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1. Introduction

Computers have been used mainly for numerical computation in science and
engineering, for example, stress analysis in solid mechanics, simulations of crack
propagation in fracture mechanics, computations of band structure in condensed matter
physics, and so on.

But recently the use of computers for non-numerical problems has rapidly
increased. Pattern recognition of hand-written letters or pictures by computers is typical
of such use.

For the recongnition of these it is important to make computers distinguish
“connected components” of figure. For instance, in case of the pattern recognition of a
portrait we must make computers recognize what part of the picture is the nose of the
person. The nose, in short, is a “connected component” of face. There is another
example. When a picture of a configulation of the ground is shown, how does a
computer understand which part of the picture is a mountain?

By interpreting the distribution of normatized degree of brightness of a portrait as a
fuzzy subset, fuzzy set theory plays an important role of pattern recongnition. From this
point of view, Rosenfeld introduced the concept of connetedness for a fuzzy subset in a
rectangular array of integer-coordinate points and studied the properties for picture
analysis and description [2]. The purpose of this paper is to extend the concept of
“fuzzy connectedness” and the properties to topological spaces. In section 2 we shall
define strongly arcwise-connectedness and weakly arcwise-connectedness and discuss
the properties. In section 3 we shall study the properties of tops in metric space and
show that “arcwise-connected components” of tops with respect to a fuzzy subset have

the properties simliar to standard ones.

2. Fuzzy Arcwise-Connectedness

Let X be a topological space. By a fuzzy subset of X, we mean a map from X to
the interval [0, 1]. A continuous map ¢ from [0, 1} to X is called a continuous curve

from ¢ (0)to ¢ (1) in X. Throughout this section let X be a topological space, ¢ a
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fuzzy subset and ¢ a continuous curve in X.

For a continuous curve ¢ in X we define the strength So (@) of ¢ with respect to
oasinf{o{@®)):0=t=1 ).

When P and Q are arcwise-connected in the standard sense, that is, there is a
continuous curve in X from P to Q, we define the degree of connectedness Co (P, Q) of
P and Q with respect to ¢ as sup {So(#)} where the supremum is taken over all
continuous curves from P to Q. We clearly have the inequality 0 =Co (P,Q) =< Min

{oP),0Q}.

DEFENITION 2. 1. Let P and Q be in X. If the equality Co (P,Q)=Min { o (P),
o (Q)} holds, we say that P and Q are weakly arcwise-connected in ¢ . By w-Co we

denote the set of all pairs (P, Q) such that P and Q are weakly arcwise-connected in ¢ .

PROPOSITION 2. 2. The relation w-Co is reflexive and symmetric, but not
necessarily transitive.

Proof. It is evident that w-Co is reflexive and symmetric. Let X be the set of all
real numbers R and ¢ (X)=|cos x|. Two pairs (0, 7 /2) and ( 7 /2, @ ) are weakly

arcwise-connected in ¢ , but 0 and 7 are not.

PROPOSITION 2. 3. Let P and Q be arcwise-connected in the standard sense.
Thenr= Co (P, Q) if and only if
(1) r= So ( ¢ )forall continuous curve ¢ fromPtoQ in X ;
(2) foreach & > 0 there is a continuous curve ¢ from P to Q in X such that o ( ¢ (1))
>r— ¢ for all t € [0, I].
Proof. Necessity. There is a continuous curve ¢ from P to Q in X such that So (¢)
>r — ¢ . Thus we have
o(p @)= So@)>r— € forall t E]0,1].
Sufficiency. From (1) we haver = Co (P, Q). For a continuous curve ¢ from P to Q
satisfying o (@ (t)) > r— & forallt & [0, 1], we get the inequality So (¢ )=r— ¢ .
Thus it follow Co (P,Q) = r.
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From Proposition 2. 3 we get easily the following:

PROPOSITION 2. 4. Let P and Q be arcwise-connected in the standard sense.
Then P and Q are weakly arcwise-connected in ¢ if and only if foreach € > O there is
a continuous curve ¢ from P to Q such that ¢ ( ¢ (t)) > Min { ¢ (P), o (Q)} — € for
allt € [0, 1].

DEFENITION 2.5. LetPand Q be in X. If there is a continuous curve ¢ from P
to Qin X suchthat ¢ ( ¢ (t)) = Min { ¢ (P), o (Q)} forallt € [0, 1], we say that P
and Q are strongly arcwise-connected in ¢ . By s-Co we denote the set of all pairs (P,
Q) such that P and Q are strongly arcwise-connented in ¢ . It is obvious that (P, Q) is

inw-Co if (P, Q) is in s-Co.

