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Abstract. We introduce a generalized Wigner-Yanase skew information and
then derive the trace inequality related to the uncertainty relation. This in-
equality is a non-trivial generalization of the uncertainty relation derived by
S.Luo for the quantum uncertainty quantity excluding the classical mixure.
In addition, several trace inequalities on our generalized Wigner-Yanase skew
information are argued.

1. Introduction

Wigner-Yanase skew information

Iρ(H) ≡ 1
2
Tr

[(
i
[
ρ1/2,H

])2
]

(1.1)

= Tr[ρH2]− Tr[ρ1/2Hρ1/2H]

was defined in [8]. This quantity can be considered as a kind of the degree for non-
commutativity between a quantum state ρ and an observable H. Here we denote
the commutator by [X, Y ] ≡ XY − Y X. This quantity was generalized by Dyson

Iρ,α(H) ≡ 1
2
Tr
[
(i [ρα,H])

(
i[ρ1−α,H]

)]
= Tr[ρH2]− Tr[ραHρ1−αH], α ∈ [0, 1]

which is known as the Wigner-Yanase-Dyson skew information. It is famous that
the convexity of Iρ,α(H) with respect to ρ was successfully proven by E.H.Lieb in
[5]. From the physical point of view, an observable H is generally considered to be
an unbounded operator, however in the present paper, unless otherwise stated, we
consider H ∈ B(H), where B(H) represents the set of all bounded linear operators
on the Hilbert space H, as a mathematical interest. We also denote the set of
all self-adjoint operators (observables) by Lh(H) and the set of all density opera-
tors (quantum states) by S(H) on the Hilbet space H. The relation between the
Wigner-Yanase skew information and the uncertainty relation was studied in [7].
Moreover the relation between the Wigner-Yanase-Dyson skew information and the
uncertainty relation was studied in [4, 9]. In our previous paper [9], we defined a
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generalized skew information and then derived a kind of an uncertainty relation. In
the section 2, we introduce a new generalized Wigner-Yanase skew information. On
a generalization of the original Wigner-Yanase skew information, our generalization
is different from the Wigner-Yanase-Dyson skew information and a generalized skew
information defined in our previous paper [9]. Moreover we define a new quantity
by our generalized Wigner-Yanase skew information and then we derive the trace
inequality expressing a kind of the uncertainty relation.

2. Trace inequalities on a generalized Wigner-Yanase skew
information

Firstly we review the relation between the Wigner-Yanase skew information and
the uncertainty relation. In quantum mehcanical system, the expectation value
of an observable H in a quantum state ρ is expressed by Tr[ρH]. It is natu-
ral that the variance for a quantum state ρ and an observable H is defined by
Vρ(H) ≡ Tr[ρ (H − Tr[ρH]I)2] = Tr[ρH2] − Tr[ρH]2. It is famous that we have
the Heisenberg’s uncerainty relation:

(2.1) Vρ(A)Vρ(B) ≥ 1
4
|Tr[ρ[A,B]]|2

for a quantum state ρ and two observables A and B. The further strong result was
given by Schrödinger

Vρ(A)Vρ(B)− |Covρ(A,B)|2 ≥ 1
4
|Tr[ρ[A,B]]|2,

where the covariance is defined by Covρ(A,B) ≡ Tr[ρ (A− Tr[ρA]I) (B − Tr[ρB]I)].
However, the uncertainty relation for the Wigner-Yanase skew information failed.
(See [7, 4, 9].)

Iρ(A)Iρ(B) ≥ 1
4
|Tr[ρ[A,B]]|2.

Recently, S.Luo introduced the quantity Uρ(H) representing a quantum uncertainty
excluding the classical mixture:

(2.2) Uρ(H) ≡
√

Vρ(H)2 − (Vρ(H)− Iρ(H))2,

then he derived the uncertainty relation on Uρ(H) in [6]:

(2.3) Uρ(A)Uρ(B) ≥ 1
4
|Tr[ρ[A,B]]|2.

