Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of *Gluconobacter japonicus* NBRC3260

Shota Kawai\(^1\), Maiko Goda-Tsutsumi\(^1\), Toshiharu Yakushi\(^2\)*, Kenji Kano\(^1\), and Kazunobu Matsushita\(^2\)

\(^1\)Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; \(^2\)Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan

Running title: Expression of the *fdhSC* genes of *Gluconobacter* sp.

*To whom correspondence should be addressed: Toshiharu Yakushi, Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan, Tel: +81-83-933-5857, Fax: +81-83-933-5859, E-mail: juji@yamaguchi-u.ac.jp
Abstract

A heterotrimeric flavoprotein-cytochrome c complex fructose dehydrogenase (FDH) of
Gluconobacter japonicus NBRC3260 catalyzes the oxidation of D-fructose to produce
5-keto-D-fructose and is used for diagnosis and basic research purposes as a direct electron
transfer-type bioelectrocatalysis. The fdhSCL genes encoding the FDH complex of G.
japonicus NBRC3260 were isolated by a PCR-based gene amplification method with
degenerate primers designed from the amino terminal amino acid sequence of the large
subunit and sequenced. Three open reading frames for fdhSCL encoding the small,
cytochrome c, and large subunits, respectively, were found and presumably in a
polycistronic transcriptional unit. Heterologous overexpression of fdhSCL was conducted
using a broad host range plasmid vector pBBR1MCS-4 carrying a DNA fragment containing
the putative promoter region of the membrane-bound alcohol dehydrogenase gene of
Gluconobacter oxydans and a G. oxydans strain as the expression host. We also
constructed a derivative modified in the translational initiation codon to ATG from TTG,
designated as TTGFDH and ATGFDH. Membranes of the cells producing recombinant
TTGFDH and ATGFDH showed approximately 20-times and 100-times higher specific activity
than those of G. japonicus NBRC3260, respectively. The cells producing only FdhS and
FdhL had no fructose oxidizing activity, but showed significantly high
D-fructose:ferricyanide oxidoreductase activity in the soluble fraction of cell extracts,
whereas the cells producing the FDH complex showed activity in the membrane fraction. It is reasonable to conclude that the cytochrome c subunit is responsible not only for membrane anchoring but also for ubiquinone reduction.
Introduction

Fructose dehydrogenase (FDH; EC 1.1.99.11) of *Gluconobacter japonicus* NBRC3260 (formerly *Gluconobacter industrius* IFO3260), which catalyzes the oxidation of D-fructose to produce 5-keto-D-fructose, is a heterotrimeric membrane-bound enzyme with a molecular mass of ca. 140 kDa, consisting of subunits I (67 kDa), II (51 kDa), and III (20 kDa). The enzyme, purified for the first time in 1981, is a flavoprotein-cytochrome c complex, since subunits I and II have covalently bound flavin adenine dinucleotide (FAD) and heme C as prosthetic groups, respectively (1).

FDH shows strict substrate specificity to D-fructose, and thus, is used in diagnosis and food analysis and is commercially available (2). This enzyme is also used in a number of basic research projects to examine the electrochemical properties of enzyme-catalyzed electrode reactions, which is called bioelectrocatalysis (3). The reaction is classified into two types. One is the direct electron transfer (DET)-type system in which electrons are transferred directly between the enzyme and electrode. The other is the mediated electron transfer (MET)-type system in which mediators transfer electrons between the enzyme and electrode. As far as we know, FDH has the highest ability of DET-type bioelectrocatalysis on the anode (4). The DET-type system is convenient in the construction of compact bioelectrochemical devices, and is utilized to develop biosensors, biofuel cells, and bioreactors. However, DET-type bioelectrocatalysis occurs only at some limited kinds of
electrodes suitable for individual redox enzymes such as FDH (3), alcohol dehydrogenase (5), cellobiose dehydrogenase (6), bilirubin oxidase (7), and Cu efflux oxidase (8).

