Anti-Müllerian hormone receptor type 2 (AMHR2) expression in bovine oviducts and endometria: Comparison of AMHR2 mRNA and protein abundance among old Holstein cows and young and old Wagyu females

\(^A\)Raihana Nasrin Ferdousy, \(^A\)Onalenna Kereilwe, and \(^A\)Hiroya Kadokawa

\(^A\) Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
Tel.: + 81 83 9335825; Fax: +81 83 9335938

\(^B\) Corresponding author: E-mail address: hiroya@yamaguchi-u.ac.jp

Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
Tel.: + 81 83 9335825; Fax: +81 83 9335938

Running head: AMHR2 expression in bovine oviducts and endometria
Abstract

Anti-Müllerian hormone (AMH) is a glycoprotein produced by granulosa cells of the preantral and small antral follicles that has multiple, important roles in the ovaries. Recent studies have revealed the extragonadal AMH regulation of gonadotropin secretion from bovine gonadotrophs. In this study, we investigated whether the primary receptor for AMH, AMH receptor type 2 (AMHR2), is expressed in bovine oviducts and endometria. Reverse transcription-polymerase chain reaction detected expressions of AMHR2 mRNA in oviductal and endometrial specimens. Western blotting and immunohistochemistry were performed to analyze AMHR2 protein expression using anti-bovine AMHR2 antibody. Immunohistochemistry revealed robust AMHR2 expression in the tunica mucosa of the ampulla and isthmus, and in the glandular and luminal epithelium of endometrium. AMHR2 mRNA (measured by real-time PCR) and protein expression in these layers did not significantly differ among estrous phases in adult Wagyu heifers (P > 0.1). The expression in these layers did not differ among old Holsteins (91.9 ± 6.4 months old) and young (26.6 ± 0.8 months old) and old (98.8 ± 10.2 months old) Wagys. Therefore, AMHR2 is expressed in bovine oviducts and endometria.

Additional keywords: age, breed, extragonadal role, Müllerian-inhibiting substance, ruminant.
Short summary

Anti-Müllerian hormone receptor 2 (AMHR2) is expressed in the tunica mucosa of ampulla and isthmus, and epithelium of uterine glands and luminal epithelium of the endometrium of heifers and cows. The receptor abundance did not differ among estrous phases and among old Holsteins and young and old Wagyu females.
Introduction

Ovaries regulate the oviducts and endometria through estradiol and progesterone secreted from mid-sized or large-sized follicles or corpora lutea (Pohler et al. 2012; Binelli et al. 2018). It is unclear, however, whether preantral and small antral follicles, the majorities in ovaries, secrete any hormone to regulate the oviducts and endometria. We questioned whether preantral and small antral follicles are the silent majority in ovaries.

Anti-Müllerian hormone (AMH) is a member of the transforming growth factor (TGF)–β family, primarily secreted by the preantral and small antral follicles in female animals (Bhide and Homburg 2016). Anti-Müllerian hormone has been well-characterized at the ovarian level, i.e., with respect to its roles in regulating follicular development (Hernandez-Medrano et al. 2012) and inhibiting follicular atresia (Seifer and Merhi 2014). Blood AMH concentration is a useful blood marker for antral follicle counts in the Wagyu breed (Hirayama et al. 2019), as well as in dairy cows and women (Arouche et al. 2015; Sefrioui et al. 2019). Mossa and Ireland (2019) have shown that dairy cows with a low antral follicle count (AFC) have lower concentrations of AMH and thinner endometrium than those in cows with high AFC. Circulating AMH concentrations can help predict the number of high-quality embryos produced by various animals, including women and cows (Arouche et al. 2015; Sefrioui et al. 2019). The number of high-quality embryos results from synchronous regulation by the sperm, ovum, oviduct, and endometrium. Further, plasma AMH concentrations are positively correlated with pregnancy rates in various animals, including women and cows (Ribeiro et al. 2014; Josso 2019). Recent studies have revealed extragonadal roles of AMH—by the activation of its primary receptor, AMH receptor type 2 (AMHR2), in gonadotrophs in the anterior
pituitaries of rats and bovines (Garrel et al. 2016; Kereilwe et al. 2018). Therefore, AMHR2 may be expressed in the oviducts and the endometria to mediate any yet unknown roles of AMH. Indeed, recent studies have shown an increased risk of miscarriage among women with low blood AMH concentrations (Tarasconi et al. 2017; Lyttle et al. 2018).

