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Dynamics of Selective Recall in an Associative Memory
Model with One-to-Many Associations

Masaki Kawamura, Masato Okada, and Yuzo Hirai

Abstract—The dynamics of selective recall in an associative iS a sense selection stage, in which the most suitable meaning

memory model are analyzed in the scenario of one-to-many s selected using the context and the rest of the meanings are
association. One-to-many association is one of the most |mp0rtant Suppressed

characteristics of our memory system because a homophone, for Hirai dth iati del HASP. which
example, associates with more than one word and each word can Iral propose e assoclative memory moade » WhIC

have several meanings. The present model, which can deal withcan deal with one-to-many associations [4]. It consists of a
one-to-many association, consists of a heteroassociative networkheteroassociative network and a mutually inhibitory network
and an autoassociative network. In the heteroassociative network, that is cascaded to the heteroassociative network. In the
a mixture of associative items in one-to-many association is petergassociative network all the items associated with key

recalled by a key item. In the autoassociative network, the . t led d in th tally inhibit twork
selective recall of one of the associative items is examined byInpu S are recalled, and In the mutuaily inhibitory networ

providing a seed of a target item either to the heteroassociative One of the recalled items is selected through competition.
network (Model 1) or to the autoassociative network (Model 2). The mutually inhibitory network stores a summation of the
We show by both simulation studies and theoretical analysis that gyutocorrelation matrix of associative items in the form of
the critical similarity of Model 2 is not sensitive to the change in reduced inhibitory connections. Since the HASP can deal

the dimension ratio of key vectors to associative vectors, and it has ith text f the kev i t f th iati
smaller critical similarity (correlation between the seed and the with context as one of the key Inputs, one of (ne associative

target item) than Model 1 for a large initial overlap. On the other ~ items associated with these will be selected. The HASP was
hand, we show that Model 1 has smaller critical similarity for a also applied to constraint satisfaction problems and modeling

small initial overlap. We also show that unreachable equilibrium cognitive processes such as the processes of addition and of
states exist in the proposed model. There is a critical loading learning counting [5]-[7]
rate «, where the reachable equilibrium states are disappeared. The HASP consists of. two networks, while Amit [8] pro-

Above the critical loading rate a,, which is smaller than the ) . -
storage capacitya., all equilibrium states are stable, but cannot Posed a model which consists of one network with both

be reached. crosscorrelation and autocorrelation in a synaptic weight.
Index Terms—Associative memory, one-to-many association, Although thg Amit model deals with ong-to-one associations,
selective reca”, statistical neurodynamics_ it WOUId be |nterest|ng to eXtend the Amit mOdel to be able to

treat the one-to-many associations. Guwtral. [9] proposed
the model which can recall complex sequences with branches,
that is, it can deals with one-to-many associations. The model,
NE-TO-MANY association is one of the most impor-however, cannot select the items dynamically.
tant characteristics in our associative memory systemWe propose a HASP-type associative memory model. The
because a homophone, for example, can associate with mstrecture of the proposed model is qualitatively equivalent to
than one word and each word can have several meaningmt of the HASP, but for the sake of simplicity the mutually
To recall the most appropriate item in some situation, wahibitory network has been replaced with an autoassociative
usually use context. Let us consider two homophones (wordsgtwork. The autoassociative network can memorize the as-
“sun” and “son,” for example. Since the same pronunciation $ociative items in equilibrium states, and the associative item
associated with the two words, we cannot decide which wowhich is most similar to the initial state can be recalled. Many
has been pronounced by just listening to the pronunciatistatistical mechanical approaches [10]-[13] have been intro-
However, if a context word such as “family” is given, “son"duced to analyze the model, since Hopfield [14] gave the spin
can be recalled easily. The psychological literature suggeststem analogy. These approaches consider the equilibrium
that there are two stages in the process of resolving lexicahte of the network and can analyze the storage capacity. The
ambiguities [1]-[3]. The first is a sense activation stage, mynamical behavior, however, cannot be discussed in these
which all associated meanings are activated, and the secapgroaches. Amari and Maginu [15] proposed the statistical
neurodynamics, which can explain the dynamical behavior
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A. Heteroassociative Network