REMARK. A pair (P, Q) in w-Co is not necessarily in s-Co. In fact, let X be the
two-dimensional Euclidean space R>. We set a fuzzy subset ¢ of X as follows:

1—|y|] ify#0and |y|=1

0 ifjy}>1
o (x,y)=
() 1 if (x,y) =(0,0) or (1,0)
0 ify=0,x+#0 and x # l.

If we set P = (0, 0) and Q = (1, 0), P and Q are weakly arcwise-connented in ¢ but not
strongly arcwise-connented in ¢ .
As in Proposition 2. 2, we see that the relation s-Co is reflexive and symmetric, but

not necessarily transitive.

REMARK. If ¢ (P)=0, then (P, Q) is in s-Co forall Q € X.

PROPOSITION 2. 6. Let (P, Q) and (Q, R) be in s-Co (respectively w-Co). If o
(Qz=Min{o P), o (R}, PRIisins-Co. If 0 (Q) = Min { o (P), o (R)},(P,R)
is in s-Co (respectively w-Co).

Proof. Let (P, Q), (Q,R) be ins-Co and ¢ (Q) = Min {oc(P), 0 (R)}. Thereisa
continuous curve ¢ , (respectively ¢ ) from P to Q (respectively from Q to R) such that
o (¢, ()= MinfoP), o R)}= o (P) (respectively o ( (1)) = Min{o(Q), o (R)}
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= o (R)) forall t € [0, 1]. It is obvious that the composition ¢ of ¢,and ¢,isa
continuous curve fromPto Q and ¢ ( ¢ (t)) = Min { 0 (Q), ¢ (R)}. Thus (P,R)isin

s-Co. The other cases are established in a similar fashion.

DEFENTION 2. 7. A crisp subset S of X is said to be strongly (respectively
weakly) arcwise-connected in ¢ if P and Q are strongly (respectively weakly)
arcwise-connected in ¢ for all P, Q € S. A crisp subset S of X is said to be arcwise-
connected in the standard sense if P and Q are arcwise-connected in the standard sense

forall P,Q € S.

We easily have the following:
PROPOSITION 2. 8. If a crisp subset S on which ¢ is constant is arcwise-
connected in the standard sense, S is strongly (therefore weakly) arcwise-connected in

o .

REMARK. A strongly arcwise-connected crisp subset on which ¢ is constant is
not necessarily arcwise-connected in the standard sense.
In fact, let X be the two-dimensional Euclidean space R?,
S={(y):X*+yY =<1} U{Xxy):(x=3+y < 1}and
1/2 if(x,y)eS

7 (6y)= {1 if (x,7) &8.

Then S is strongly arcwise-connected in ¢ but not arcwise-connected in the standard

sense.

3. Tops and Connected Components

Throughout this section let X be a metric space with metric d and ¢ a fuzzy subset
of X.

For two crisp subsets S, T of a metric space X we define d (S, T) as d(5, T) =
inf {d(P,Q):P &S, Q €T} and denote by U (S ; & ) the set of all P in X such that
dP,S)< ¢.
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DEFENITION 3: 1. Let X be a metric space and o a fuzzy subset of X. We say
that a crisp subset II of X is a plateau in o if the following conditions are satisfied:
(1) o (P)=0(Q) forallP,Q & II,
(2) 1I is arcwise-connected in the standard sense,
(3) there existsa € > O such that

o(P)# c(Q) foralPE II,QeEU(Il; e )\II.

We call a plateau IT atopif 0 (P)> o (Q) forallPE II,Q € U(Il; e )\IIL.
Similarly we call a plateau II a bottom if ¢ (P)< ¢ (Q) foralPE€ II ,Q € U(II;
e)\VII.

REMARK. From Proposition 2. 8, tops are strongly arcwise-connected in o .

DEFENITION 3. 2. Let I C X beatopin o . We define three crisp subsets as
follows:
A (Il )={P € X there is a continuous curve ¢ from P to some point Q in II such
that 0 (¢(s)) =o(¢(t))forO=s=t=1}
B (I1) = {P € X ; there is a continuous curve ¢ from P to some point Q in II such that
o (P)=L o(p(t)) =0(Q)forO=t =1}.
C (II) = {P € X ; there is a continuous curve ¢ from P to some point Q in II such that
o P)=< o(é(t)) forO=t =1}

Itisclearthat 1 CA(II)CB(II)CC(II) iflisatopin o .

PROPOSITION 3.3. Let II C Xbeatopin ¢ . If P € Il and Q € II are strongly
arcwise-connected in o , we have o (Q) < o (P).

