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There are several inequalities related to capacity of Gaussian channel with feedback.
We give an answer for unsolved problem under some condition. And also we give a
new inequality in the case of MA(1) Gaussian noise.
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1 Gaussian Channels

The following model for a discrete time Gaussian channel with feedback is considered:

Yn = Sn + Zn, n = 1, 2, . . . ,

where Z = {Zn;n = 1, 2, . . .} is a non-degenerate, zero mean Gaussian process repre-
senting the noise and S = {Sn; n = 1, 2, . . .} and Y = {Yn; n = 1, 2, . . .} are stochastic
processes representing input signals and output signals, respectively. The channel is with
noiseless feedback, so Sn is a function of a message to be transmitted and the output sig-
nals Y1, . . . , Yn−1. For a code of rate R and length n, with code words xn(W,Y n−1),
W ∈ {1, . . . , 2nR}, and a decoding function gn : Rn → {1, . . . , 2nR}, the probability of
error is

Pe(n) = Pr
{
gn(Y n) 6= W ; Y n = xn(W,Y n−1) + Zn

}
,

∗This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid
for Scientific Research (B), 18300003 and (C), 20540175



14 Kenjiro Yanagi and Noriyuki Yamashita

where W is uniformly distributed over {1, . . . , 2nR} and independent of Zn. The signal is
subject to an expected power constraint

1
n

n∑

i=1

E[S2
i ] ≤ P,

and the feedback is causal, i.e., Si is dependent of Z1, . . . , Zi−1 for i = 1, 2, . . . , n. Simi-
larly, when there is no feedback, Si is independent of Zn. We denote by R

(n)
X and R

(n)
Z the

covariance matrices of X and Z, respectively. It is well known that a finite block length
capacity is given by

Cn,FB,Z(P ) = max
1
2n

log
|R(n)

X + R
(n)
Z |

|R(n)
Z |

,

where the maximum is taken over all symmetric, nonnegative definite matrix R
(n)
X and

strictly lower triangular matrix B, such that

Tr[(I + B)R(n)
X (I + Bt) + BR

(n)
Z Bt] ≤ nP.

Similarly, let Cn,Z(P ) be the maximal value when B = 0, i.e. when there is no feedback.
Under these conditions, Cover and Pombra proved the following.

Proposition 1.1 (Cover and Pombra [6]). For every ε > 0 there exist codes, with block
length n and 2n(Cn,F B,Z(P )−ε) codewords, n = 1, 2, . . ., such that Pe(n) → 0, as n →∞.
Conversely, for every ε > 0 and any sequence of codes with 2n(Cn,F B,Z(P )+ε) codewords
and block length n, Pe(n) is bounded away from zero for all n. The same theorem holds in
the special case without feedback upon replacing Cn,FB,Z(P ) by Cn,Z(P ).

When block length n is fixed, Cn,Z(P ) is given exactly.

Proposition 1.2 (Gallager [10]).

Cn,Z(P ) =
1
2n

k∑

i=1

log
nP + r1 + · · ·+ rk

kri
,

where 0 < r1 ≤ r2 ≤ · · · ≤ rn are eigenvalues of R
(n)
Z , and k (≤ n) is the largest integer

satisfying nP + r1 + r2 + · · ·+ rk > krk.

2 Mixed Gaussian Channels with Feedback

Let Z1, Z2 be Gaussian processes with mean 0 and covariance matrices R
(n)
Z1

, R
(n)
Z2

,
respectively. A mixed Gaussian channel is defined by an additive Gaussian channel with
noise Z̃ whose mean is 0 and whose covariance matrix is

R
(n)

Z̃
= αR

(n)
Z1

+ βR
(n)
Z2

,



On an Inequality Related to Capacity of MA(1) Gaussian Channel with Feedback 15

where α, β ≥ 0 (α+β = 1). Let Cn,Z̃(P ) be the capacity of mixed Gaussian channel and
Cn,FB,Z̃(P ) the capacity of mixed Gaussian channel with feedback.

Theorem 2.1 (Y-C-Y [20], Y-Y-C [21], C-Y [4]). For any P > 0,

Cn,Z̃(P ) ≤ αCn,Z1(P ) + βCn,Z2(P ).