n/ /hl ./ / Let us assume that each of th&ey vectorsy* = (n!'), u =
- 1,2,---,p is associated withk* associative vector§""”™ =
== . = &,k =1,2,--- k", that is, the key items are associated
e s = with different number of associative items. The dimensions of
y the key vectors and the associative vectors are assumed to be
\wn | — T AN M and N, respectively. Each component of the vectgtsand
O C £*" is assumed to be an independent random variable which
h' takes a value of eithet1 or —1 according to the following
/ / t 0 / / probabilities:
- Prob [ = %1] = § (1)
AN | N | Y
s fu—y s LY
and
\_bL\:::\\:z E Prob [/ = +1] = 3 2
ro ;= = 3.
E e o) ¢! 1=3 2)
In this paper, we have mainly considered a case where the
following conditions are satisfied: 1) Léf = SN. 5 ~ O(1)
holds asN — oo. 2) Let ¥ _, k* = aN, wherep ~ O(N)
i Xt l and k* ~ O(1) hold and« is loading rate.
The output of the heteroassociative network is given by
Fig. 1. A schematic diagram of the present model. The upper network
operates as the h_et(_eroassociative memory, while the lower network operates M
as the autoassociative memory. J}? = sgn Z jijyj + i?,z (3)
J=1

may be dynamically changed according as the context. The

proposed model, therefore, is analyzed by the statistical ntherejij is a synaptic weight from thgth component of the

rodynamics. key inputy to the ith neuron of the network. The external
In the proposed model, we assume that a cue, whichiigut 7, was introduced to provide the seed to recall one of

derived from context, is supplied as an external input. Thee associative vectors recalled by the key input. It will be

supplied cue comes from a context word and may be similggscribed in detail in Section 1I-C. The synaptic weight is

to the target item. In this paper, we will not discuss thgetermined by correlation learning:

detailed mechanism to generate the cue. A seed of the target
p k"

item is supplied either to the heteroassociative network or to N 1 sk
the autoassociative network. A temporal evolution of overlap Jij = N Z Z i ;- (4)
(direction cosine) between the target item and the output p=lr=l

of the present model is analyzed by changing the similarity . . .
. ; In the following, we will analyze a case where the associa-
(correlation) between the seed and the target item. . Ll 1 .
: . : . ive vectoré~ is recalled by the key vectay', that is, the
This paper is structured as follows. Section Il describes the C 11 . .
tarﬁet vector i€, In order to take incomplete key inputs

model we used and introduces and defines all the parameters Co .
: : . . into account, the overlap or direction cosine between the key

analysis. Section Il presents the theoretical analysis of reca 1. )

uty and the key vectof" is defined as

dynamics and corresponding simulation results. Section »
concludes this paper.

1 M
m= i Zn}yj (5)
j=1

Il. PROPOSEDMODEL which is termednitial overlap. Then, (3) can be expressed in

Fig. 1 shows the structure of the present model. It consistgms of the initial overlapn as
of a heteroassociative network and an autoassociative network.

We introduced external input which provides the seed of the k! ) .
target item either to the heteroassociative network (denoted by 29 = sgn Z B + Zi + hy (6)
h;) or the autoassociative network (denoted/hy. r=1

In the following, we define the time when a key input, . ) . o
denoted byy, is presented to the heteroassociative netwolkherez; is crosstalk noise at time= —1 which is given by

ast = -1, and define the time when the output from My
the heteroassociative network, denoted ¥y is fed to the L1 R

L ! Zi = — Sty 7
autoassociative network as= 0. ‘=N Z Z Zﬁ} 5 Yi (7)

=1 p#1 k=1



706 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 3, MAY 1999

B. Autoassociative Network Since the output? is the mixture staté*, the state of the

The autoassociative network consistsfneurons that are autoassociative network at timte= 1 changes to

connected with each other. The stafg™* of the ith neuron 1 Lell 1,12 1,013
i : ;s =egn (567 +5877+5¢;7 + h; 15
for t > 0 is defined by i =sgn (3¢ 26 2¢ ) (15)
where the 1/2’'s denote overlaps;, x = 1,2, 3 between the