Note that we have the following relation

(2.4) 0 ≤ Iρ(H) ≤ Uρ(H) ≤ Vρ(H).

The inequality (2.3) is a refinement of the inequality (2.1) in the sense of (2.4).
In this section, we study one-parameter extended inequality for the inequality

(2.3).

Definition 2.1. For 0 ≤ α ≤ 1, a quantum state ρ and an observable H, we define
the Wigner-Yanase-Dyson skew information

(2.5) Iρ,α (H) ≡ 1
2
Tr
[
(i [ρα,H0])

(
i
[
ρ1−α,H0

])]
and we also define

Jρ,α (H) ≡ 1
2
Tr
[
{ρα,H0}

{
ρ1−α,H0

}]
,
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where H0 ≡ H − Tr[ρH]I and we denote the anti-commutator by {X, Y } = XY +
Y X.

Note that we have
1
2
Tr
[
(i [ρα,H0])

(
i
[
ρ1−α,H0

])]
=

1
2
Tr
[
(i [ρα,H])

(
i
[
ρ1−α,H

])]
but we have

1
2
Tr
[
{ρα,H0}

{
ρ1−α,H0

}]
6= 1

2
Tr
[
{ρα,H}

{
ρ1−α,H

}]
.

Then we have the following inequalities:

(2.6) Iρ,α(H) ≤ Iρ(H) ≤ Jρ(H) ≤ Jρ,α(H),

since we have Tr[ρ1/2Hρ1/2H] ≤ Tr[ραHρ1−αH]. (See [1, 2] for example.) If we
define

(2.7) Uρ,α(H) ≡
√

Vρ(H)2 − (Vρ(H)− Iρ,α(H))2,

as a direct generalization of Eq.(2.2), then we have

(2.8) 0 ≤ Iρ,α(H) ≤ Uρ,α(H) ≤ Uρ(H)

due to the first inequality of (2.6). We also have

(2.9) Uρ,α(H) =
√

Iρ,α(H)Jρ,α(H).

Remark 2.2. From the inequalities (2.4), (2.6) and (2.8), our situation is that we
have

0 ≤ Iρ,α(H) ≤ Iρ(H) ≤ Uρ(H)

and
0 ≤ Iρ,α(H) ≤ Uρ,α(H) ≤ Uρ(H).

Therefore our first concern is the ordering between Iρ(H) and Uρ,α(H). However
we have no ordering between them. Because we have the following examples. We
set the density matrix ρ and the observable H such as

ρ =
(

0.6 0.48
0.48 0.4

)
,H =

(
1.0 0.5
0.5 5.0

)
.

If α = 0.1, then Uρ,α(H) − Iρ(H) approximately takes −0.14736. If α = 0.2, then
Uρ,α(H)− Iρ(H) approximately takes 0.4451.

Conjecture 2.3. Our second concern is to show an uncertainty relation with re-
spect to Uρ,α(H) as a direct generalization of the inequality (2.3) such that

(2.10) Uρ,α(X)Uρ,α(Y ) ≥ 1
4
|Tr [ρ[X, Y ]] |2

However we have not found the proof of the above inequality (2.10). In addition,
we have not found any counter-examples of the inequality (2.10) yet.

In the present paper, we introduce a generalized Wigner-Yanase skew information
which is a generalization of the Wigner-Yanase skew information defined in Eq.(1.1),
but different from the Wigner-Yanase-Dyson skew information defined in Eq.(2.5).
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Definition 2.4. For 0 ≤ α ≤ 1, a quantum state ρ and an observable H, we define
a generalized Wigner-Yanase skew information by

Kρ,α(H) ≡ 1
2
Tr

[(
i

[
ρα + ρ1−α

2
,H0

])2
]

and we also define

Lρ,α(H) ≡ 1
2
Tr

[({
ρα + ρ1−α

2
,H0

})2
]

.

Remark 2.5. For two generalized Wigner-Yanase skew informations Iρ,α(H) and
Kρ,α(H), we have the relation:

Iρ,α(H) ≤ Kρ,α(H).

