that of QIM.19 If the phase transition takes place at low temperature, the anomalous part Δc

will be negligible compared to Debye’s specific heat stemmed from acoustic phonon contribu-

tion, and may be too small to detect experimentally. At high temperature the QHM satisfies

the Dulong-Petit low as a matter of course; however, the QIM does not, because it ignores

the contribution form the higher quantum states.

The proposed QIM has four adjustable parameters; the effective mass m, the potential

parameters A and B, and the interaction strength g. If the dielectric permittivity obeys the

Barrett’s relation, then T1 and T0 will be determined by experimental fitting. From the struc-

tural data, the variance σ will be specified by the Debye-Waller factor. Finally the effective

mass should be consistent with the physical picture of the relevant soft mode. Thus four pa-

rameters will be given almost without ambiguity. Actually the parameters can be fitted by

iterative processes. In this way, one of the authors (HM) described the isotope and pressure

effects on the transition temperature in KH2PO4 by the use of QIM.8,20 In similar fashion,

the isotope effect of the ferroelectric phase of SrTiO3 will be discussed elsewhere.

Finally we comment on Samara’s criterion: the pressure coefficient dTc/dp is positive for

the OD-type ferrodistortive transition.5 The rule holds if the double minima of the poten-

tial are well separated. The interactions may increase with applying the pressure, and the

transition temperature will increase. But if the potential minimum separation is small, the

decrease of atomic distance by pressure will decrease the potential barrier; therefore the tun-

neling energy T1 will decrease. In such quantum case, Tc will decrease with applying pressure

(dTc/dp < 0) . This is considered to be realized in KDP and the related crystals under pres-

sure.20
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