N 1 iati t
statez® = ¢! and the associative vectogs™. If no external
L o ot 4 . e ;
Ti = seh ; Jij@j + hideo (8) input &; is injected, the state’ for everyt > 1 will not change
JFE

and it becomes an equilibrium state. In order to select the target

1,1 . .. . N
where J;; is a synaptic weight from thgth neuron to theth  VECIOrS; Y ?xternal input is introduced as the seed, which is
neuron, and; is an external input which will be described insimilar to&;*. By providing external input, the state will move
detail in Section II-C$, ¢ is Kronecker's delta and is definedclose to the target vector. Based on these considerations recall

asé,o = 1 whent = 0, and 6,0 = 0 whent # 0. Sinceh; dynamics is analyzed for the two typical models following.
is suypplied only at time = 0, it has no effect on the stability Model 1: h; is injected into the heteroassociative network

of equilibrium states. The synaptic weighit; is given by attme? = —1
correlation learning: ~ 1+ qett
Prob[h; = £1] = Taﬁz’ h; = 0. (16)
LS g
Jij = N Z Z@”’ 5,” . 9) Model 2: h; is injected into the autoassociative network at
p=l =1 timet =0
We define the overlaps between the stefte= (z}) appear- s _ = gt
ing in the recall process at timeand the associative vectors hi =0, Probh = +1] = 2 ’ 17
é-l,n as

From (16) and (17), the correlations betwegn' and the
external inputsh; and h;, are given by

N
1 x
mi = Y&l (20)
=1

Then, (8) can be expressed in terms of the overtapsas ~ The correlation &” in (18) is termed asimilarity between the
target vectog’>! and external input, and it varies in the range
0<a<1.If a=0,the external input/,}i or h;, takes a value
of 1 at random and it is statistically independent &f'.

If @ = 1,h; or h; is equal to£;"*. Then, the networks may
recall €11 whena = 1, but they will probably fail to recall
whena = 0. Therefore, we can expect that there is a critical

E[&; hi]) = B[} hi] = a. (18)

kl
et =sgn [ Y mpeh" 4 2 + hidro (11)

w=1

where>! is crosstalk noise at time> 0 which is given by

TREANE A similarity a. and the target vector can be recalled above it.
2 = ¥ SN D et (12) We suppose that the critical similarity of Model 1 differs from
j#i pEl k=1 that of Model 2. The main purpose of the present paper is to

evaluate the two models using critical similarity.
C. External Input

Here we explain why the external inputs, and /.;, were Ill. RESULTS AND DISCUSSION
introduced in (3) and (8), respectively. For simplicity, let us
assumeM = N, namely,8 = 1.0 andp ~ O(1). Then the A, Distribution of Crosstalk Noise
loading rate becomes = 0 becausé* ~ O(1). In this paper,
we will only concentrate on one-to-three associatigrts= 3)
for the sake of simplicity. The present analysis can easily

extended to general cases with arbitrdry. Let us assume the crosstalk noise at time= 0 will be obtained, when the

trla(\t~th_e 1k§)y isl,nspuuwn\ggltc(? trl13e Iﬁgtrét:zzlss\f\gtzri]aiir\l/ee Ei{w\:ﬁﬁtc}; initial state is supplied into the autoassociative network. First,
Am o PP e . : W%t us consider that the key inpaf, which correlates with
output 2 from the heteroassociative network at time= 0 .11 ; L . :

: *~ but without the other associative vectdrs”™, is supplied

ibse(;(i)\gﬁsbt;e initial state of the autoassociative network al o the autoassociative network. Here the crosstalk nﬁﬂse

We will show that both the heteroassociative and the au-
oassociative network need to be analyzed together. Here we
%sume that the external input/is = 0. The distribution of

N p k"
0 _ . /L1 1,2 1,3, 7 . 1 P
x; =sgn (&7 + &7+ + hi). (13) z? = szzgﬂ’ Sf’ x? (29)
N g1 p#El =1
If no external inputh; is injected, the state) becomes a
mixture state(* = (¢}), each component of which is given bywhich is the contribution from the other associative vectors, is
normally distributed with mean 0 and varianed15]. Fig. 2

CH=sen (et F £+ £%). (14) shows the distribution for the crosstalk noiewith a loading
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Fig. 2. The distributions of crosstalk noise, wheté = N = 500 and
a = 0.1. 20 indicates the distribution for the autoassociative network and 0y 02 04~06 08 10
=9’s indicate the distributions for the present model, where the values of ’ m ' '
initial overlap arermn = 0.4 and 0.6.