Indeed, for a spertral decomposition of ρ such as ρ =
∑

k λk|φk〉〈φk|, we have the
following expressions:

Iρ,α(H) =
1
2

∑
m,n

(λα
m − λα

n)
(
λ1−α

m − λ1−α
n

)
|〈φm|H|φn〉|2

and

Kρ,α(H) =
1
2

∑
m,n

(
λα

m − λα
n + λ1−α

m − λ1−α
n

2

)2

|〈φm|H|φn〉|2.

By simple calculations, we see(
λα

m − λα
n + λ1−α

m − λ1−α
n

2

)2

− (λα
m − λα

n)
(
λ1−α

m − λ1−α
n

)
≥ 0.

Throughout this section, we put X0 ≡ X − Tr[ρX]I and Y0 ≡ Y − Tr[ρY ]I.
Then we show the following trace inequality.

Theorem 2.6. For a quantum state ρ and observables X, Y and α ∈ [0, 1], we have

(2.11) Wρ,α (X) Wρ,α (Y ) ≥ 1
4

∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]

]∣∣∣∣∣
2

where
Wρ,α (X) ≡

√
Kρ,α(X)Lρ,α(X).

Proof: Putting

(2.12) M ≡ i

[
ρα + ρ1−α

2
, X0

]
x +

{
ρα + ρ1−α

2
, Y0

}
for any x ∈ R, then we have

0 ≤ Tr [M∗M ]

=
(

1
4
Tr
[
(i[ρα, X0])

2 +
(
i[ρ1−α, X0]

)2]
+ Iρ,α (X)

)
x2

+
1
2
Tr
[(

i[ρα, X0] + i[ρ1−α, X0]
) (
{ρα, Y0}+

{
ρ1−α, Y0

})]
x

+
(

1
4
Tr
[
{ρα, Y0}2 +

{
ρ1−α, Y0

}2
]

+ Jρ,α (Y )
)

.
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Therefore we have
1
4

∣∣∣Tr
[(

ρα + ρ1−α
)2

(i [X, Y ])
]∣∣∣2

≤ 4
(

1
4
Tr
[
(i[ρα, X0])

2 +
(
i[ρ1−α, X0]

)2]
+ Iρ,α (X)

)
×
(

1
4
Tr
[
{ρα, Y0}2 +

{
ρ1−α, Y0

}2
]

+ Jρ,α (Y )
)

,

since we have

Tr
[(

i[ρα, X0] + i[ρ1−α, X0]
) (
{ρα, Y0}+

{
ρ1−α, Y0

})]
= Tr

[(
ρα + ρ1−α

)2
(i [X, Y ])

]
.

As similar as we have
1
4

∣∣∣Tr
[(

ρα + ρ1−α
)2

(i [X, Y ])
]∣∣∣2

≤ 4
(

1
4
Tr
[
(i[ρα, Y0])

2 +
(
i[ρ1−α, Y0]

)2]
+ Iρ,α (Y )

)
×
(

1
4
Tr
[
{ρα, X0}2 +

{
ρ1−α, X0

}2
]

+ Jρ,α (X)
)

.

By the above two inequalities, we have

Wρ,α (X) Wρ,α (Y ) ≥ 1
4

∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]

]∣∣∣∣∣
2

.

�

Corollary 2.7. For a quantum state ρ and observables (possibly unbounded op-
erators) X, Y and α ∈ [0, 1], if we have the relation [X, Y ] = 1

2πiI on dom(XY ) ∩
dom(Y X) and ρ is expressed by ρ =

∑
k λk|φk〉〈φk|, |φk〉 ∈ dom(XY )∩dom(Y X),

then
Wρ,α(X)Wρ,α(Y ) ≥ 1

4
|Tr [ρ [X, Y ]]|2 .

Proof: It follows from Theorem 2.6 and the following inequality:

1
4

∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]

]∣∣∣∣∣
2

≥ 1
4
|Tr [ρ [X, Y ]]|2 ,

whenever we have the canonical commutation relation such as [X, Y ] = 1
2πiI.