Proof. Sincell isatopino ,thereisae >0 suchthato (P) <o (Q)forP'EIl,
Q'€ U(Il ; &€ ) \II . Therefore it follows thato (P)>c (Q)if Qisin U(Il ;& )\II.
Assume that Q isnotin U (II ; & ). There is a continuous curve ¢ from Q to P such
that o (¢(t)) =2 Min{o (P),0(Q)}forallt e [0, 1]

Since the functions d (>~ , II): X € P—>d (P, II) € R and ¢ are continuous,
the composition of these two functions

f:[0,1]12t—=>d(o @), II)ER
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is continuous.
It follows from f (0)=d (Q, I1 ) > & ,f (1) =d (p, II ) = 0 and the continuity of the
function f that there existsa t & (0, 1) suchthat O <f(t)=d (@ (t), I ) < € .
This inequality menas that the point ¢ (t;) belongsto U(II; € ) \ II . Therefore we
get

Min {o(P), 0@} =0 (¢ (1) <0 (P).
Thus we obtain ¢ (Q) < o (P). This completes the proof.

REMARK. It follows from Proposition 3. 3 that if II , II * are tops in ¢ , then
eitherII =1 or INII"=¢.

PROPOSITION 3. 4. Let I € X beatopin ¢ and Pin X. Then the following
conditions are equivalent:

(1) PisinC(1I1),

(2) forsome point Q in IT , P and Q are strongly arcwise-connected in o ,

(3) Pand Q are strongly arcwise-connected in d for alQin II .

Proof. It is trivial that condition (1) implies (2) and condition (3) implies (2).
Assuming thtat condition (2) holds, there exists a continuou scurve ¢ from P to Q such
that o (¢ (1)) 2 Min {o(P), 0 (@)} for all t € [0, 1]

Since ¢ (Q) > o (P) from Proposition 3. 3, condition (1) follows. Again assume
that condition (2) hokds. Then for each Q’ in II , Q and Q' are strongly
arcwise-connected in ¢ from Proposition 2. 8 since Q and Q’ are arcwise-connected in
the standard sense.

Therefore (3) follows from Proposition 2. 6 and the fact that ¢ (Q) > o (P). This

completes the proof.
The following is easily obtained from Proposition 2. 6, 3. 3 and 3. 4.

PROPOSITION 3. 5. Let II € Xbeatopin ¢ . If P,Qbein C(II ), then P and

Q are strongly arcwise-connected in o .

THEOREM 3. 6. Let IT € Xand II “C Xbetopsin o . If IT # II 7, then the
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following holds.
() d(II,II ) >0,inparticular II N II "= ¢,
@Cc(m)na =¢,

Proof. (1) We assume that ¢ (P)=r forallP € Il , 0 (Q)=r"forallQ € II ~
andr” = 1. Since II istopin & ,there existsa € >Osuchthat r= ¢ (P)> o (Q) for
PEI, Qe U(Il; e)\II. Thus(U(I; e )\II)NII"=¢.

We remarked earlierthat II NI~ = ¢ . SowehaveU(Il; e )N Il " = ¢ ;
thewrfore d(Q, 11 ) = ¢ forallQ € II "Itfollowsd (II,II ") = ¢ >0.

(2) Suppose that C (IT )N II * were not empty. If Pisin C(II )NII * andP & IT~

P and Q are strongly arcwise-connected in ¢ for some point Q in II . From Proposition
3.3 we have o (P) < ¢ (Q). On the other hand, we have o (P} > o (Q) by using
Proposition 3. 3 since P is in the top IT “ . This is a contradiction. This completes the

proof.

Though the relation S-Co is not an equivalence relation, Proposition 3. 5 and

Theorem 3. 6 mean that C (II') is a “connected component”.

EXAMPLE. Let X be R and ¢ be as follows:

1 o
p ifr=s-1
1 if-12x=0
o@ =1 -+l if0=szx =1
—-;—(x—2)2+% Flsr=3
0 if3 =1

Then II,=[ — 1,0] and II,= {2} are tops in o and weget C(II,)=( — e, 1] U [3,
w)and C(I,)=[1,00]. ThusC(II,) N C(II,) # ¢ .

The author does not know whether these results on tops in metric spaces can be

extended to general topological spaces.
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Abstract

New insights are given into arcwise-connectedness in topological spaces from the point
of view of fuzzy set theory. The concept of arcwise-connectedness with respect to a
fuzzy subset is introduced. In particular, “arcwise-connected components” of a crisp

subset with respect to a fuzzy sbset are defined and discussed in case of metric spaces.