Fig. 3. The initial overlap and the variance of crosstalk noiég and
2. Shown is a case where the loading ratenis= 0.1. The variances?
rate ofa. = 0.1, obtained by theoretical analysis and simulatioppproximates tav as+m — 1.

studies, whereV = 500.

Next, let us consider that the key inpgtwith the initial In both cases, the external input is removed at the next time
overlaps is supplied into the heteroassociative network arstep. We have treated the case where the three associative
that the output of the heteroassociative netwafk is supplied vectors are associated with the key vedtet = 3), but the
into the autoassociative network. Here the initial steteof present analysis can easily be extended to general cases with
the autoassociative network is correlated with all associatigebitraryk*. In Appendix A, we derived the macroscopic state
vectors. In order to evaluate the distribution of crosstalk noiseguations for arbitrarys*.
this correlation must be taken into account. The macroscopicFirst, let us analyze the case where the key inpig the
state equations of the present model, therefore, were derigzine as the first key vectgt, namely,n = 1.0. Fig. 4 shows
using statistical neurodynamics [15], [16]. The equations us#tk temporal evolutions of overlap. The abscissa denotes the
in theoretical analysis are briefly described in the Appenditme ¢, and the ordinate denotes the overlaps= 1.0 of
Fig. 2 shows the distributions for the crosstalk noi§eof (5) at timet = —1 and m! of (10) at timet > 0. The
(12) obtained by the macroscopic state equations, where thgves in each panel represent the results for different values
values of the initial overlap aré» = 0.4 and 0.6. From (26), of similarity (e = 0.0,0.1,---,1.0 from bottom to top). The
the crosstalk noise? is normally distributed with mean 0 andoverlaps obtained by Model 1 are in the panels from (a) to
varianceas?. (c), and those obtained by Model 2 are in the panels from (d)

Each solid line denotes the results obtained by theoretital(f). For each model, the results obtained by simulations [(a)
analysis, while corresponding simulation results are reprand (d)], those obtained by theoretical analysis with the first-
sented by point§M/ = N = 500). Both results agree with order theory [(b) and (e)], and the fourth-order theory [(c) and
each other. Fig. 2 shows that the crosstalk nef$estrongly (f)] are shown. In the simulation studies, the dimensions of the
depends on the initial overlap. That is why the two networks key and the associative vectors were sefte= M = 1000,
need to be analyzed together. In analyzing the recall procesamely,# = 1.0, andp = 30 one-to-three associations were
we showed that the correlations between the s#fteand memorized in the networks, that is, = 0.09.
the associative vecto&"” must be taken into account. The As can be seen in the figure, if similarityis greater than
important point is that the variance of the crosstalk nefsés  some critical similarity:., the target vectog*-! can be recalled
not only larger than the variance &f but it is also dependent successfully. But if: is less tham,, the output state converges
on the initial overlapn. The distribution for the crosstalk noiseon the mixture state(® or a spurious state. The critical
29 whenm = 0.6 is more similar to that o£! than that of:?  similarity of Model 1 obtained by simulation is. > 0.6,
when7 = 0.4. Fig. 3 shows the variance ¢f andz) in the that obtained by the first-order theory is > 0.3, and that
case ofx = 0.1. We can see that the variancefis strongly obtained by the fourth-order theory ds > 0.6. For Model 2,
dependent on the initial overlaf. It also indicates that the they area. > 0.3, a. > 0.1, and a. > 0.3, respectively. Under
distribution of 2Y is a good approximation of that af when conditions wheren = 1.0, = 0.09, and 3 = 1.0 hold, the
m — 1. Therefore, regarding the absolute storage capacityitical similarity of Model 2 is smaller than that of Model 1.
we can safely analyze the HASP by dividing it into the tw@'he overlaps obtained by the higher-order theory are in good
networks [17]. The termabsolutemeans the probability that agreement with those obtained by simulation.
any associative vect@** is stable will converge to 1 when
N — oo [15]. C. Comparison of Models

Next, let us discuss which model has smaller critical simi-
larity for various loading rates:. First of all, let us consider

