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There are several inequalities related to capacity of Gaussian channel with feedback.
We give an answer for unsolved problem under some condition. And also we give a

new inequality in the case of M A(1) Gaussian noise.
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1 Gaussian Channels
The following model for a discrete time Gaussian channel with feedback is considered:
Y,=5S.+2%2Z,, n=1,2,...,

where Z = {Z,;n = 1,2,...} is a non-degenerate, zero mean Gaussian process repre-
senting the noise and S = {S,;;n = 1,2,...} and Y = {Y,;;n = 1,2,...} are stochastic
processes representing input signals and output signals, respectively. The channel is with
noiseless feedback, so 5, is a function of a message to be transmitted and the output sig-
nals Y7,...,Y,_1. For a code of rate R and length n, with code words z"(W,Y"~1),
W e {1,...,2"%} and a decoding function g,, : R™ — {1,..., 2"} the probability of
error is

Pe™ = Pr{g,(Y") £ W;Y" = a"(W,Y"" 1) + 2"},
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where W is uniformly distributed over {1, ..., 2"} and independent of Z". The signal is
subject to an expected power constraint
1 n
~ 3 E[S}]<P,

n <
i=1

and the feedback is causal, i.e., .S; is dependent of Z1, ..., Z; 1 fori =1,2,...,n. Simi-
larly, when there is no feedback, .S; is independent of Z". We denote by Rg?) and R(Zn) the
covariance matrices of X and Z, respectively. It is well known that a finite block length

capacity is given by

Cn,FB,Z(P) = max — logi,
on |R(")|

(n)
X

where the maximum is taken over all symmetric, nonnegative definite matrix R’ and

strictly lower triangular matrix B, such that

Te[(I + B)RY (I + BY) + BRYVB'] < nP.
Similarly, let C), z(P) be the maximal value when B = 0, i.e. when there is no feedback.
Under these conditions, Cover and Pombra proved the following.

Proposition 1.1 (Cover and Pombra [6]). For every € > 0 there exist codes, with block
length n and 2(Cn.rp,2(P)—¢) codewords, n = 1,2, ..., such that Pem) - 0, as n — oo.
Conversely, for every € > 0 and any sequence of codes with 2™(Cn.r5.2(P)+€) codewords
and block length n, Pe\™ is bounded away from zero for all n. The same theorem holds in

the special case without feedback upon replacing C,, pp, z(P) by Cy, z(P).
When block length n is fixed, C), z(P) is given exactly.

Proposition 1.2 (Gallager [10]).

nP+4+ri+- -+
Cp.z(P) = o Zlog = )

where 0 < ry <19 < --- <1, are eigenvalues ofR(n), and k (< n) is the largest integer
satisfying nP +r1 +rg + -+ - + 15 > krg.

2 Mixed Gaussian Channels with Feedback

Let Z,, Z> be Gaussian processes with mean 0 and covariance matrices R(an), Rg;),
respectively. A mixed Gaussian channel is defined by an additive Gaussian channel with
noise Z whose mean is 0 and whose covariance matrix is

R = RS + 8RS,
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where @, 3 > 0 (a+ 8 = 1). Let C,, ;(P) be the capacity of mixed Gaussian channel and
C’n’ FB,Z (P) the capacity of mixed Gaussian channel with feedback.
Theorem 2.1 (Y-C-Y [20], Y-Y-C [21], C-Y [4]). Forany P >0,

Cn,Z(P) < O‘CTL721 (P) + 6CR,Z2 (P)

Theorem 2.2 (Y-C-Y [20], Y-Y-C [21], C-Y [4]). For any P > 0, there exist Py, P, >
0 (P = Py + 8P,) such that

C,rp.z(P) <aCprp .z (P1)+ BCh Fp,z,(P2).

These theorems are proved by the property that log(1 + ¢~!) is an operator convex

function. But we have the following conjecture.

Conjecture 2.1. Forany P > 0,
C, rp.2(P) < aCyrp z,(P)+ BCh rp,2z,(P).
We solved the above conjecture partially.