Old age is associated with infertility in various animals, including women and cows (Osoro and Wright 1992; Scheffer et al. 2018); however, limited information is available regarding the exact mechanisms underlying this association among animals. Several studies in humans have linked aging to plasma AMH concentrations. Blood AMH concentration is highest in pubertal girls and gradually decreases starting at age 25 until it is undetectable after menopause (Dewailly et al. 2014), suggesting that low AMH is a marker for ovarian aging (Bhide and Homburg 2016). Studies on the relationship between age and plasma AMH concentration in adult female ruminants are not common, but one study showed that old Wagyu (syn. Japanese Black) cows have higher blood AMH concentrations than those in postpubertal heifers and young cows (Koizumi and Kadokawa 2017). Therefore, age may be a determinant of the AMHR2 expression levels in the oviducts and endometria, although there may be species differences.

Oviducal and endometrial AMHR2 expression are yet unknown in any species; however, endometriosis and uterine adenomyosis express AMHR2 in women (Signorile et al. 2014; Kim et al. 2018). In the present study, we, therefore, hypothesized that AMHR2 is expressed in bovine oviducts and endometria. A previous study showed breed-dependent differences in circulating AMH concentrations among dairy cow breeds (Ribeiro et al. 2014). Infertility in Holsteins is a critical issue in the dairy industry worldwide (Kadokawa and Martin 2006). Therefore, this study aimed to evaluate the
association between oviductal and endometrial AMHR2 expression and various physiological factors, i.e., stage of the estrous cycle, age, and breed.

Materials and Methods

All experiments were performed according to the Guiding Principles for the Care and Use of Experimental Animals in the Field of Physiological Sciences (Physiological Society of Japan) and were approved by the Committee on Animal Experiments of Yamaguchi University.

We obtained oviductal and endometrial samples from cattle managed by contracted farmers in western Japan. Since the disaster of bovine spongiform encephalopathy in 2002, all cattle born in Japan since 2003 are registered in a database at birth with an individual identification number. This number must be shown on an ear tag, carcass, and meat packages sold by butchers. Japanese farmers and consumers can obtain information, including breed, birth date, farm, movement from farm to farm, date and place of livestock auction, and slaughter, by querying the server of the National Livestock Breeding Center of Japan. We utilized both individual identification numbers and information given by the contracted farmers for the cattle in this study.

Experiment 1

Experiment 1 was conducted to evaluate whether AMHR2 is expressed in oviduct and endometrium in heifers utilizing reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and immunofluorescence staining. We obtained the ampulla, isthmus, caruncular (CAR), and intercaruncular (ICAR) area of endometria from four post-pubertal (26 months of age) Wagyu heifers at a local abattoir. The four heifers were
at days 3, 8, 15, and 21 (day 0 = day of estrus), as determined via macroscopic examination of the ovaries and uterus (Miyamoto et al. 2000). The ampulla, isthmus, CAR, and ICAR samples collected were from the side ipsilateral to ovulation in the three heifers from days 3, 8, or 15 but were from the side ipsilateral to the dominant follicle in the remaining heifer at day 21. We collected ampullar samples from areas at least 3 cm away from the fimbriated infundibulum as well as from the ampullary-isthmic junction and the isthmus samples from areas also at least 3 cm away from the ampullary-isthmic junction as well as from the utero-tubal junction. Half of the ampulla and half of the isthmus were frozen in liquid nitrogen and preserved at -80°C until RNA or protein extraction. The remaining halves of the ampulla and isthmus were stored in 4% paraformaldehyde at 4°C for 16 h for immunohistochemistry studies. The middle area of uterine horn was opened longitudinally using scissors, and CAR were carefully dissected so as not to include ICAR; subsequently, ICAR areas were cut off. The collected CAR and ICAR samples were frozen in liquid nitrogen and preserved at -80°C until RNA or protein extraction or stored in 4% paraformaldehyde at 4°C for 16 h for immunohistochemistry studies.

Since granulosa cells in small antral follicles express AMHR2 (Poole et al. 2016), we harvested ovarian tissue specimens from the same heifers as positive controls of AMHR2 for RT-PCR and western blotting.

