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Dynamics of Selective Recall in an Associative Memory
Model with One-to-Many Associations

Masaki Kawamura, Masato Okada, and Yuzo Hirai

Abstract—The dynamics of selective recall in an associative
memory model are analyzed in the scenario of one-to-many
association. One-to-many association is one of the most important
characteristics of our memory system because a homophone, for
example, associates with more than one word and each word can
have several meanings. The present model, which can deal with
one-to-many association, consists of a heteroassociative network
and an autoassociative network. In the heteroassociative network,
a mixture of associative items in one-to-many association is
recalled by a key item. In the autoassociative network, the
selective recall of one of the associative items is examined by
providing a seed of a target item either to the heteroassociative
network (Model 1) or to the autoassociative network (Model 2).
We show by both simulation studies and theoretical analysis that
the critical similarity of Model 2 is not sensitive to the change in
the dimension ratio of key vectors to associative vectors, and it has
smaller critical similarity (correlation between the seed and the
target item) than Model 1 for a large initial overlap. On the other
hand, we show that Model 1 has smaller critical similarity for a
small initial overlap. We also show that unreachable equilibrium
states exist in the proposed model. There is a critical loading
rate �r where the reachable equilibrium states are disappeared.
Above the critical loading rate �r, which is smaller than the
storage capacity�c, all equilibrium states are stable, but cannot
be reached.

Index Terms—Associative memory, one-to-many association,
selective recall, statistical neurodynamics.

I. INTRODUCTION

ONE-TO-MANY association is one of the most impor-
tant characteristics in our associative memory system

because a homophone, for example, can associate with more
than one word and each word can have several meanings.
To recall the most appropriate item in some situation, we
usually use context. Let us consider two homophones (words),
“sun” and “son,” for example. Since the same pronunciation is
associated with the two words, we cannot decide which word
has been pronounced by just listening to the pronunciation.
However, if a context word such as “family” is given, “son”
can be recalled easily. The psychological literature suggests
that there are two stages in the process of resolving lexical
ambiguities [1]–[3]. The first is a sense activation stage, in
which all associated meanings are activated, and the second
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is a sense selection stage, in which the most suitable meaning
is selected using the context and the rest of the meanings are
suppressed.

Hirai proposed the associative memory model HASP, which
can deal with one-to-many associations [4]. It consists of a
heteroassociative network and a mutually inhibitory network
that is cascaded to the heteroassociative network. In the
heteroassociative network all the items associated with key
inputs are recalled, and in the mutually inhibitory network
one of the recalled items is selected through competition.
The mutually inhibitory network stores a summation of the
autocorrelation matrix of associative items in the form of
reduced inhibitory connections. Since the HASP can deal
with context as one of the key inputs, one of the associative
items associated with these will be selected. The HASP was
also applied to constraint satisfaction problems and modeling
cognitive processes such as the processes of addition and of
learning counting [5]–[7].

The HASP consists of two networks, while Amit [8] pro-
posed a model which consists of one network with both
crosscorrelation and autocorrelation in a synaptic weight.
Although the Amit model deals with one-to-one associations,
it would be interesting to extend the Amit model to be able to
treat the one-to-many associations. Guyonet al. [9] proposed
the model which can recall complex sequences with branches,
that is, it can deals with one-to-many associations. The model,
however, cannot select the items dynamically.

We propose a HASP-type associative memory model. The
structure of the proposed model is qualitatively equivalent to
that of the HASP, but for the sake of simplicity the mutually
inhibitory network has been replaced with an autoassociative
network. The autoassociative network can memorize the as-
sociative items in equilibrium states, and the associative item
which is most similar to the initial state can be recalled. Many
statistical mechanical approaches [10]–[13] have been intro-
duced to analyze the model, since Hopfield [14] gave the spin
system analogy. These approaches consider the equilibrium
state of the network and can analyze the storage capacity. The
dynamical behavior, however, cannot be discussed in these
approaches. Amari and Maginu [15] proposed the statistical
neurodynamics, which can explain the dynamical behavior
of the networks qualitatively. Okada [16], moreover, expands
the Amari–Maginu theory into higher-order theory, which can
explain the dynamical behavior almost quantitatively. This
paper analyzes the recall process selecting a target item,
which is one of the associative items that is recalled in the
heteroassociative network. In the associative memory with
one-to-many associations, the dynamical behavior must be
taken into account, since the associative item to be recalled
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Fig. 1. A schematic diagram of the present model. The upper network
operates as the heteroassociative memory, while the lower network operates
as the autoassociative memory.

may be dynamically changed according as the context. The
proposed model, therefore, is analyzed by the statistical neu-
rodynamics.