Theorem 2.3 (Yanagi, Yu, and Chao [21]). If one of the following conditions is satisfied,

then the conjecture holds.

@ Ry =Ry
(2) R is white.

3 Kim’s Result

Let Z = {Z;;i = 1,2,...} be a discrete time first order moving average Gaussian
process that we denote by M A(1). M A(1) can be characterized in the following three
properties.

(1) Z;=aU;—1 4+ U;, i =1,2,..., where U; ~ N(0,1) are i.i.d.
(2) Spectral density function (SDF) is given by

1 , 1
fO) = 2—’1 —&—oze_v“z = —(14+a®+2acos\).
7

2
3) Z,=(Zi,...,Zy) ~ N,(0, Kz) for each n, where covariance matrix K is given
by the following:
1+ a? « 0 0
« 1+ a? a 0
Ky = 0 a 1+a? 0
. . . N

0 0 0 R
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We define the capacity of Gaussian channel with the M A(1) Gaussian noise by the
following:

CFB,Z(P) = nlgf;o Cn,FB,Z(P)

Resently Kim obtained C'rp, 7z (P) in above conditions, which is the first result of feed-
back capacity.

Theorem 3.1 (Kim [13]).
Crp,z(P) = —log g,

where xg is a unique positive root of

Pr? = (1—2%)(1 — |ajz)? (3.1)

[¢§]

ef

1
T

Figure 3.1: Graph of Px? = (1 — 2?)(1 — |a|z)?, where P = 1,0 = 0.5

4 An Inequality Related to Conjecture 2.1

The following inequality holds:

Razipw < aRz + BRw < R /574 /8w

where
Z ~MA(L,p), Zi =U; +pU;—1, 0<p<1,
W~ MA(LQ)7 Wi = U’L' +qUi—17 0< q < 1.
Since
aRz + BRw = Raz4pw + afRz_w,
we have

Rozipw < aRz + BRw.
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On the other hand we have

aRz 4+ BRw + VaB(Rzw + Rwz) = R\/aZJH/BW,

where
24+2pq p+gq 0 0
p+q 24+2pg p+gq 0
Ryw + Rwz = 0 p+q 24+2pq ... 0
: : : p+q
0 0 0 .. 24 2pg

The eigenvalues r; of this covariance matrix are represented as follows.

ri = 2+ 2pq—2(p+q)cos

1

n+1
> 2+42pg—2(p+q) =2(1-p)(1—q)>0.

Since Rzw + Rwz > 0, we have aRz + BRw < R\/az+\//*aw~

Proposition 4.1. The following inequality holds.

Crp,yaz+vaw (P) < Crp 7(P) < Crpazt+pw (P),
where R; = aRz + SRy
We put V = \/aZ + +/BW. Then

Vi = (Va+VBU; + (Vap + /B Ui

And we also put

vap++/Bq
Va++/3

_NaZ+BW Vop++/Bq
Y= Va+ /B MA(L ﬁ+\/ﬁ)'

Yi=U; + Ui_1.

Then

1 R
Cn,rp,v(P) = max {271 log | |§;‘|/|;TT[R5] < nP}

1 R
— max { log M, TT[RS] é ’I’LP}
2n 7 |R/arvmy

1. |Rs/(/atvp)+vl nP
= max {4 — log ——~——"—""—:Tr[R 3 ]<}
o | SV (VA V)
P
=ChFBY ()
(Va +vB)

We propose Conjecture 4.1 which is weaker than Conjecture 2.1.
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Conjecture 4.1. For any P > 0,

Crp,yaz+yaw(P) <aCrp z(P) + BCrpw(P).

In particular we prove the Conjecture in the case of « = § = 1/2.

Since we can represent (3.1) as

o 1 VP
ol == - ———,
T V1-—22

we put the function
1

t,P)=-—

o=y~

in order to prove the Conjecture. Then there uniquely exist 0 < a < b < 1 such that
f(a,P) =1, f(b,P)=0. Thatis

3

1
a

10

N
g o »

NN
(IR NS

-10

Figure 4.1: Graph of f(t, P) = 1/t — v/P//1T — {2, where P = 1.