RT-PCR, sequencing of amplified products, and homology search in gene databases

Total RNA was extracted from the ovary, ampulla, isthmus, CAR, or ICAR from the four heifers using RNAzol RT Reagent (Molecular Research Center Inc., Cincinnati, OH, US) according to the manufacturer’s protocol. The extracted RNA samples were
treated with ribonuclease-free deoxyribonuclease (Thermo Fisher Scientific, Waltham, MA, US) to eliminate possible genomic DNA contamination. Using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE, USA), the concentration and purity of each RNA sample were evaluated to ensure the A260/A280 nm ratio was in the acceptable range of 1.8–2.1. The mRNA quality of all samples was verified by electrophoresis of total RNA followed by staining with ethidium bromide, and the 28S:18S ratios were 2:1. The cDNA was synthesized from 1 µg of the total RNA per sample using SuperScript IV VILO Master Mix (Thermo Fisher Scientific) according to the manufacturer’s protocol. No reverse transcription controls (NRCs) were prepared for RT-PCR; they were generated by treating the extracted RNA with the same deoxyribonuclease but not with cDNA synthetase.

In order to determine the expression of AMHR2 mRNA in the samples, PCR was conducted using the primer pair reported by our group previously (Kereilwe et al. 2018), which was designed by Primer3 based on reference sequence of bovine AMHR2 [National Center for Biotechnology Information (NCBI) reference sequence of bovine AMHR2 is NM_001205328.1], as one of PCR primers must span the exon-exon junction. Table 1 details the primers used for RT-PCR. Using a Veriti 96–Well Thermal Cycler (Thermo Scientific), PCR was performed using 20 ng of cDNA, 20 ng RNA as the NRC or water as the no template control (NTC), and polymerase (Tks Gflex DNA Polymerase, Takara Bio Inc., Shiga, Japan) under the following thermocycles reported by our group (Kereilwe et al. 2018): 94 °C for 1 min for pre-denaturing followed by 35 cycles of 98°C for 10 s, 60°C for 15 s, and 68°C for 30 s. PCR products were separated on 1.5% agarose gel by electrophoresis with a molecular marker [Gene Ladder 100 (0.1-2kbp), Nippon Gene, Tokyo, Japan], stained with fluorescent stain (Gelstar, Lonza, Allendale, NJ), and
observed using a charge-coupled device (CCD) imaging system (GelDoc; Bio-Rad, Hercules, CA, US). The PCR products were purified with the NucleoSpin Extract II kit (Takara Bio Inc.) and then sequenced with a sequencer (ABI3130, Thermo Fisher Scientific) using one of the PCR primers and the Dye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific). The sequences obtained were used as query terms with which to search the homology sequence in the DDBJ/GenBankTM/EBI Data Bank using the basic nucleotide local alignment search tool (BLAST) optimized for highly similar sequences (available on the NCBI website).

Western Blotting for AMHR2 detection

Proteins were extracted from the ovary, ampulla, isthmus, CAR, or ICAR samples (used as positive controls) from the four heifers, and western blotting was performed as previously described (Kereilwe et al. 2018). The extracted protein sample (33.4µg of total protein in 37.5µl) was mixed in 12.5µl of 4x Laemmli sample buffer (Bio-rad) containing 10% (v/v) β-mercaptoethanol, then boiled for 3 min at 100 °C. The boiled protein samples were quickly cooled down in ice, and then the 12 µl of boiled protein samples (8 µg of total protein) were loaded onto a polyacrylamide gel along with a molecular weight marker and resolved by electrophoresis on sodium dodecyl sulfate polyacrylamide gels at 100 V for 90 min. Proteins were then transferred to polyvinylidene fluoride (PVDF) membranes. Blocking was done with 0.1% Tween 20 and 5% non-fat dry milk for 1h at 25 °C. Next, immunoblotting was performed with our original anti-AMHR2 chicken antibody (Kereilwe et al. 2018; 1:25,000 dilution) overnight at 4 °C. The anti-AMHR2 chicken antibody binds to the extracellular region located near the N terminus of the AMHR2, and spec and other details were published previously (Kereilwe et al. 2018).
After washing, the PVDF membrane was incubated with horseradish peroxidase (HRP)-conjugated anti-chicken IgG goat antibody (Bethyl laboratories, Inc., Montgomery, TX, USA; 1:50,000 dilution) at 25 °C for 1 h. Protein bands were visualized using an ECL-Prime chemiluminescence kit (GE Healthcare, Amersham, UK) and CCD imaging system (Fujifilm, Tokyo, Japan). Previous studies utilizing western blotting for AMHR2 reported that human, mouse, and bovine AMHR2 are present as dimers, full-length monomers, or cleaved monomers (Faure et al. 1996; Hirschhorn et al. 2015; Kereilwe et al. 2018). Thus, we defined bovine AMHR2 bands based on band size as one of these structure types.

