Solution method using correlated noise for TSP
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Abstract. We suggest solution method for optimization problems using
correlated noises. The correlated noises are introduced to neural networks
to discuss mechanism of synfire chain. Kawamura and Okada have intro-
duced correlated noises to associative memory models and have analyzed
those dynamics. In the associative memory models, memory patterns are
memorized as attractors in the minimum of the system. They found the
correlated noise can make the state transit between the attractors. How-
ever, the mechanism of the state transition has not been known enough
yet. One the other hand, for combinational optimization problems, the
energy function of a problem can be defined. Therefore, finding a opti-
mum solution is finding a minima of the energy function. The steepest
descent method searches one of the solutions by going down along the
gradient direction. By this method, however, the state is usually trapped
in a local minimum of the system. In order to escape from the local
minimum, the simulated annealing, i.e. Metropolis method, or chaotic
disturbance is introduced. These methods can be represented by adding
thermal noises or chaotic inputs to the dynamic equation.

In this paper, we show that correlated noises introduced to neural net-
works can be applied to solve the optimization problems. We solve the
TSP that is a typical combinational optimization problem of NP-hard,
and evaluated solutions obtained by using the steepest descent method,
the simulated annealing and the proposed method with the correlated
noises. As results, in the case of ten cities, the proposed method with
correlated noises can obtain more optimum solutions than the steep-
est descent method and the simulated annealing. In the cases of large
numbers of cites, where it is hard to find one of the optimum solutions,
our method can obtain solutions at least as same level as the simulated
annealing.

1 Introduction

In the activities of nerve cells, synfire chains, i.e. synchronous firings
of neurons, can often be observed [1]. To analyze the mechanism
of synchronous firings, condition for propagating them between lay-
ers have been investigated in layered neural networks [2,3]. In the
layered neural networks, it has been proofed that the spacial cor-
relation between neurons is necessary [4]. Aoki and Aoyagi [5] have



shown that the state transition in associative memory models is in-
voked by not thermal independent noises but synchronous spikes.
Kawamura and Okada [6] have proposed associative memory models
to which common external inputs are introduced, and found that
the state could transit between attractors by the inputs. The syn-
chronous spikes of Aoki and Aoyagi model correspond to the common
external inputs. In associative memory models, memory patterns are
memorized as attractors. When we consider the energy function or
cost function in the associative memory models, the attractors are
represented by minimum of the system. The states of neurons are
attracted into one of the memory patterns near the initial state.

A optimization problem is one of the problems to minimize the
energy function. In engineering and social science, the optimization
problems are important. The combinational optimization problem
is one of the optimization problems, which is the problem that find
the solution minimizing the value of object function in feasible area.
Since number of feasible solutions is finite, some optimal solutions
might be obtained when we could search all feasible solutions. Such
solution methods are known as enumeration methods, i.e. branch-
and-bound method and dynamic programming. However, the combi-
national optimization problems are belonging to NP-hard, and then
we cannot, obtain solutions within a effective time by these methods.
Therefore, instead of finding optimum solutions in whole feasible
area, the methods that can find optimum or quasi-optimum solu-
tions are developed. In these methods, the optimum solutions are
designed as minimum of the energy function, and the problems are
formulated as finding global minimum of the energy function. The
steepest descent method (SDM), the simulated annealing (SA) [7—
9], and chaotic method [10,11] are introduced in order to find global
minimum.

Since the steepest descent method obtains solutions along the
gradient direction, the states cannot escape from local minimum.
Therefore, thermal independent noise or chaotic noise is introduced
to escape from the local minimum. The simulated annealing is the
method using thermal independent noise. The optimum solution can
be found by decreasing temperature T' through T;,, > ¢/log(1 + t),
where ¢ is constant and ¢ represents time [9]. We consider the corre-
lated noises introduced to associative memory models by Kawamura



and Okada [6], since the correlated noises can make the state transit
between attractors. The optimum and quasi-optimum solutions of
the optimization problems can be assumed to be attractors, and it
is expect that better optimum solutions can be easily obtained us-
ing the correlated noise. We, therefore, propose the method with the
correlated noises in order to solve the combinational optimization
problems. We can assume that the thermal noise used in the sim-
ulated annealing corresponds to independent noise, since the noise
is fed to each element independently. The correlated noises that we
propose is fed to all elements mutually. Therefore, the state of each
element has spacial correlation. We show that the better solutions
are obtained by the proposed method efficiently than the simulated
annealing and the steepest descent method.