However, since f (¢, P) is not convex function of t(a < ¢ < b), we put the following

g(t,P):t<1— VP ) %gtg%.

t2—1

concave function

Now we put L = /(1 — a)2(1 — a2) + a2. Then b and P can be represented as the
following functions of a:
p= 2
L a?
Lemma 4.1. Forany P > (,
VP 1 Vbh-+a
Vi—a? = 2—-V2Vb+a
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Figure 4.2: Graph of ¢(t, P) =t (1 —VP/VE2 = 1), where P = 1.

Proof. Since2(2—\/§)>1andL>a,
1 1 1 1
22—-V2)l-—-1)>—-——1>——-1>——1.
Rl R e B -
And since L < 1,
1—a> 1 (1 1) 1 1-VL 1 1-VL
a 2(2—-+v2) \WVL

By (4.1), /P
1—a P

a  J1—a2
The inequality is proved by putting L = a/b .

Lemma4.2. Foranyt,s (1/b<t<s<1/a),

vh—va _ Vs— Vi
Vb+ya T s+t

Proof. Since

a . t
- = min -,
b 1/p<t<s<i/a \ s

the following inequality is obtained.

\%_\/a:2 vb 1 =2
Vb +a Va+vo 2

1
Va/b+1 2

Y

2

(i)
t/s+1 2
(7 3)
Vitys 2
_ VsVt
NEERA

T2-VZI oL 2-V214vL

19
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Lemma4.3. Foranyt,s (1/b <t <s<1/a)

S0, P) + 2905, P) < o(VEs, 5.

Proof. Since g(t, P) is concave function of ¢,
P t P P
P 5) e eeg) =o(vig)
N N 2
Then we have to show the following inequality:
1 1 NG P Vit P
Zg(t. P) + =g(s, P) < (t,—)+ (s—)
59(t, P) + 59 )\/Z+\/§g 955
By Lemma 4.1 and Lemma 4.2
\/13>1\/§—\/i_2<\/§_1>
Vi—a2 = 2-V2 s+t 2-2 '
Since, for any ¢, s(1/b <t < s < 1/a),
O<s<1— VP )—t(l— VP ><1,
Vs2—1
we have the following inequality:

(- ) e 2

—_

Vi@ Jsivi 2

(7 (- 2m) (-7 5))

Since
Vi VP +<1_ \/§> VP VP
Vs +VE/1-1/12 Vi+ys) J1—-1/s2 = V1—a?
we have

(77 D%Oﬁ7041¢”;ﬂ

(- (

S5k

Therefore
(2 ) 0 =3) iy
(5 75) (- =) () e
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Then

(5 D ) (o )

NZESV 21 2) s+ VtVEE—1
e D ) (- ) e
Thus
ﬂfﬁ{t(l £1)+(1%> \t/f—tl}
+ﬁf\/§{s<1_ £1>+(1_\}§> fjl}
Z;t<1— £1>+; 1-— £1
Therefore
ﬁf\/%t(l_ @1)+\/Ef\/§8(1_ :ﬁ)
211 e (- )
Then
;g(t,P)—l—;g(s,P):;t(l— £1)+;s(1_ 82\/13_1>
Sxﬁfﬁ( s +ﬂf\/§ (- 55)
- () + () 0

Now we have the following theorem.

Theorem 4.1. For any P > 0,

1
Crp,z+w)va(P) < §CFB,Z(P) + §CFB,W(P)'

Proof. Let Cpp z(P) = —logx and Cppw(P) = —logy. By putting s = 1/x and
t = 1/y in Lemma 4.3, we have
1 1 P
S/ @ P+ 55, P) < f(Vaw 5). “2)
Since Z ~ MA(1L,p), 0 <p<land W ~ MA(1,q), 0<¢q<1,
1 VP
p=—-— = f(:z:7P)7

v J1—22
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A
TR = [y, P).