In the proposed model, we assume that a cue, which is
derived from context, is supplied as an external input. The
supplied cue comes from a context word and may be similar
to the target item. In this paper, we will not discuss the
detailed mechanism to generate the cue. A seed of the target
item is supplied either to the heteroassociative network or to
the autoassociative network. A temporal evolution of overlap
(direction cosine) between the target item and the output
of the present model is analyzed by changing the similarity
(correlation) between the seed and the target item.

This paper is structured as follows. Section II describes the
model we used and introduces and defines all the parameters in
analysis. Section III presents the theoretical analysis of recall
dynamics and corresponding simulation results. Section IV
concludes this paper.

II. PROPOSEDMODEL

Fig. 1 shows the structure of the present model. It consists
of a heteroassociative network and an autoassociative network.
We introduced external input which provides the seed of the
target item either to the heteroassociative network (denoted by

or the autoassociative network (denoted by
In the following, we define the time when a key input,

denoted by , is presented to the heteroassociative network
as , and define the time when the output from
the heteroassociative network, denoted by, is fed to the
autoassociative network as

A. Heteroassociative Network

Let us assume that each of thekey vectors
is associated with associative vectors

that is, the key items are associated
with different number of associative items. The dimensions of
the key vectors and the associative vectors are assumed to be

and , respectively. Each component of the vectorsand
is assumed to be an independent random variable which

takes a value of either or according to the following
probabilities:

(1)

and

(2)

In this paper, we have mainly considered a case where the
following conditions are satisfied: 1) Let
holds as 2) Let where
and hold and is loading rate.

The output of the heteroassociative network is given by

(3)

where is a synaptic weight from theth component of the
key input to the th neuron of the network. The external
input was introduced to provide the seed to recall one of
the associative vectors recalled by the key input. It will be
described in detail in Section II-C. The synaptic weight is
determined by correlation learning:

(4)

In the following, we will analyze a case where the associa-
tive vector is recalled by the key vector that is, the
target vector is In order to take incomplete key inputs
into account, the overlap or direction cosine between the key
input and the key vector is defined as

(5)

which is termedinitial overlap. Then, (3) can be expressed in
terms of the initial overlap as

(6)

where is crosstalk noise at time which is given by

(7)
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B. Autoassociative Network

The autoassociative network consists ofneurons that are
connected with each other. The state of the th neuron
for is defined by

(8)

where is a synaptic weight from theth neuron to theth
neuron, and is an external input which will be described in
detail in Section II-C. is Kronecker’s delta and is defined
as when and when Since
is supplied only at time it has no effect on the stability
of equilibrium states. The synaptic weight is given by
correlation learning:

(9)

We define the overlaps between the state appear-
ing in the recall process at timeand the associative vectors

as

(10)

Then, (8) can be expressed in terms of the overlapsas

(11)

where is crosstalk noise at time which is given by

(12)

C. External Input

Here we explain why the external inputs, and , were
introduced in (3) and (8), respectively. For simplicity, let us
assume , namely, and Then the
loading rate becomes because In this paper,
we will only concentrate on one-to-three associations
for the sake of simplicity. The present analysis can easily be
extended to general cases with arbitrary Let us assume
that the key input which is identical with the key vector

is supplied to the heteroassociative network. The
output from the heteroassociative network at time
becomes the initial state of the autoassociative network and
is given by

(13)

If no external input is injected, the state becomes a
mixture state , each component of which is given by

(14)

Since the output is the mixture state , the state of the
autoassociative network at time changes to

(15)

where the 1/2’s denote overlaps between the
state and the associative vectors If no external
input is injected, the state for every will not change
and it becomes an equilibrium state. In order to select the target
vector external input is introduced as the seed, which is
similar to By providing external input, the state will move
close to the target vector. Based on these considerations recall
dynamics is analyzed for the two typical models following.