After antibodies were removed from the PVDF membrane with stripping solution, the membrane was used for immunoblotting with the anti-β-actin mouse monoclonal antibody (A2228, 1:50,000 dilution; Sigma-Aldrich, St. Louis, MO, USA).

Immunofluorescence staining and confocal microscopy

After storage in 4% paraformaldehyde PBS at 4°C for 16 h, tissue blocks were placed in 30% sucrose-PBS until the blocks were infiltrated with sucrose. Tissue blocks were then subjected to immunofluorescence staining using previously described protocols (Nahar et al. 2013; Kereilwe et al. 2018). Briefly, 15-µm sections were prepared and mounted on slides. The sections were treated with 0.3% Triton X-100-PBS for 15 min, then, blocking done by incubating with 0.5 mL of PBS containing 10% normal goat serum (Wako Pure Chemicals, Osaka, Japan) for 1 h at room temperature. The slides were incubated with the same anti-AMHR2 chicken antibody (Kereilwe et al. 2018; 1:1,000 dilution) for 12 h at 4°C, then followed by incubation with Alexa Fluor Alexa Fluor 488 goat anti-chicken IgG (Thermo Fisher Scientific and diluted as 1 µg/mL) and 1 µg/mL of 4’, 6’-diamino-2-phenylindole (DAPI; Wako Pure Chemicals) for 2 h at room temperature.
The stained sections on slides were observed by confocal microscopy (LSM710; Carl Zeiss, Göttingen, Germany) equipped with diode (405 nm), argon (488 nm) lasers. Images obtained by fluorescence microscopy were scanned with a 20× or 40× objective and recorded by a CCD camera system controlled by ZEN2012 black edition software (Carl Zeiss). In the confocal images obtained after immunohistochemistry analysis, the DAPI is shown in blue and AMHR2 is shown in green. To verify the specificity of the signals, we included several negative controls in which the primary antiserum had been omitted or pre-absorbed with 5 nM of the antigen peptide (Kereilwe et al. 2018) or in which normal chicken IgG (Wako Pure Chemicals) was used instead of the primary antibody.

Experiment 2

Experiment 2 was conducted to compare AMHR2 expression in oviductal and endometrial samples among stages of the estrous cycle utilizing real-time PCR and western blotting described later.

The ampulla, isthmus, CAR and ICAR tissues were harvested from adult (26-month-old) non-pregnant healthy Wagyu heifers in the pre-ovulatory phase (day 19-21; n = 5), day 1 to 3 (n = 5), day 8 to 12 (n = 5), or day 15 to 17 (n = 5), as determined via macroscopic examination of the ovaries and uterus (Miyamoto et al. 2000). Samples were obtained at the local abattoir and immediately frozen in liquid nitrogen and stored at −80°C until RNA or protein extraction.