Let us discuss the recall process with one-to-many assodiae case whereg: = 1.0 and /3 = 1.0 hold. As the Appendix
tions. The external input; of (16) is injected at timé¢ = —1  shows, the variance? at timet = 0 of (26) is larger than
(Model 1) andh; of (17) is injected at time = 0 (Model 2). the variances? at timet = —1 of (24), becausé/, > 0. Since

B. Recall Process with One-to-Many Associations
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Fig. 4. Temporal evolutions of overlapg and m]. Shown is a case where the loading ratenis= 0.09 and one-to-three associations"(= 3) are

stored. (a) and (d) indicate the results obtained by simulation studies, \iitiere N = 1000. (b), (c), (e), and (f) correspond with the firdtr. = 1)

and fourth-ordern = 4) theories, respectively. (a)—(c) indicate the results for Model 1, and (d)—(f) for Model 2. The curves represent the overlaps for
different values of similarity(« = 0.0,0.1,---,1.0 from bottom to top).

the target vecto’! tends to be prevented from recallingior Model 2 are in (b). The key inpug is the same as the
by the larges?, we expect that the target vector of Model key vectorn'(sn = 1.0). Data points with error bars were
can be recalled better. However, Fig. 4 shows that the criticathtained by simulation a4/ = N = 1000 (3 = 1.0) and
similarity a. of Model 2 is smaller than that of Model 1.  the error bars represent standard deviations. Theoretical results
This can be explained by comparing the signal parts obtained by the first-, second-, third-, and fourth-order theories
Model 1 at timet = —1 and Model 2 at timet = 0 with are indicated by the lines. The lines represent the critical
the two respective types of external inputs and k;. The similarity a.. The results obtained by the higher-order theory
ratio of m{ to similarity ¢ is smaller than that ofn to @, are close to the simulation results. The critical similaxity
becausen§ ~ 0.5 and/” = 1.0 from (13) and (15). Then, of Model 2 for various« is smaller than that of Model 1
the absolute value of the signal parttat 0 is smaller than where/ = 1.0 and 3 = 1.0 hold. The reason the critical
that att = —1. This means that Model 2 is relatively moresimilarity a. decreases att ~ 0.03 (Fig. 5) is because the
sensitive to external input than Model 1. mixture statesgn (&' + &2 4 ¢°), becomes unstable at
To verify that the above considerations held in generdahat point [11]. Next, let us consider the case wheére: 1.0
we calculated the critical similarity:. for various loading ands = 1.0 hold, that is, the key inpug is an incomplete key
rates«. The results for Model 1 are in Fig. 5(a) and thosegector. Here, since the signal part&;ﬁil’“ at timet = 0 are
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ac ac
1.0 t7 . 1.0
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0.2 02 Model 1
% 004 008 0iz 016 0 A 006 00R 010 010 0
: o ’ 0 0.02 0.04 0.0605),08 0.10 0.12 0.14
Model 1
(a) Fig. 6. The critical similaritye. and the loading rater for the small initial
overlapm = 0.4 (8 = 1.0). The theoretical results were obtained using the
fourth-order theory.
Qc
1.0 i1
Simulation
0.8 n=4 * . % at:}> T : T T T
) 1.0 "
0=0.09
08 PB=10

0.6 .{ Model 2 Model 1

.
.
._I_

g’ 04 Tooeeqe A
00 0.04 0.08 a 0.12 0.16 0.2
Model 2 00 02 04 -06 08 1.0
(b) m

Fig. 5. The critical similaritya. and the loading rate. The abscissa is the Fig. 7. The critical similarityz.. and the initial overlapn, wherea = 0.09
loading ratec, and the ordinate is the critical similarity.. (a) indicates the and 3 = 1.0. The theoretical results were obtained using the fourth-order
results for Model 1, and (b) for Model 2. The simulation results were obtaineReory.