Model 1: is injected into the heteroassociative network
at time

(16)

Model 2: is injected into the autoassociative network at
time

(17)

From (16) and (17), the correlations between and the
external inputs, and , are given by

(18)

The correlation “ ” in (18) is termed assimilarity between the
target vector and external input, and it varies in the range

If , the external input, or takes a value
of at random and it is statistically independent of
If or is equal to Then, the networks may
recall when , but they will probably fail to recall
when Therefore, we can expect that there is a critical
similarity and the target vector can be recalled above it.
We suppose that the critical similarity of Model 1 differs from
that of Model 2. The main purpose of the present paper is to
evaluate the two models using critical similarity.

III. RESULTS AND DISCUSSION

A. Distribution of Crosstalk Noise

We will show that both the heteroassociative and the au-
toassociative network need to be analyzed together. Here we
assume that the external input is The distribution of
the crosstalk noise at time will be obtained, when the
initial state is supplied into the autoassociative network. First,
let us consider that the key input , which correlates with

but without the other associative vectors , is supplied
into the autoassociative network. Here the crosstalk noise

(19)

which is the contribution from the other associative vectors, is
normally distributed with mean 0 and variance[15]. Fig. 2
shows the distribution for the crosstalk noisewith a loading
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Fig. 2. The distributions of crosstalk noise, whereM = N = 500 and
� = 0:1: ẑ0

i
indicates the distribution for the autoassociative network and

z
0

i
’s indicate the distributions for the present model, where the values of

initial overlap are ~m = 0:4 and 0.6.

rate of obtained by theoretical analysis and simulation
studies, where

Next, let us consider that the key inputwith the initial
overlap is supplied into the heteroassociative network and
that the output of the heteroassociative network,is supplied
into the autoassociative network. Here the initial stateof
the autoassociative network is correlated with all associative
vectors. In order to evaluate the distribution of crosstalk noise,
this correlation must be taken into account. The macroscopic
state equations of the present model, therefore, were derived
using statistical neurodynamics [15], [16]. The equations used
in theoretical analysis are briefly described in the Appendix.
Fig. 2 shows the distributions for the crosstalk noiseof
(12) obtained by the macroscopic state equations, where the
values of the initial overlap are and 0.6. From (26),
the crosstalk noise is normally distributed with mean 0 and
variance

Each solid line denotes the results obtained by theoretical
analysis, while corresponding simulation results are repre-
sented by points . Both results agree with
each other. Fig. 2 shows that the crosstalk noisestrongly
depends on the initial overlap That is why the two networks
need to be analyzed together. In analyzing the recall process,
we showed that the correlations between the stateand
the associative vectors must be taken into account. The
important point is that the variance of the crosstalk noiseis
not only larger than the variance of but it is also dependent
on the initial overlap The distribution for the crosstalk noise

when is more similar to that of than that of
when Fig. 3 shows the variance of and in the
case of We can see that the variance of is strongly
dependent on the initial overlap It also indicates that the
distribution of is a good approximation of that of when

Therefore, regarding the absolute storage capacity,
we can safely analyze the HASP by dividing it into the two
networks [17]. The termabsolutemeans the probability that
any associative vector is stable will converge to 1 when

[15].

B. Recall Process with One-to-Many Associations

Let us discuss the recall process with one-to-many associa-
tions. The external input of (16) is injected at time
(Model 1) and of (17) is injected at time (Model 2).

Fig. 3. The initial overlap~m and the variance of crosstalk noisêz0
i

and
z
0

i
: Shown is a case where the loading rate is� = 0:1: The variance�2

0

approximates to� as ~m ! 1:

In both cases, the external input is removed at the next time
step. We have treated the case where the three associative
vectors are associated with the key vector , but the
present analysis can easily be extended to general cases with
arbitrary In Appendix A, we derived the macroscopic state
equations for arbitrary

First, let us analyze the case where the key inputis the
same as the first key vector, namely, Fig. 4 shows
the temporal evolutions of overlap. The abscissa denotes the
time , and the ordinate denotes the overlaps of
(5) at time and of (10) at time The
curves in each panel represent the results for different values
of similarity from bottom to top). The
overlaps obtained by Model 1 are in the panels from (a) to
(c), and those obtained by Model 2 are in the panels from (d)
to (f). For each model, the results obtained by simulations [(a)
and (d)], those obtained by theoretical analysis with the first-
order theory [(b) and (e)], and the fourth-order theory [(c) and
(f)] are shown. In the simulation studies, the dimensions of the
key and the associative vectors were set to
namely, and one-to-three associations were
memorized in the networks, that is,

As can be seen in the figure, if similarity is greater than
some critical similarity , the target vector can be recalled
successfully. But if is less than , the output state converges
on the mixture state or a spurious state. The critical
similarity of Model 1 obtained by simulation is
that obtained by the first-order theory is and that
obtained by the fourth-order theory is For Model 2,
they are and , respectively. Under
conditions where and hold, the
critical similarity of Model 2 is smaller than that of Model 1.
The overlaps obtained by the higher-order theory are in good
agreement with those obtained by simulation.