Experiment 3
Experiment 3 was conducted to compare AMHR2 expression in oviductal and endometrial samples based on age or breed utilizing the real-time PCR and western blotting described later. The ampulla, isthmus, CAR, and ICAR tissues were harvested during the luteal phase (day 8 to 12) from healthy post-pubertal Wagyu heifers (26.6 ± 0.8 months of age; n = 6; young Wagyu group), old Wagyu cows (98.8 ± 10.2 months of age; n = 6; old Wagyu group), and old Holstein cows (91.9 ± 6.4 months of age; n = 6; old Holstein group) from the local abattoir. We compared these three groups for four reasons. First, it was not possible to obtain samples from postpubertal Holstein heifers because they are kept in dairy farms for milking purposes. Second, in our previous study (Kereilwe and Kadokawa 2018), we compared expression levels of AMH in gonadotrophs between old Holsteins (about 80 months old) and young (about 26 months old) and old Wagyu females (about 90 months old), finding significant differences in AMH mRNA and AMH protein between them. Third, we previously discovered a significant difference in blood AMH concentrations between old Wagyu cows (81 months) and young Wagyu heifers (22 months) (Koizumi and Kadokawa 2017). Fourth, farmers slaughter old Wagyu cows after completing parturition a sufficient number of times to obtain beef, usually after 84 months of age. All heifers and cows in the three groups were non-lactating and non-pregnant, with no follicular cysts, luteal cysts, or other ovarian or uterine disorders upon macroscopic ovarian examination (Kamomae 2012). The old Holstein cows were slaughtered because they had not become pregnant after at least five artificial insemination attempts. Unlike Wagyu and Holstein, other breeds of cattle (such as Angus, Hereford, and Guernsey) are very rare in Japan; thus, we were unable to collect samples from these other breeds.
Real-time PCR analysis to evaluate factors affecting AMHR2 expression

After preparation of high-quality total RNA and cDNA synthesis using a previously described protocol, AMHR2 mRNA expression was compared among estrous phases or among the young Wagyu, old Wagyu, and old Holstein groups via real-time PCR and data analyses as described previously (Nahar and Kadokawa 2017; Kereilwe et al. 2018).

The primers for AMHR2 were designed using Primer Express Software v3.0 (Thermo Fisher Scientific), based on reference sequences. Table 2 details the primer sequences. Anti-Müllerian hormone receptor type 2 expression levels were normalized to the geometric mean of the expression levels of two house-keeping genes, C2orf29 and SUZ12, selected using Normfinder program (Vandesompele et al. 2002) and amplified using previously reported primers (Rekawiecki et al. 2012; Nahar and Kadokawa 2017), since they are the most stable and reliable housekeeping genes in the bovine oviducts and endometria (Walker et al. 2009; Nahar and Kadokawa 2017).

The amount of gene expression was measured in duplicate by real-time PCR analyses with 20 ng cDNA, using CFX96 Real Time PCR System (Bio-Rad) and Power SYBR Green PCR Master Mix (Thermo Fisher Scientific), together with a 6-point relative standard curve, non-template control, and no reverse-transcription control. Standard 10-fold dilutions of purified and amplified DNA fragments were prepared. Temperature conditions for all genes were as follows: 95°C for 10 min for pre-denaturation; five cycles each of 95°C for 15s and 66°C for 30s; and 40 cycles each of 95°C for 15s and 60°C for 60s. Melting curve analyses were performed at 95°C for each amplicon and each annealing temperature to ensure the absence of smaller non-specific products such as dimers. To optimize the real-time PCR assay, serial dilutions of a cDNA
template were used to generate a standard curve by plotting the log of the starting quantity of the dilution factor against the C_q value obtained during amplification of each dilution. All the C_q values of the unknown samples (22.85 ± 0.15) were between the highest (8.00) and lowest (30.33) standards for AMHR2 in real-time PCR. Further, all the C_q values of the unknown samples were between the highest and lowest standards for C2orf29 or SUZ12 in real-time PCR. Reactions with a coefficient of determination (R^2) > 0.98 and efficiency between 95 and 105% were considered optimized. The coefficients of variation of real-time PCRs were less than 6%. The concentration of PCR products was calculated by comparing C_q values of unknown samples with the standard curve using appropriate software (CFXmanagerV3.1, Bio-Rad). Then the AMHR2 amount was divided by the geometric mean of C2orf29 and SUZ12 in each sample.