by averaging 20 samples, whefie = 1.0 and M = N = 1000(8 = 1.0),

and the various lines of critical similarity by theoretical analysis indicate the

first-, second-, third-, and fourth-order theories. increases with3, while that of Model 2 is almost constant

as expected from Fig. 8. Comparing the stateof Model 1

not always smaller thapgrmé! " at timet = —1 for the small with the stfflt(-:vc:_L of_ModeI 2, let us discuss these and {3
initial overlap, especially forn < 0.5, the critical similarity dependencies in Figs. 7 and 9. The stateof Model 1 is
between the two models may be different. Fig. 6 shows t§&en by
critical similgrity for the small _ir_1itia| c_)vgrla_p, wheré = 0.4. 29 = sen (Bt + pmtl? + it + zZ + ki) (20)
For all loading ratesy, the critical similarity of Model 1 is
smaller than that of Model 2 wher& = 0.4 in contrast to and it explicitly depends ogri. Obviously, for smallersr
where 7z = 1.0. The critical similarity a. is calculated for the recall process is influenced more by the crosstalk noise
various s, whereor = 0.09 and 3 = 1.0, as Fig. 7 shows. # and the external input;. Therefore, the critical similarity
The solid line indicates the results for Model 1, and the brokea 0f Model 1 increases witti. However, the state” of
line for Model 2. As the figure shows, the difference betwedodel 2 is given by
the critical similrcl_rit_y_aC of Moqel 1 and thea. of Model 2 a:? = sen (ﬁmgil,l +/3m53’2 Jrﬁmgz‘l,g +z). 1)
depends on the initial overlag.

In the previous discussions, we considered the case whéiace z? ~ ¢} holds for small variances?, the overlaps
B = 1.0 holds. The stater® in (6), however, depends onm{, s = 1,2,3 are approximately equal to 1/2. The next state
8. Therefore, we will consider the case whete£ 1.0 and z' of Model 2 is given by
m = 1.0 hold. The critical similarity of Model 1 and that of oo (Ll | 1412 | 1413 0 ‘
Model 2 for various values of are in Fig. 8(a) and (b). The zsen (347 + 5 G A& A+ h). (22)
critical similarity a. of Model 1 approximately increases withSince m§ ~ 1/2 hold, the overlapsn5 do not explicitly
3, whereas the:. of Model 2 is almost constant for any. depend on bothn and 3. Therefore, the recall process of

Where = 0.5, the critical similarity of Model 1 becomes Model 2 hardly depends on both and3 compared with that
smaller than that of Model 2 in contrast to whete= 1.0. The of Model 1.
critical similarity, therefore, is calculated for various values of As Fig. 9 shows, the critical similarity of Model 2 is almost
3, wherea = 0.09 and = 1.0, as Fig. 9 shows. As the constant, but it slightly increases Asdecrease$s < 0.4). It
figure shows, the critical similarity of Model 1 approximatelyalso increases a& decreases in Fig. 7. The reason for this is
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o6 3 decreases.
0.4 e
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[5—0.5,1.0,2.0 Let us consider vertical lines and intersection points between

the critical similarity a. and ¢ = 1 in Figs. 5, 6, and 8.

They indicate critical value of the loading rate, where
Model 2 the reachable equilibrium states from the initial state by the
(b) external input are disappeared. We define the critical value

Fig. 8. The critical similaritya.. and the loading rater for various values as critical Iqadmg rate o, where the reachable e.qUIllbIjlum

of 3 (n = 1.0). (a) indicates the results for Model 1, and (b) for Model 2States are disappeared when the external input avithl.0 is

% 0.020.04 0.06&).08 0100120.14

The theoretical results were obtained using the fourth-order theory. supplied. «r,. is obviously smaller than the storage capacity
a. = 0.138 of the autoassociative network of the present
a. model. We note that the value of the storage capacity obtained
1.0 ’ ' ‘ ' ' by the first-, second-, third-, and fourth-order theoriea ds=
| l 0.160,0.142,0.140,0.139. Using the higher-order theory, it
0.8 approachesy, = 0.138 obtained by the equilibrium theory
06! [10]. In some literaturesg.. is also termed “critical loading
. rate.” In the present paper, however, we distinguish the critical
04r™ loading rate from the storage capacity. We note that the storage
’ fl'{{ capacity .. is defined as the transition point where all equi-
0.21 Model 2 | librium states become unstable. Since the dynamical behavior
0 . . . . , . must be taken into account in order to evaluateit cannot be
0 02 04 0-660-8 1.0 1.2 treated by the equilibrium theory, but by the dynamic theory.
In Fig. 5, the critical loading rate of Model 1 is
Fig_ 9. The critical simi|a|'ity1C and the dimension rati@, wherea = 0.09 Ay = 0155, 0125, 0119, 0.117 for firSt-, Second', third',
andm = 1.0. The theoretical results were obtained using the fourth-ordggnd fourth-order theories and that of Model 2 is
theory. o, = 0.160,0.142,0.140,0.139. «, of Model 2 is almost