C. Comparison of Models

Next, let us discuss which model has smaller critical simi-
larity for various loading rates First of all, let us consider
the case where and hold. As the Appendix
shows, the variance at time of (26) is larger than
the variance at time of (24), because Since
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Temporal evolutions of overlaps~m andm1

t : Shown is a case where the loading rate is� = 0:09 and one-to-three associations (k� = 3) are
stored. (a) and (d) indicate the results obtained by simulation studies, whereM = N = 1000: (b), (c), (e), and (f) correspond with the first-(n = 1)
and fourth-order(n = 4) theories, respectively. (a)–(c) indicate the results for Model 1, and (d)–(f) for Model 2. The curves represent the overlaps for
different values of similarity(a = 0:0; 0:1; � � � ; 1:0 from bottom to top).

the target vector tends to be prevented from recalling
by the large , we expect that the target vector of Model 1
can be recalled better. However, Fig. 4 shows that the critical
similarity of Model 2 is smaller than that of Model 1.

This can be explained by comparing the signal parts of
Model 1 at time and Model 2 at time with
the two respective types of external inputs and The
ratio of to similarity is smaller than that of to ,
because and from (13) and (15). Then,
the absolute value of the signal part at is smaller than
that at This means that Model 2 is relatively more
sensitive to external input than Model 1.

To verify that the above considerations held in general,
we calculated the critical similarity for various loading
rates The results for Model 1 are in Fig. 5(a) and those

for Model 2 are in (b). The key input is the same as the
key vector Data points with error bars were
obtained by simulation at and
the error bars represent standard deviations. Theoretical results
obtained by the first-, second-, third-, and fourth-order theories
are indicated by the lines. The lines represent the critical
similarity The results obtained by the higher-order theory
are close to the simulation results. The critical similarity
of Model 2 for various is smaller than that of Model 1
where and hold. The reason the critical
similarity decreases at (Fig. 5) is because the
mixture state, becomes unstable at
that point [11]. Next, let us consider the case where
and hold, that is, the key input is an incomplete key
vector. Here, since the signal parts at time are
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(a)

(b)

Fig. 5. The critical similarityac and the loading rate�: The abscissa is the
loading rate�; and the ordinate is the critical similarityac: (a) indicates the
results for Model 1, and (b) for Model 2. The simulation results were obtained
by averaging 20 samples, where~m = 1:0 andM = N = 1000(� = 1:0);
and the various lines of critical similarity by theoretical analysis indicate the
first-, second-, third-, and fourth-order theories.

not always smaller than at time for the small
initial overlap, especially for the critical similarity
between the two models may be different. Fig. 6 shows the
critical similarity for the small initial overlap, where
For all loading rates the critical similarity of Model 1 is
smaller than that of Model 2 where in contrast to
where The critical similarity is calculated for
various where and as Fig. 7 shows.
The solid line indicates the results for Model 1, and the broken
line for Model 2. As the figure shows, the difference between
the critical similarity of Model 1 and the of Model 2
depends on the initial overlap

In the previous discussions, we considered the case where
holds. The state in (6), however, depends on

Therefore, we will consider the case where and
hold. The critical similarity of Model 1 and that of

Model 2 for various values of are in Fig. 8(a) and (b). The
critical similarity of Model 1 approximately increases with

whereas the of Model 2 is almost constant for any
Where the critical similarity of Model 1 becomes

smaller than that of Model 2 in contrast to where The
critical similarity, therefore, is calculated for various values of

where and , as Fig. 9 shows. As the
figure shows, the critical similarity of Model 1 approximately

Fig. 6. The critical similarityac and the loading rate� for the small initial
overlap ~m = 0:4 (� = 1:0): The theoretical results were obtained using the
fourth-order theory.