Western blotting to evaluate factors affecting AMHR2 expression

The protein expression levels of AMHR2 were compared in the ampulla, isthmus, CAR and ICAR among estrous phases or among young Wagyu, old Wagyu, and old Holsteins, using previously reported protocols for western blotting and data analyses (Kereilwe et al. 2018; Kereilwe and Kadokawa 2018). Briefly, boiled samples (8 μg total protein of each sample) were loaded on a polyacrylamide gel along with the molecular weight marker and four standard samples (2, 4, 8, and 16 μg total protein for each of five randomly selected samples diluted with protein extraction reagent). MultiGauge v.3.0 software (Fujifilm) was used to quantify the signal intensity of the protein bands. The intensities of band of AMHR2 (as full-length form) for 16, 8, 4, and 2 μg protein samples were set as 100%, 50%, 25%, and 12.5%, respectively, and the intensity of other samples was calculated as a percentage of these standards using MultiGauge software. After
antibodies were removed from the PVDF membrane with stripping solution, the
membrane was used for immunoblotting with the anti-β-actin mouse monoclonal
antibody. The intensities of the β-actin band for 16-, 8-, 4-, and 2-μg protein samples were
set as 100%, 50%, 25%, and 12.5%, respectively, and the intensity of other samples was
calculated as a percentage of these standards using MultiGauge software. AMHR2
expression level was normalized to that of β-actin in each sample.

Statistical analysis

The statistical analyses were performed using StatView version 5.0 for Windows (SAS
Institute, Inc., Cary, NC, USA). Grubb’s test verified the absence of outliers. The Shapiro-
Wilk’s test and Kolmogorov-Smirnov Lilliefors test verified the normality of distribution
of each variable. The F-test verified homogeneity of variance of all of variables between
stages of estrous and ages. One-factor ANOVA followed by post-hoc comparisons using
Fisher’s protected least significant difference (PLSD) test were performed for the four
stages comparisons. One-factor ANOVA followed by Fisher’s PLSD test were performed
for the differences between old Holstein cows, young Wagyu, and old Wagyu. The level
of significance was set at $P < 0.05$. Data are expressed as mean ± standard error of the
mean (SEM).
Results

Experiment 1

Polymerase chain reaction products of the expected size (320 bp), indicating AMHR2, were obtained from the ovary, ampulla, isthmus, CAR, and ICAR, as revealed through agarose gel electrophoresis (Fig. 1a). Bands of PCR products from ovary, CAR, and ICAR were stronger than bands from the ampulla. Neither the NTC nor any of the NRCs yielded any PCR amplified products (Fig. 1b). A homology search against gene databases for the sequenced amplified products revealed bovine AMHR2 (NM_001205328.1) as the best match, with a query coverage of 100%; e-value, 0.0; maximum alignment identity, 99%. No other bovine gene displayed homology with the PCR product herein, thus indicating that the amplified product was indeed AMHR2.

Anti-Müllerian hormone receptor type 2 expression in the ampulla, isthmus, CAR, ICAR, and in positive control ovarian specimens were analyzed via western blot analysis, using the anti-AMHR2 antibody (Fig. 2). The western blot displayed similar protein bands for AMHR2 among all tissue samples (Fig. 2a). Full length bands and cleaved bands, however, were stronger in ovary, CAR and ICAR, than ampulla and isthmus. No protein bands were observed for the negative control membranes, wherein the primary antiserum was pre-absorbed with the antigen peptide.

Fig. 3 shows the results of immunofluorescence staining for AMHR2 in the ampulla, isthmus, CAR, and ICAR. Robust, high-intensity fluorescent signals of AMHR2 localized in the tunica mucosa of ampulla (Fig. 3a) and isthmus (Fig. 3b) The strong AMHR2 signals were also localized in the luminal epithelium of endometrium (Fig. 3c, 3d), and the epithelium of endometrium glands (Fig. 3e, 3f). Also uterine stroma showed the AMHR2 signals (Fig. 3c, 3d).
Experiment 2

Real-time PCR and western blotting revealed no significant differences in AMHR2 mRNA (Fig. 4) and protein (Fig. 5) expression levels among various estrous phases in the ampulla, isthmus, CAR, and ICAR.

Experiment 3

Real-time PCR and western blotting revealed no significant differences in AMHR2 mRNA (Fig. 6) and protein (Fig. 7) expression levels in the ampulla, isthmus, CAR, and ICAR among old Holsteins cows, and young and old Wagyus.

Discussion

To our knowledge, this study is the first to report AMHR2 expression in the oviducts in all species. Immunofluorescence analysis using anti-bovine AMHR2 antibody revealed robust high-intensity signals in the tunica mucosa of ampulla and isthmus and the glandular and luminal epithelium of endometria, leading to the speculation of the potential roles of AMHR2 in these layers.