Theorem 2.2 (Y-C-Y [20], Y-Y-C [21], C-Y [4]). For any P > 0, there exist P1, P2 ≥
0 (P = αP1 + βP2) such that

Cn,FB,Z̃(P ) ≤ αCn,FB,Z1(P1) + βCn,FB,Z2(P2).

These theorems are proved by the property that log(1 + t−1) is an operator convex
function. But we have the following conjecture.

Conjecture 2.1. For any P > 0,

Cn,FB,Z̃(P ) ≤ αCn,FB,Z1(P ) + βCn,FB,Z2(P ).

We solved the above conjecture partially.

Theorem 2.3 (Yanagi, Yu, and Chao [21]). If one of the following conditions is satisfied,
then the conjecture holds.

(1) R
(n−1)
Z1

= R
(n−1)
Z2

.
(2) RZ̃ is white.

3 Kim’s Result

Let Z = {Zi; i = 1, 2, . . .} be a discrete time first order moving average Gaussian
process that we denote by MA(1). MA(1) can be characterized in the following three
properties.

(1) Zi = αUi−1 + Ui, i = 1, 2, . . ., where Ui ∼ N(0, 1) are i.i.d.

(2) Spectral density function (SDF) is given by

f(λ) =
1
2π

∣∣1 + αe−iλ
∣∣2 =

1
2π

(1 + α2 + 2α cos λ).

(3) Zn = (Zi, . . . , Zn) ∼ Nn(0,KZ) for each n, where covariance matrix KZ is given
by the following:

KZ =




1 + α2 α 0 · · · 0
α 1 + α2 α · · · 0
0 α 1 + α2 · · · 0
...

...
...

... α

0 0 0 · · · 1 + α2




.
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We define the capacity of Gaussian channel with the MA(1) Gaussian noise by the
following:

CFB,Z(P ) = lim
n→∞

Cn,FB,Z(P )

Resently Kim obtained CFB,Z(P ) in above conditions, which is the first result of feed-
back capacity.

Theorem 3.1 (Kim [13]).
CFB,Z(P ) = − log x0,

where x0 is a unique positive root of

Px2 = (1− x2)(1− |α|x)2. (3.1)
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Figure 3.1: Graph of Px2 = (1− x2)(1− |α|x)2, where P = 1, α = 0.5

4 An Inequality Related to Conjecture 2.1

The following inequality holds:

RαZ+βW ≤ αRZ + βRW ≤ R√αZ+
√

βW ,

where

Z ∼ MA(1, p), Zi = Ui + pUi−1, 0 < p ≤ 1,

W ∼ MA(1, q), Wi = Ui + qUi−1, 0 < q ≤ 1.

Since

αRZ + βRW = RαZ+βW + αβRZ−W ,

we have

RαZ+βW ≤ αRZ + βRW .
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On the other hand we have

αRZ + βRW +
√

αβ(RZW + RWZ) = R√αZ+
√

βW ,

where

RZW + RWZ =




2 + 2pq p + q 0 . . . 0
p + q 2 + 2pq p + q . . . 0

0 p + q 2 + 2pq . . . 0
...

...
...

. . . p + q

0 0 0 . . . 2 + 2pq




.

The eigenvalues ri of this covariance matrix are represented as follows.

ri = 2 + 2pq − 2(p + q) cos
iπ

n + 1
(i = 1, 2, . . . , n)

≥ 2 + 2pq − 2(p + q) = 2(1− p)(1− q) ≥ 0.

Since RZW + RWZ ≥ 0, we have αRZ + βRW ≤ R√αZ+
√

βW .

Proposition 4.1. The following inequality holds.

CFB,
√

αZ+
√

βW (P ) ≤ CFB,Z̃(P ) ≤ CFB,αZ+βW (P ),

where RZ̃ = αRZ + βRW .

We put V =
√

αZ +
√

βW. Then

Vi = (
√

α +
√

β)Ui + (
√

αp +
√

βq)Ui−1.

And we also put

Yi = Ui +
√

αp +
√

βq√
α +

√
β

Ui−1.

Then

Y =
√

αZ +
√

βW√
α +

√
β

∼ MA

(
1,

√
αp +

√
βq√

α +
√

β

)
.