equal to the storage capacity = 0.138 of the autoassociative

as follows. The variance at time= 0,53, explicitly depends networks, butx, of Model 1 is smaller tham.. Comparing
on both7 and 3. From (26) and (27), the variancg? is Fig. 5(a), (b) with Figs. 6 and 8, we guess that of Model

given by 1 strongly depends ofir and 3, while «,. of Model 2 barely
depends onn and 3. To verify our guessg,. for variousm
o2 —at 2 and 3 are calculated. Fig. 10 shows the critical loading rate
0 7r «,. for variousn obtained by the fourth-order theory. The

while «,. decreases fafi > 0.77 asm increases. The number
of reachable associative vectors, therefore, is larger in the
(23) case where the incomplete input is supplied than the case

(BRESt + Brel? 4 pgh®)? 2 critical loading rate of Model 1 isy, = 0.139 for m < 0.77,
©
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Fig. 11. The critical loading ratev. and 3 (» = 1.0). The theoretical
results were obtained using the fourth-order theory.

where the complete input is supplied. The critical loading rate
of Model 2 is«,. = 0.139 for mn > 0.23, but «,- decreases for
m < 0.23. «,. of Model 2, therefore, depends ah.

Fig. 11 shows the critical loading rate, for various 3
obtained by the fourth-order theory. The critical loading rate
of Model 1 is«,, = 0.139 for 5<0.80, and «,. decreases
rapidly asj increases. The critical loading rate é. = 0
for 4 > 1.21. A critical value 3. regarding/, therefore, (b)
exist in Model 1. The critical loading rate of Model 2 isFig. 12. The critical loading rate. (a) indicates the results for Model 1, and
a, = 0.139 for 8 > 0.05, and«,. decrease a8 decreasesy, (b) for Model 2. The theoretical results were obtained using the fourth-order
of Model 2, therefore, depends ghwithin the small range. theory.

Since the critical loading ratey, depends on bothn and ) )
3, o, is calculated for variousi and 3. As Fig. 12 shows which the target vector can be recalled. The main purpose of

the critical loading ratey, becomes one of criteria to compardh€ Present paper is to evaluate the two models using critical
the models. S|m|lar|t.y. . . .

Since the storage capacity obtained by the statistical neu_ro_:rhe Influence of ext_ernal input varies acco_rdmg_ to the
dynamics is equal to that obtained by the equilibrium theoff)iected time. External input can be injected either into the
[10], [11], [16], it is considered that the embedded associatit¥gteroassociative ne_twork or thg autoassociative network. We
vectors can be recalled from arbitrary initial state, if th@halyzed the dynamics of selective recall for the two models.
initial state is within the basin of attraction. However, thd the key input is a complete key item or it is sufficiently
unreachable states exist in the present model. In other worgfgilar, Model 2, which has external input at time-= 0, has
above the critical loading rate,., which is smaller than the Smaller critical similarity than Model 1, which has external
storage capacity.., all equilibrium states are stable, but canndfiPut at timet = —1. On the other hand, if the key input is an

be reached by the external input. An interest point is that incomplete key item, Model 1 has smaller critical similarity
of Model 1 for recalling from the incomplete input is Iargtha” Model 2. The difference in the critical similarity between

than that for recalling from the complete input. the two models depends on the initial overlap o
The critical similarity of Model 1 increases wifh, which is