Anti-Müllerian hormone contributes to regression of the Müllerian duct to prevent the development of the oviducts and uterus in male fetuses (Rey et al. 2003), thereby potentially clarifying why the role of AMH in the oviduct has not been studied. In recent, after completion of our experiment, Kim et al. (2019) reported AMHR2 expression in healthy human endometrial tissues. Although Kim et al. (2019) did not study fluctuations in endometrial AMHR2 expression during the menstrual cycle, no significant differences were reported between proliferative and secretory endometria. Furthermore, in the present
study, no significant difference in AMHR2 expression was reported in the ampulla, isthmus, CAR, and ICAR among estrous stages in heifers. In addition, previous studies have not reported considerable changes in circulating AMH concentrations during the estrous cycle in ruminants in vivo, including Wagyu (El-Sheikh Ali et al. 2013; Pfeiffer et al. 2014; Koizumi and Kadokawa 2017). Therefore, constitutively expressed AMHR2 in the tunica mucosa of ampulla and isthmus and the glandular and luminal epithelium of endometrium may not play a temporal role, e.g., during sperm capacitation and fertilization (Croxatto 2002; Hunter 2005). These layers in the oviducts and endometria provide growth factors and nutrients for embryogenesis in various animals including cattle (Hugentobler et al. 2010; Besenfelder et al. 2012). Women with low blood AMH concentrations are at an increased risk of miscarriage (Tarasconi et al. 2017; Lyttle et al. 2018). Therefore, further studies are required to clarify whether AMHR2 in these tissue layers play critical roles in embryo development and conception.

Endometria and oviducts are subject to pathogens presented in the spermatozoa and seminal plasma (Kelly et al. 1997; Quayle 2002), and pathogens and endotoxins penetrate the uterus via the cervix (Herath et al. 2007; Tang et al. 2013). Circulating AMH levels are significantly lower in women with lymphoma than in healthy women and have been highly correlated with some cytokines, suggesting potential associations with the cytokine network (Paradisi et al. 2016). Therefore, further studies are required to clarify whether AMHR2 in the tunica mucosa of ampulla and isthmus and the glandular and luminal epithelium of endometrium may play important roles for immune system.

Fertility is decreased with old age in beef cows (Osoro and Wright 1992). In the present study, no significant difference was observed in AMHR2 expression in the
ovaries and the endometria among old Holsteins and young and old Wagyu. The blood AMH is, however, influenced by age in cows (Koizumi and Kadokawa 2017); old Wagyu cows have significantly higher blood AMH concentrations (100 pg/ml level) than young cows (1–10 pg/ml level) throughout the postpartum period (Koizumi and Kadokawa 2017). Therefore, the AMHR2 in oviducts and endometria in old Wagyu cows may contribute to infertility among old cows. The association of age with oviductal and endometrial AMHR2 expression has not been reported previously in any species; hence, the present results cannot be compared with previous results. The present results regarding the effects of breed and age on AMHR2 expression should be interpreted with caution because we could not obtain specimens from young Holsteins. Therefore, further studies are required to clarify whether AMHR2 in oviducts and endometria has important roles for infertility in old cows.

Herein, multiple protein bands were observed for AMHR2 upon western blotting, concurrent with previous reports on various animals, including bovine (Faure et al. 1996; Hirschhorn et al. 2015; Kereilwe et al. 2018) showing that AMHR2 is present as a full-length and cleaved monomer (Faure et al. 1996; Hirschhorn et al. 2015) and because AMHR2 is glycosylated (Faure et al. 1996). In conclusion, AMHR2 is expressed in the oviducts and endometria of heifers and cows.

Acknowledgments
Raihana Nasrin Ferdousy and Onalenna Kereilwe were supported by MEXT (Ministry of Education, Culture, Sports, Science, and Technology) with the provision of a scholarship. This research was partly supported by a Grant-in Aid for Scientific Research (JSPS Kakenhi Grant Number 18H02329) from Japan Society for the Promotion of Science (Tokyo, Japan) to Hiroya Kadokawa.

Conflicts of Interest

The authors declare no conflicts of interest.