2 TSP

The traveling salesman problem, TSP, is one of the typical com-
binational optimization problems. The TSP is the problem that a
salesman visits once each city and finds the shortest path. There
are (N — 1)!/2 different cyclic paths for N cities. In this paper, we
show that the correlated noise can be applied to the combinational
optimization problem. This kind of problems is formulated as the
problem for which one obtains minimum values of its energy func-
tion. The state variable V,; takes 1 when a salesman visits x-th city
at the i-th order, and 0 when he doesn’t. The energy function of the
TSP is defined as
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where the energy E. and F, represent constrained condition and
object function, respectively. The constant d,, represents distance




between z-th and y-th cities, and the average distance d is given by,

1 N N
d:mzzdzy, (4)
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where it shows the average distance between all different cities. The
coefficients « is usually @ = 1, and [ is decided according to the
cities’ locations and the number of them. The optimum solutions are
obtained by searching minimum of the energy function E. The min-
imum which shall be satisfied with E. = 0 are called solutions, and
the the solutions which give the shortest paths are called optimum
solutions.

3 Proposed Method

In order to obtain one of local minimum of the energy function FE
by the steepest descent method, the state V,;(t) is updated by

dum(t) . N N
dt —tai(t) + ; ; Wiy Vy; (t) + Oni, (5)
Vm’(t) = F(Um(t)), (6)

where the function F' is the output function which decides output
Vyi(t) according to the internal state u,;(t). We used the output
function,

1, 1<u
Fluy=qu, 0<u<l. (7)
0, u<0

From the energy function, the constant W,,; is given by

dy
Waiyj = —02y(1 = 045) — 05,5 (1 — 6zy) — 57‘1/(@—1,3' +0i11,5) (1 = day),

(8)
and the external input 6,; is constant ,; = 1. The delta function
g,y is defined as
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When independent noise (;;(t) is introduced to (5), the equation
corresponds to the simulated annealing. When correlated noise n(t)
is introduced, the equation gives the proposed method. Therefore,
we consider the equation given by

dum(t) . N N
g - i) ; ; Wiy Vi (t) + Oai (10)
+Gai(t) + n(t),
Vii(t) = F(ugi(1)). a1

We note that independent noise (;(t) is fed to each neuron indepen-
dently, and the correlated noise 7(t) is fed to all neurons mutually.
We assume that the independent noise obeys normal distribution
with mean 0 and variance ag, and the correlated noises obeys nor-

mal distribution with mean 0 and variance 0727.

4 Simulation Results

4.1 locations of cities

Figure 1 shows the locations for 10 cities that are arranged in random
order, and one for 29 cities named bayg29 in TSPLIB [12]. The
shortest path for which a salesman visits 10 cities is -A-D-B-E-J-H-
[-G-F-C-, and for 29 cities -1-28-6-12-9-26-3-29-5-21-2-20-10-4-15-18-
14-17-22-11-19-25-7-23-8-27-16-13-24-. The distance of the shortest
path of 10 cities is 2.69, and one of 29 cities is 9074.15, where the
significant figure is until second decimal place.

4.2 experimental procedure

The initial values of internal state u,;(t) are determined at random
with uniform distribution on the interval [—0.01,0.01). Using the
steepest descent method, the method with independent noises, and
proposed method, we perform computer simulations where o = 1 in
(1). For the case of the 10 cities, we perform this case 100 times, and
for the case of the 29 cities, 1000 times.

We evaluate the ratio R of the path length for an obtained solution
to the optimum path length,

[path length for obtained solution]

R= (12)

[optimum path length]
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Fig. 1. Locations of (a) 10 cities and (b) 29 cities. The paths show the optimal solutions.