Fig. 7. The critical similarityac and the initial overlap~m; where� = 0:09
and � = 1:0: The theoretical results were obtained using the fourth-order
theory.

increases with , while that of Model 2 is almost constant
as expected from Fig. 8. Comparing the stateof Model 1
with the state of Model 2, let us discuss these and
dependencies in Figs. 7 and 9. The stateof Model 1 is
given by

(20)

and it explicitly depends on Obviously, for smaller
the recall process is influenced more by the crosstalk noise

and the external input Therefore, the critical similarity
of Model 1 increases with However, the state of

Model 2 is given by

(21)

Since holds for small variance , the overlaps
are approximately equal to 1/2. The next state

of Model 2 is given by

(22)

Since hold, the overlaps do not explicitly
depend on both and Therefore, the recall process of
Model 2 hardly depends on both and compared with that
of Model 1.

As Fig. 9 shows, the critical similarity of Model 2 is almost
constant, but it slightly increases asdecreases It
also increases as decreases in Fig. 7. The reason for this is
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(a)

(b)

Fig. 8. The critical similarityac and the loading rate� for various values
of � ( ~m = 1:0): (a) indicates the results for Model 1, and (b) for Model 2.
The theoretical results were obtained using the fourth-order theory.

Fig. 9. The critical similarityac and the dimension ratio�, where� = 0:09
and ~m = 1:0: The theoretical results were obtained using the fourth-order
theory.

as follows. The variance at time explicitly depends
on both and From (26) and (27), the variance is
given by

(23)

Fig. 10. The critical loading rate�r and ~m (� = 1:0): The theoretical
results were obtained using the fourth-order theory.

where stands for the average over the associative vectors
and Since the variance increases as

decreases, the critical similarity increases as either or
decreases.

D. Critical Loading Rate

Let us consider vertical lines and intersection points between
the critical similarity and in Figs. 5, 6, and 8.
They indicate critical value of the loading rate where
the reachable equilibrium states from the initial state by the
external input are disappeared. We define the critical value
as critical loading rate where the reachable equilibrium
states are disappeared when the external input with is
supplied. is obviously smaller than the storage capacity

of the autoassociative network of the present
model. We note that the value of the storage capacity obtained
by the first-, second-, third-, and fourth-order theories is

Using the higher-order theory, it
approaches obtained by the equilibrium theory
[10]. In some literatures, is also termed “critical loading
rate.” In the present paper, however, we distinguish the critical
loading rate from the storage capacity. We note that the storage
capacity is defined as the transition point where all equi-
librium states become unstable. Since the dynamical behavior
must be taken into account in order to evaluateit cannot be
treated by the equilibrium theory, but by the dynamic theory.

In Fig. 5, the critical loading rate of Model 1 is
for first-, second-, third-,

and fourth-order theories and that of Model 2 is
of Model 2 is almost

equal to the storage capacity of the autoassociative
networks, but of Model 1 is smaller than Comparing
Fig. 5(a), (b) with Figs. 6 and 8, we guess that of Model
1 strongly depends on and , while of Model 2 barely
depends on and To verify our guess, for various
and are calculated. Fig. 10 shows the critical loading rate

for various obtained by the fourth-order theory. The
critical loading rate of Model 1 is for
while decreases for as increases. The number
of reachable associative vectors, therefore, is larger in the
case where the incomplete input is supplied than the case
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Fig. 11. The critical loading rate�r and � ( ~m = 1:0): The theoretical
results were obtained using the fourth-order theory.

where the complete input is supplied. The critical loading rate
of Model 2 is for but decreases for

of Model 2, therefore, depends on
Fig. 11 shows the critical loading rate for various

obtained by the fourth-order theory. The critical loading rate
of Model 1 is for and decreases
rapidly as increases. The critical loading rate is
for A critical value regarding therefore,
exist in Model 1. The critical loading rate of Model 2 is

for , and decrease as decreases.
of Model 2, therefore, depends onwithin the small range.
Since the critical loading rate depends on both and

is calculated for various and As Fig. 12 shows,
the critical loading rate becomes one of criteria to compare
the models.