the dimension ratio of the key vectors to the associative vec-
tors, while that of Model 2 is almost constant as Fig. 9 shows.
We proposed an associative memory model, which caie discussed why the difference in the critical similarity was
selectively recall one of many associative items by usingchanged by the initial overlagh or the dimension rati@. We
cue from context. We discussed the dynamical behavior odnsidered states where external input is injected. The gtate
the selective recall process in the present model. The modgplicitly depends oms7. Therefore, the critical similarity of
consists of a heteroassociative network and an autoassociakilael 1 is sensitive tglmn. From (20), the critical similarity
network, which have external input as the context. Sinad Model 1 increases a8 or 7 increases. In Model 2, the
one-to-many associations are stored in the heteroassociativerlaps at timg = 0,m{, do not explicitly depend on both
network, many associative items are associated with a singleand 3, sincem§ ~ 1/2,x = 1,2,---,k hold. The reason
key item. The output, therefore, reaches the mixture statee critical similarity of Model 2 increases as eith@ror m
without external input. However, the most suitable associatidecreases is because the variance of the crosstalk noise at time
item (target item) can be selectively recalled by external input= 0 depends on both» and .
The correlation between the target item and external input isSince the stability of the equilibrium states are not affected
defined as similarity. There is a critical similarity., above by the external input in the present formulation, the storage

Model 2

IV. CONCLUSIONS
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capacity of the present model is. = 0.138, which is B. Autoassociative Network

determined by the equilibrium property of the autoassociative 4 macroscopic state equations at tifme 0 are given by
network in the present model. It is considered that the all -
associative vectors can be recalled from arbitrary initial state

which is within the basin of attraction. In the recall processm'tll I/ DZ<
with one-to-many associations, however, we show that there

k=1

kl
N P ).
©

are the unreachable equilibrium states by the external input. (28)
That is, above the critical loading ratg the equilibrium states t t+1

are not reachable, even if the external input which is equal 82, | =« + UZ ;07 + 2 Z Qi1 H U,

the target item is supplied. In order to calculatg the recall r=t—n+1 r=r+1

dynamics must be taken into account. (29)

The critical loading ratev,. of Model 1 is dependent on both Bt
m andf3.«,. decreases a# or /3 increases. The interest points /, Ii/Dzz<sgn megl,n +ouz + héo >
are thata,. becomes smaller when the input is more similar o
to the key item, and that there is a critical valtig such that
«a, = 0. The value of3. is dependent omn, i.e., 5. = 1.21
for i = 1.0. The critical loading ratey, of Model 2 is also Note thato_, is defined asr_; = 4. The correlation between
dependent on bot andj. «,. decreases as or 8 decreases. the state at timet + 1 and that at timer is defined as

Gr1.- = E[zi1127]. We can calculatey; ~ as follows:

k=1

©
(30)

APPENDIX
MACROSCOPIC STATE EQUATIONS Qt+1,7 = /DC/Da/Db
The macroscopic state equations of the present model wit &'

one-to-many associations are derived from statistical neurq"goy megl,n + o¢(doa + dyic) + .
dynamics. The theory proposed by Okada [16], which ex- ’

k=1
pands on the theory proposed by Amari and Maginu [15], "
can explain dynamical behavior quantitatively by taking into ) K elk
account the direct correlations between crosstalk noises at ‘o z_:lmf—lg +or—a(dob + dic)+hb-—19
different time steps. The first-order equations correspond to " ©)
the Amari—-Maginu theory. We call the cases fiop 2 higher- (31)

order theories. We analyze the general case where key itemhs
' D NS where dy = /1—-d? andd;, = /Ci._1/010,—1. The
are associated with different number of associative items. 0 T L tr-1/0t0r 1
correlationg 41 1 is zero.

The correlationC} ,_; between the crosstalk noise at time

A. Heteroassociative Network ¢ and that at timer — 1 is given by

From (7), the distribution of crosstalk noise at tite- —1

is normally distributed with mean zero and variance Cryr—1 =0, (r=t-n+lnz1) (32)
s " Cirot =aq 1 +UCr1 1,
0" = E[Z]=ab. (24) (r=t—n+2n>2) 33)
T—2

We assume that the distributions at time> 0 are normally
distributed with mear® and variances?. Note thatz? obeys ~ Ctr—1 =@Gr—1 +UilUr1Crirata >
N(0,03) rigorously. This assumption is the same as Amari . - ”:T_’:J’l
and Maginu’s [15] and Okada’s [16]. The macroscopic state f - :
equations at time¢ = 0 are given by At H Ur+a Z Iy, r—1 H Ur,
r=n+1 n=t—n-+1 r=n+1
K , (t—n+3<7<tn>3). (34)
my = /Dz<§1’”’sgn Zﬁﬁzﬁl’”’ +62+h >

w=1
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