References

Table 1. Details of the primers used for RT PCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>Sequence 5'–3'</th>
<th>Position</th>
<th>Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nucleotide Exon</td>
<td></td>
</tr>
<tr>
<td>AMHR2</td>
<td>Forward</td>
<td>AGATTTGCGACCTGACAGCAG</td>
<td>1272–1292 9-10</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>CTCCAGGCAGCAAAGTGAG</td>
<td>1572–1591 11</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Details of the primers used for real-time PCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>Sequence 5’-3’</th>
<th>Position</th>
<th>Size (bp)</th>
<th>Nucleotide</th>
<th>Exon</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMHR2 Forward</td>
<td>TGGGAGATTATGAGTCGCTGC</td>
<td>1249–1269</td>
<td>9</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMHR2 Reverse</td>
<td>GTGGTGGTCTGCTGTCAGGT</td>
<td>1281–1300</td>
<td>9-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2orf29 Forward</td>
<td>TCAGTGGACCAAGCCACCTA</td>
<td>928–948</td>
<td>3</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2orf29 Reverse</td>
<td>CTCCACACCGGTGCTGTCTT</td>
<td>1077–1097</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUZ12 Forward</td>
<td>CACCAAAAGGTGCTAGGATAGAT</td>
<td>1441–1465</td>
<td>13</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUZ12 Reverse</td>
<td>TTGGCCTGCACACAAGAATG</td>
<td>1581–1600</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Expression of anti-Müllerian hormone (AMH) receptor type 2 (AMHR2) mRNA, as detected via RT-PCR analysis. The electropherogram shows the expected size (320 bp) of PCR products of bovine AMHR2 in the ovary, ampulla, isthmus, and caruncular (CAR) and intercaruncular (ICAR) area of the endometrium in healthy post-pubertal heifers (Fig. 1a) but not of the no template control (NTC) and no reverse transcription controls (NRCs) in the ovary, ampulla, isthmus, CAR, and ICAR (Fig. 1b).
Fig. 2. Western blotting analysis of extracts from the ovary, ampulla, isthmus, CAR, or ICAR in healthy post-pubertal heifers and the anti-AMHR2 antibody (a) or anti-β-actin mouse antibody (b).
Fig. 3. AMHR2 (green) expression in the ampulla (a), isthmus (b), CAR (c and d), and ICAR (e and f) of healthy post-pubertal heifers. Specimens shown in panels a, b, and e were collected on day 3 of the estrous cycle. Specimens shown in panels c (low magnification) and d (high magnification) were collected on day 15. Specimen shown in
panel f was collected on day 21. Nuclei are counterstained with DAPI (dark blue) and differential interference contrast microscopy was used to produce the grayscale image. Scale bars: 100 μm in a, b, c, and f; 50 μm in d and e.
Fig. 4. Relative *AMHR2* mRNA levels (mean ± SEM) in the ampulla (a), isthmus (b), CAR (c), or ICAR (d) in healthy post-pubertal heifers during the pre-ovulatory phase (day 19 to 21), day 1 to 3, day 8 to 12, or day 15 to 17, as determined via real-time PCR. Data were normalized to the geometric means of *C2orf29* and *SUZ12* levels. The same letters indicate no significant difference (P > 0.05) across phases.
Fig. 5. Relative AMHR2 protein expression levels normalized to that of β-actin in the (a) ampulla (a), isthmus (b), CAR (c), or ICAR (d) in healthy post-pubertal heifers during pre-ovulatory phase, day 1 to 3, day 8 to 12, or day 15 to 17, as determined via western blotting. The same letters indicate no significant difference (P > 0.05) across phases.
Fig. 6. Relative AMHR2 mRNA levels (mean ± SEM) in the ampulla (a), isthmus (b), CAR (c), or ICAR (d) in healthy young adult Wagyu heifers, old Wagyu cows, and old Holsteins cows, as determined via real-time PCR. Data were normalized to the geometric means of C2orf29 and SUZ12 levels. The same letters indicate no significant difference (P > 0.05) among groups.
Fig. 7. Relative AMHR2 protein expression levels normalized to that of β-actin in the ampulla (a), isthmus (b), CAR (c), or ICAR (d) in healthy young Wagyu heifers, old Wagyu cows, and old Holsteins cows, as determined via western blotting. The same letters indicate no significant difference (P > 0.05) across phases.