Since the storage capacity obtained by the statistical neuro-
dynamics is equal to that obtained by the equilibrium theory
[10], [11], [16], it is considered that the embedded associative
vectors can be recalled from arbitrary initial state, if the
initial state is within the basin of attraction. However, the
unreachable states exist in the present model. In other words,
above the critical loading rate , which is smaller than the
storage capacity , all equilibrium states are stable, but cannot
be reached by the external input. An interest point is that
of Model 1 for recalling from the incomplete input is larger
than that for recalling from the complete input.

IV. CONCLUSIONS

We proposed an associative memory model, which can
selectively recall one of many associative items by using a
cue from context. We discussed the dynamical behavior of
the selective recall process in the present model. The model
consists of a heteroassociative network and an autoassociative
network, which have external input as the context. Since
one-to-many associations are stored in the heteroassociative
network, many associative items are associated with a single
key item. The output, therefore, reaches the mixture state
without external input. However, the most suitable associative
item (target item) can be selectively recalled by external input.
The correlation between the target item and external input is
defined as similarity. There is a critical similarity , above

(a)

(b)

Fig. 12. The critical loading rate�r (a) indicates the results for Model 1, and
(b) for Model 2. The theoretical results were obtained using the fourth-order
theory.

which the target vector can be recalled. The main purpose of
the present paper is to evaluate the two models using critical
similarity.

The influence of external input varies according to the
injected time. External input can be injected either into the
heteroassociative network or the autoassociative network. We
analyzed the dynamics of selective recall for the two models.
If the key input is a complete key item or it is sufficiently
similar, Model 2, which has external input at time , has
smaller critical similarity than Model 1, which has external
input at time On the other hand, if the key input is an
incomplete key item, Model 1 has smaller critical similarity
than Model 2. The difference in the critical similarity between
the two models depends on the initial overlap

The critical similarity of Model 1 increases with, which is
the dimension ratio of the key vectors to the associative vec-
tors, while that of Model 2 is almost constant as Fig. 9 shows.
We discussed why the difference in the critical similarity was
changed by the initial overlap or the dimension ratio We
considered states where external input is injected. The state
explicitly depends on Therefore, the critical similarity of
Model 1 is sensitive to From (20), the critical similarity
of Model 1 increases as or increases. In Model 2, the
overlaps at time , do not explicitly depend on both

and , since hold. The reason
the critical similarity of Model 2 increases as eitheror
decreases is because the variance of the crosstalk noise at time

depends on both and
Since the stability of the equilibrium states are not affected

by the external input in the present formulation, the storage
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capacity of the present model is , which is
determined by the equilibrium property of the autoassociative
network in the present model. It is considered that the all
associative vectors can be recalled from arbitrary initial state
which is within the basin of attraction. In the recall process
with one-to-many associations, however, we show that there
are the unreachable equilibrium states by the external input.
That is, above the critical loading rate the equilibrium states
are not reachable, even if the external input which is equal to
the target item is supplied. In order to calculate, the recall
dynamics must be taken into account.

The critical loading rate of Model 1 is dependent on both
and decreases as or increases. The interest points

are that becomes smaller when the input is more similar
to the key item, and that there is a critical value, such that

The value of is dependent on , i.e.,
for The critical loading rate of Model 2 is also
dependent on both and decreases as or decreases.

APPENDIX

MACROSCOPICSTATE EQUATIONS

The macroscopic state equations of the present model with
one-to-many associations are derived from statistical neuro-
dynamics. The theory proposed by Okada [16], which ex-
pands on the theory proposed by Amari and Maginu [15],
can explain dynamical behavior quantitatively by taking into
account the direct correlations between crosstalk noises at
different time steps. The first-order equations correspond to
the Amari–Maginu theory. We call the cases for higher-
order theories. We analyze the general case where key items
are associated with different number of associative items.

A. Heteroassociative Network

From (7), the distribution of crosstalk noise at time
is normally distributed with mean zero and variance

(24)

We assume that the distributions at time are normally
distributed with mean and variance Note that obeys

rigorously. This assumption is the same as Amari
and Maginu’s [15] and Okada’s [16]. The macroscopic state
equations at time are given by

(25)

(26)

(27)

where stands for the average over the asso-
ciative vectors We define as

B. Autoassociative Network

The macroscopic state equations at time are given by

(28)

(29)

(30)

Note that is defined as The correlation between
the state at time and that at time is defined as

We can calculate as follows:

(31)

where and The
correlation is zero.

The correlation between the crosstalk noise at time
and that at time is given by

(32)

(33)

(34)
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