Cn,FB,V (P ) = max
{

1
2n

log
|RS+V |
|RV | ; Tr[RS ] ≤ nP

}

= max
{

1
2n

log
|RS+(

√
α+

√
β)Y |

|R(
√

α+
√

β)Y |
;Tr[RS ] ≤ nP

}

= max
{

1
2n

log
|RS/(

√
α+

√
β)+Y |

|RY | ; Tr[RS/(
√

α+
√

β)] ≤
nP

(
√

α +
√

β)2

}

= Cn,FB,Y

(
P

(
√

α +
√

β)2

)
.

We propose Conjecture 4.1 which is weaker than Conjecture 2.1.
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Conjecture 4.1. For any P > 0,

CFB,
√

αZ+
√

βW (P ) ≤ αCFB,Z(P ) + βCFB,W (P ).

In particular we prove the Conjecture in the case of α = β = 1/2.
Since we can represent (3.1) as

|α| = 1
x
−

√
P√

1− x2
,

we put the function

f(t, P ) =
1
t
−

√
P√

1− t2

in order to prove the Conjecture. Then there uniquely exist 0 < a < b < 1 such that
f(a, P ) = 1, f(b, P ) = 0. That is

1 =
1
a
−

√
P√

1− a2
, 0 =

1
b
−

√
P√

1− b2
. (4.1)
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Figure 4.1: Graph of f(t, P ) = 1/t−√P/
√

1− t2, where P = 1.

However, since f(t, P ) is not convex function of t(a ≤ t ≤ b), we put the following
concave function

g(t, P ) = t

(
1−

√
P√

t2 − 1

)
,

1
b
≤ t ≤ 1

a
.

Now we put L =
√

(1− a)2(1− a2) + a2. Then b and P can be represented as the
following functions of a:

b =
a

L
, P =

L2

a2
− 1.

Lemma 4.1. For any P > 0,
√

P√
1− a2

≥ 1
2−√2

√
b−√a√
b +

√
a
.
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Figure 4.2: Graph of g(t, P ) = t
(
1−√P/

√
t2 − 1

)
, where P = 1.

Proof. Since 2(2−√2) > 1 and L > a,

2(2−
√

2)
(

1
a
− 1

)
>

1
a
− 1 >

1√
a
− 1 >

1√
L
− 1.

And since L < 1,

1− a

a
>

1
2(2−√2)

(
1√
L
− 1

)
=

1
2−√2

1−√L

2
√

L
>

1
2−√2

1−√L

1 +
√

L
.

By (4.1),
1− a

a
=

√
P√

1− a2
.

The inequality is proved by putting L = a/b .

Lemma 4.2. For any t, s (1/b ≤ t ≤ s ≤ 1/a),
√

b−√a√
b +

√
a
≥
√

s−√t√
s +

√
t
.

Proof. Since √
a

b
= min

1/b≤t≤s≤1/a

√
t

s
,

the following inequality is obtained.
√

b−√a√
b +

√
a

= 2

( √
b√

a +
√

b
− 1

2

)
= 2

(
1√

a/b + 1
− 1

2

)

≥ 2

(
1√

t/s + 1
− 1

2

)

= 2
( √

s√
t +

√
s
− 1

2

)

=
√

s−√t√
s +

√
t
.
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Lemma 4.3. For any t, s (1/b ≤ t ≤ s ≤ 1/a)

1
2
g(t, P ) +

1
2
g(s, P ) ≤ g

(√
ts,

P

2

)
.

Proof. Since g(t, P ) is concave function of t,
√

s√
t +

√
s
g
(
t,

P

2

)
+

√
t√

t +
√

s
g
(
s,

P

2

)
≤ g

(√
ts,

P

2

)
.

Then we have to show the following inequality:

1
2
g(t, P ) +

1
2
g(s, P ) ≤

√
s√

t +
√

s
g
(
t,

P

2

)
+

√
t√

t +
√

s
g
(
s,

P

2

)
.

By Lemma 4.1 and Lemma 4.2
√

P√
1− a2

≥ 1
2−√2

√
s−√t√
s +

√
t

=
2

2−√2

( √
s√

s +
√

t
− 1

2

)
.

Since, for any t, s(1/b ≤ t ≤ s ≤ 1/a),

0 ≤ s

(
1−

√
P√

s2 − 1

)
− t

(
1−

√
P√

t2 − 1

)
≤ 1,

we have the following inequality:
(

1− 1√
2

) √
P√

1− a2
≥

√
s√

s +
√

t
− 1

2

≥
( √

s√
s +

√
t
− 1

2

){
s

(
1−

√
P√

s2 − 1

)
− t

(
1−

√
P√

t2 − 1

)}
.