We take z such that
PrI_ 4 5)

= 5 )
Then by (4.2)

P P
r(=3) <s(vag).

Since f(t,P/2) is a decreasing function of ¢, we have z > ,/zy. Then we have the
following:

P
CFB,(Z+W)/\/§(P) = CFB,(Z+W)/2<§)

= —logz
1 1
< Z( = Z( =
< 2( logx) + 2( logy)
1 1
= §CFB,Z(P) + §CFB,W(P)- [

References

[1] H. W. Chen and K. Yanagi, On the Cover’s conjecture on capacity of Gaussian channel
with feedback, IEICE Trans. Fundamentals E80-A (1997), 2272-2275.

[2] H. W. Chen and K. Yanagi, Refinements of the half-bit and factor-of-two bounds for
capacity in Gaussian channels with feedback, IEEE Trans. Information Theory IT-45
(1999), 319-325.

[3] H. W. Chen and K. Yanagi, Upper bounds on the capacity of discrete time block-
wise white Gaussian channels with feedback, IEEE Trans. Information Theory 1T-46
(2000), 1125-1131.

[4] H. W. Chen and K. Yanagi, The convex-concave characteristics of Gaussian channel
capcity functions, IEEE Trans. Information Theory I'T-52 (2006), 2167-2172.

[5] T. M. Cover, Conjecture: Feedback does not help much, in: Open problems in com-
munication and computation, T. Cover and B. Gopinath (Ed.), Springer-Verlag, New
York, 1987, 70-71.

[6] T. M. Cover and S. Pombra, Gaussian feedback capacity, IEEE Trans. Information
Theory IT-35 (1989), 37-43.

[7] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York,
1991.

[8] A. Dembo, On Gaussian feedback capacity, IEEE Trans. Information Theory I'T-35
(1989), 1072-1089.

[9] P. Ebert, The capacity of the Gaussian channel with feedback, Bell. Syst. Tech. J. 49
(1970), 1705-1712.



On an Inequality Related to Capacity of M A(1) Gaussian Channel with Feedback 23

[10] R. G. Gallager, Information Theory and Reliable Communication, John Wiley and

Sons, New York, 1968.

[11] S. Ihara, Information Theory for Contimuous Systems, World Scientific, 1993.

[12] S. Ihara and K. Yanagi, Capacity of discrete time Gaussian channel with and without
feedback, II, Japan J. Appl. Math. 6 (1989), 245-258.

[13] Y. H. Kim, Feedback capacity of the first-order moving average Gaussian channel,
IEEE Trans. Information Theory 1T-52 (2006), 3063-3079.

[14] Y. H. Kim, A counterexample to Cover’s 2P conjecture on Gaussian feedback capac-

ity, IEEE Trans. Information Theory IT-52 (2006), 3792-3793.
[15] M. Pinsker, Talk delivered at the Soviet Information Theory Meeting, (no abstract

published), 1969.
[16] K. Yanagi, An upper bound to the capacity of discrete time Gaussian channel with

feedback, Lecture Notes in Math. 1299 (1988), 565-570.
[17] K. Yanagi, Necessary and sufficient condition for capacity of the discrete time Gaus-
sian channel to be increased by feedback, IEEE Trans. Information Theory 1T-38

(1992), 1788-1791.
[18] K. Yanagi, An upper bound to the capacity of discrete time Gaussian channel with

feedback, II, IEEE Trans. Information Theory I'T-40 (1994), 588-593.
[19] K. Yanagi, An upper bound to the capacity of discrete time Gaussian channel with

feedback, III, Bull. Kyushu Inst. Tech., Pure and Applied Mathematics 45 (1998),
1-8.
[20] K. Yanagi, H. W. Chen, and J. W. Yu, Operator inequality and its application to ca-

pacity of Gaussian channel, Taiwanese J. Math. 4 (2000), 407-416.
[21] K. Yanagi, J. W. Yu, and I. F. Chao, On some inequalities for capacity in mixed

Gaussian channels with feedback, Archives of Inequalities and Applications 2 (2004),
13-24.