�

Remark 2.8. Theorem 2.6 is not trivial one in the sense of the following (i) and (ii).

(i) Since the arithmetic mean is greater than the geometric mean, Tr
[
(i [ρα, X0])

2
]
≥

0 and Tr
[(

i
[
ρ1−α, X0

])2] ≥ 0 imply Kρ,α (X) ≥ Iρ,α (X), by the use of

Schwarz’s inequality. Similarly, Tr
[
{ρα, Y0}2

]
≥ 0 and Tr

[{
ρ1−α, Y0

}2
]
≥

0 imply Lρ,α (Y ) ≥ Jρ,α (Y ). We then have Wρ,α (X) ≥ Uρ,α (X).
From the inequality (2.8) and the above, our situation is that we have

Uρ,α(H) ≤ Uρ(H)
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and
Uρ,α(H) ≤ Wρ,α(H).

Our third concern is the ordering between Uρ(H) and Wρ,α(H). How-
ever, we have no ordering between them. Because we have the follwoing
examples. We set

ρ =
(

0.8 0.0
0.0 0.2

)
,H =

(
2.0 3.0
3.0 1.0

)
.

If we take α = 0.8, then Uρ(H)−Wρ,α(H) approximately takes −0.0241367.
If we take α = 0.9, then Uρ(H) −Wρ,α(H) approximately takes 0.404141.
This example actually shows that there exists a triplet of α, ρ and H such
that Wρ,α(H) < Vρ(H), since we have Uρ(H) ≤ Vρ(H) in general.

(ii) We have no ordering between
∣∣∣∣Tr

[(
ρα+ρ1−α

2

)2

[X, Y ]
]∣∣∣∣2 and |Tr [ρ[X, Y ]]|2,

by the follwoing examples. If we take

ρ =
1
7

 2 2i 1
−2i 3 − 2i

1 2i 2

 , X =

 3 3 − i
3 1 0
i 0 1

 , Y =

 1 − i 1− i
i 1 i

1 + i − i 3

 ,

then we have∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]

]∣∣∣∣∣
2

' 0.348097, |Tr [ρ [X, Y ]]|2 ' 0.326531.

If we take

ρ =
1
7

 2 2i 1
−2i 3 − 2i

1 2i 2

 , X =

 3 3 − i
3 1 0
i 0 1

 , Y =

 1 − i 0
i 1 i
0 − i 3

 ,

then we have∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]

]∣∣∣∣∣
2

' 0.304377, |Tr [ρ [X, Y ]]|2 ' 0.326531.

Remark 2.9. (i) If we take M = ρ1/2X0x + ρ1/2Y0 for any x ∈ R presented in
Eq.(2.12), we recover the Heisenberg uncertainty relation Eq.(2.1) shown
in [3].

(ii) If we take α = 1
2 , then we recover the inequality (2.3) presented in [6].

(iii) We have another inequalities which are different from the inequality (2.11),
by taking different self-adjoint operators M appeared in the proof of The-
orem 2.6.

Conjecture 2.10. Our fourth concern is whether the following inequality:

(2.13) Uρ,α(X)Uρ,α(Y ) ≥ 1
4

∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]

]∣∣∣∣∣
2

holds or not. However we have not found its proof and any counter-examples yet.

Kρ,α(H) and Lρ,α(H) are respectively rewritten by

Kρ,α(H) = Tr

[(
ρα + ρ1−α

2

)2

H2
0 −

(
ρα + ρ1−α

2

)
H0

(
ρα + ρ1−α

2

)
H0

]
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and

Lρ,α(H) = Tr

[(
ρα + ρ1−α

2

)2

H2
0 +

(
ρα + ρ1−α

2

)
H0

(
ρα + ρ1−α

2

)
H0

]
.