Since √
s√

s +
√

t

√
P√

1− 1/t2
+

(
1−

√
s√

t +
√

s

) √
P√

1− 1/s2
≥

√
P√

1− a2
,

we have
( √

s√
s +

√
t
− 1

2

){
t

(
1−

√
P√

t2 − 1

)
− s

(
1−

√
P√

s2 − 1

)}

+
(

1− 1√
2

){ √
s√

s +
√

t

√
P√

1− 1/t2
+

(
1−

√
s√

t +
√

s

) √
P√

1− 1/s2

}
≥ 0.

Therefore
( √

s√
s +

√
t
− 1

2

)
t

(
1−

√
P√

t2 − 1

)
+

(
1− 1√

2

) √
s√

s +
√

t

√
Pt√

t2 − 1

+
(

1
2
−

√
s√

s +
√

t

)
s

(
1−

√
P√

s2 − 1

)
+

(
1− 1√

2

) √
t√

t +
√

s

√
Ps√

s2 − 1
≥ 0.
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Then
( √

s√
s +

√
t
− 1

2

)
t

(
1−

√
P√

t2 − 1

)
+

(
1− 1√

2

) √
s√

s +
√

t

√
Pt√

t2 − 1

+
( √

t√
t +

√
s
− 1

2

)
s

(
1−

√
P√

s2 − 1

)
+

(
1− 1√

2

) √
t√

t +
√

s

√
Ps√

s2 − 1
≥ 0.

Thus
√

s√
t +

√
s

{
t

(
1−

√
P√

t2 − 1

)
+

(
1− 1√

2

) √
Pt√

t2 − 1

}

+
√

t√
t +

√
s

{
s

(
1−

√
P√

s2 − 1

)
+

(
1− 1√

2

) √
Ps√

s2 − 1

}

≥ 1
2
t

(
1−

√
P√

t2 − 1

)
+

1
2
s

(
1−

√
P√

s2 − 1

)
.

Therefore
√

s√
s +

√
t
t

(
1−

√
P/2√

t2 − 1

)
+

√
t√

t +
√

s
s

(
1−

√
P/2√

s2 − 1

)

≥ 1
2
t

(
1−

√
P√

t2 − 1

)
+

1
2
s

(
1−

√
P√

s2 − 1

)
.

Then

1
2
g(t, P ) +

1
2
g(s, P ) =

1
2
t

(
1−

√
P√

t2 − 1

)
+

1
2
s

(
1−

√
P√

s2 − 1

)

≤
√

s√
t +

√
s
t

(
1−

√
P/2√

t2 − 1

)
+

√
t√

t +
√

s
s

(
1−

√
P/2√

s2 − 1

)

=
√

s√
t +

√
s
g
(
t,

P

2

)
+

√
t√

t +
√

s
g
(
s,

P

2

)
.

Now we have the following theorem.

Theorem 4.1. For any P > 0,

CFB,(Z+W )/
√

2(P ) ≤ 1
2
CFB,Z(P ) +

1
2
CFB,W (P ).

Proof. Let CFB,Z(P ) = − log x and CFB,W (P ) = − log y. By putting s = 1/x and
t = 1/y in Lemma 4.3, we have

1
2
f(x, P ) +

1
2
f(y, P ) ≤ f

(√
xy,

P

2

)
. (4.2)

Since Z ∼ MA(1, p), 0 < p ≤ 1 and W ∼ MA(1, q), 0 < q ≤ 1,

p =
1
x
−

√
P√

1− x2
= f(x, P ),
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q =
1
y
−

√
P√

1− y2
= f(y, P ).

We take z such that
p + q

2
= f

(
z,

P

2

)
.

Then by (4.2)

f
(
z,

P

2

)
≤ f

(√
xy,

P

2

)
.

Since f(t, P/2) is a decreasing function of t, we have z ≥ √
xy. Then we have the

following:

CFB,(Z+W )/
√

2(P ) = CFB,(Z+W )/2

(P

2

)

= − log z

≤ 1
2

(
− log x

)
+

1
2

(
− log y

)

=
1
2
CFB,Z(P ) +

1
2
CFB,W (P ).
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