Since the state must satisfy 0-1 condition when the state converges,
the final state is given by,

Vi = H(ug), (13)

where the function H(u,;) is given by,

1, wug, >0
H(uxi):{o e (14)

4.3 results

For the 10 cities, we assume [ = 0.35, the variance of independent
noise is 07 = 0.08, and the variance of correlated noise is o7 = 0.08.
We calculate the number of optimum solutions on 100 trials for this
location. The histogram of the path length, when we can obtain
solutions, is shown in Fig.2. Abscissa represents the ratio R in (12),
and ordinate represents the percentage of number of ratio R. The
number of obtained solutions by the steepest descent method is 17
times, that by the method with independent noise is 55 times, and
that by proposed method with correlated noises is 90 times. The
proposed method can obtain most solutions in these methods. Next,
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Fig. 2. Histogram of path length of obtained solutions for 10 cities. Solid, dot, and
broken lines represent results obtained by correlated noise (CN), independent noise
(IN), and steepest decent method (SDM), respectively.

Figure 3 shows the transition of residual energy by the method with
independent noise and correlated noise, where the updating steps of
internal state are 1,000,000 times. The residual energy FE,.s means
difference between energy E(t) of V; at time ¢ and the energy of the
optimum solution, Fyp ;

Fres = B(t) — Eopy. (15)

We found that the energy do not go down through 0 by the method
with independent noise, but by the proposed method.

For the 29 cities, we calculate the solutions, where the variances
of independent noise are 02 = 0.01 ~ 0.10, and the variances of
correlated noise are 072, = 0.01 ~ 0.10. The optimum solutions could
not be obtained by all these methods for this location. Therefore, we
calculate the path lengths for obtained solutions. Figure 4 shows the
histogram of path lengths when solutions are obtained. The abscissa
represents the ratio R, and the ordinate represents the percentage
that the solutions having ratio R are obtained. The method with
independent noise and the proposed method can obtain better solu-
tions than the steepest descent method.
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Fig. 3. Residual energy by (a) independent noises (IN) and (b) correlated noise (CN)
for 10 cities.

Table 1. The optimum variance and the solution ratio for 8 = 0.35 and 8 = 0.5.

£=0.35 £=0.5
optimum variance crf =0.03 0’5 =0.03 crf =0.05 0’5 =0.05
solution ratio(%) 93 98 56 75

We compare the solution ratio of obtained solutions for the method
with independent noise with one for the proposed method. Figure
5 shows the solution ratio for variances ¢ and o in the cases of
B = 0.35,0.50. Table 1 shows the optimum variance and the solution
ratio. In the case of § = 0.35, the number of obtained solutions by
the method of independent noises with 02 = 0.03 is 93 times. The
number of obtained solutions by the proposed method with 0727 =0.03
is 98 times. There are not so much of a difference between them. On
the other hand, in the case of § = 0.5, number of solutions by the
method of independent noises with ag = 0.05 is 56 times and, one
by the proposed method with 02 = 0.05 is 75 times. Namely, the
proposed method can obtain better solutions than the method with
independent noises. We, therefore, found that the proposed method
can be much more effective than the method with independent noises
in order to obtain solutions depending on £.
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Fig. 4. Histogram of path length for 29 cities. we assumed g = 0.35, the variance of
independent noise is Ug = 0.04, and the variance of correlated noise is U% = 0.04. The
number of obtained solutions by the CN is 979 times, one by IN is 931 times and one
by the SDM is 883 times.

5 Conclusion

In associative memory models, the correlated noise is effective in
state transition. In this paper, we proposed the solution method us-
ing the correlated noise and applied to TSP that is one of the typical
combinational optimization problems of NP-hard. As the results, for
the case of the 10 cities, the proposed method with the correlated
noises can obtains more solutions than both the steepest descent
method and the method with independent noises. For the case of
the 29 cities, all these methods cannot be obtained any optimum
solutions. However, we found that the proposed method can obtain
better solutions than the existing methods depending on 5. From
these results, we can show that the correlated noises is also effective
for the combinational optimization problems.
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