Thus we have

1
2
Tr

[(
i

[
ρα + ρ1−α

2
,H0

])2
]

=
1
2
Tr

[(
i

[
ρα + ρ1−α

2
,H

])2
]

but we have

1
2
Tr

[({
ρα + ρ1−α

2
,H0

})2
]
6= 1

2
Tr

[({
ρα + ρ1−α

2
,H

})2
]

.

In addition, we have Lρ,α(H) ≥ Kρ,α(H) which implies

Wρ,α(H) ≡
√

Kρ,α(H)Lρ,α(H) ≥
√

Kρ,α(H)Kρ,α(H) ≥ Kρ,α(H).

Therefore our fifth concern is whether the following inequality for α ∈ [0, 1] holds
or not:

(2.14) Kρ,α(X)Kρ,α(Y ) ≥ 1
4

∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]

]∣∣∣∣∣
2

.

However this inequality fails, because we have a counter-example. If we set α = 1
2

and

ρ =
1
4

(
3 0
0 1

)
, X =

(
0 i
−i 0

)
, Y =

(
0 1
1 0

)
.

Then we have,

Kρ,α(X)Kρ,α(Y ) = Iρ(X)Iρ(Y ) =

(
1−

√
3

2

)2

and
1
4

∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]

]∣∣∣∣∣
2

=
1
4
|Tr [ρ [X, Y ]]|2 =

1
4
.

Thus the inequality (2.14) does not hold in general.
Before closing this section, we reconsider the ordering Wρ,α(H) and Vρ(H), al-

though we have already stated an example of the triplet α, ρ and H satsfying
Wρ,α(H) < Vρ(H) in the last line of (i) of Remark 2.8. If we set α = 1

5 and

ρ =
(

0.3 0.45
0.45 0.7

)
,H =

(
1 3
3 1

)
.

Then Vρ(H)−Wρ,α(H) approximately takes −0.3072. If we set α = 1
5 and

ρ =
(

0.3 0.4
0.4 0.7

)
,H =

(
1 3
3 1

)
.

Then Vρ(H) − Wρ,α(H) approximately takes 0.682011. Therefore we have no or-
dering between Wρ,α(H) and Vρ(H). Thus it is natural for us to have an interest
in the following conjecture, since we have Kρ,α(H) ≤ Wρ,α(H) in general.
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Conjecture 2.11. Our final concern is whether the following inequality:

(2.15) Kρ,α(H) ≤ Vρ(H), α ∈ [0, 1]

holds or not. However we have not found its proof and any counter-examples yet.

3. Concluding remarks

As we have seen, we introduced a generalized Wigner-Yanase skew information
Kρ,α(H) and then defined a new quantity Wρ,α(H). We note that our generalied
Wigner-Yanase skew information Kρ,α(H) is different type of the Wigner-Yanase-
Dyson skew information Iρ,α(H). For the quantity Kρ,α(H), we do not have a
trace inequality related to an uncertainty relation. However, we showed that we
have a trace inequality related to an uncertainty relation for the quantity Wρ,α(H).
This inequality is a non-trivial one-parameter extension of the uncertainty relation
Eq.(2.3) shown by S.Luo in [6]. In addition, we studied several trace inequaities on
informational quantities.

Finally, we give another generalized trace inequality of the inequality (2.3). For
a quantum state ρ an observable H and α ∈ [0, 1], we define

Zρ,α(H) ≡ 1
4

√
Tr [(i[ρα,H0])2]Tr [(i[ρ1−α,H0])2]Tr [{ρα,H0}2]Tr [{ρ1−α,H0}2],

with H0 ≡ H − Tr[ρH]I. Then we have the following inequality

(3.1)
√

Zρ,α(X)Zρ,α(Y ) ≥ 1
4

∣∣∣Tr
[
ρ2α[X, Y ]

]
Tr
[
ρ2(1−α)[X, Y ]

]∣∣∣ ,
for a quantum state ρ, two observables X, Y and α ∈ [0, 1]. We note that the
inequality (3.1) recovers the inequality (2.3) by taking α = 1/2 and we do not have
any weak-strong relation between the inequality (2.11) and the inequality (3.1).
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