Although DET-type bioelectrocatalysis is attractive for applications, mechanisms for the reaction have not been fully described yet. For the first step to explore the mechanisms of the DET-type bioelectrocatalytic reaction of FDH, we sequenced the genes encoding each subunit of the FDH complex from *G. japonicus* NBRC3260 and constructed an expression system to highly produce FDH in a *Gluconobacter oxydans* strain.

Materials and Methods

Materials

Fructose dehydrogenase of *Gluconobacter japonicus* NBRC3260 was both a gift from and purchased from Toyobo (Osaka, Japan). Restriction endonucleases and modification enzymes for genetic engineering were kind gifts from Toyobo (Osaka, Japan) and were also purchased from Takara Shuzo (Kyoto, Japan) and Agilent Technologies (Santa Clara, CA, USA). Yeast extract was a generous gift from Oriental Yeast (Osaka, Japan). All other materials were purchased from commercial sources of guaranteed grade.
Bacterial strains, plasmids, and growth conditions

The bacterial strains and plasmids used in this study are listed in Table 1. *Gluconobacter japonicus* NBRC3260 and *Gluconobacter oxydans* ATCC621H and NBRC12528 and its \(\Delta\text{adhA}::\text{Km}^R\) derivative (9) were used in this study. The broad host range vector pBBR1MCS-4 was used for the heterologous expression of the *fdhSCL* genes in *G. oxydans*. *Gluconobacter* spp. were grown on \(\Delta\text{P}\) medium, consisting of 5 g of glucose, 20 g of glycerol, 10 g of polypeptone, and 10 g of yeast extract per liter, at 30°C with vigorous shaking, unless otherwise stated. Kanamycin and ampicillin were used at final concentrations of 50 \(\mu\text{g ml}^{-1}\) and 250 \(\mu\text{g ml}^{-1}\), respectively.

Escherichia coli DH5\(\alpha\) was used for plasmid construction (10). *E. coli* HB101 harboring pRK2013 was used for a helper strain for conjugative plasmid transfer using a triparental mating method (11). *E. coli* strains were grown on modified Luria-Bertani medium, consisting of 10 g of polypeptone, 5 g of yeast extract, 5 g of NaCl, filled to 1 liter with distilled water, and adjusted pH to 7.0 with NaOH. Ampicillin was used at a final concentration of 50 \(\mu\text{g ml}^{-1}\).

Determination of the N-terminal amino acid sequence of purified FDH

Commercially available FDH was subjected to SDS-PAGE (10% acrylamide). The proteins in the gel were transferred electrophoretically onto a polyvinylidene difluoride...
membrane at 2 mA cm\(^{-2}\) for 40 min. Proteins were stained with CBB (Coomassie brilliant blue) stain one (Nacalai Tesque, Japan), destained with 5% (vol vol\(^{-1}\)) methanol, followed by the excision and drying of bands. The N-terminal amino acid sequence was analyzed with the peptide sequencer Procise 491 (Life Technologies, Carlsbad, CA, USA).

Sequencing of the fdhSCL genes

Degenerate primers, Forward primer A and Reverse primer B, were designed for PCR-based gene amplification (Table S1). The genomic DNA of *G. japonicus* was isolated from cells grown to a mid-exponential phase of growth by the method of Marmur (12) with some modifications, i.e. we used cetyltrimethylammonium bromide at a final concentration of 1% (wt vol\(^{-1}\)) to remove polysaccharides but omitted the perchlorate step in the original procedure. PCR was performed with the genomic DNA of *G. japonicus* as the parental DNA molecule using KOD Dash polymerase (Toyobo, Japan) and the MyCycler thermal cycler (Bio-Rad, CA, USA). The amplified DNA fragment was sequenced using the same primers. The thermal asymmetric interlaced PCR (TAIL-PCR) method was repeatedly conducted to extend sequencing to the 5’ and 3’ directions using one of the three arbitrary degenerate primers, AD1, AD2, or AD3, and KOD Dash polymerase, according to Liu et al. (13). The product of TAIL-PCR was sequenced to be homologous to the 3’ region of the gene encoding the cytochrome c subunit of sorbitol dehydrogenase. Thus, degenerate
primers were designed from the conserved amino acid sequence in the heme C binding motives in the cytochrome c subunits of other dehydrogenases to extend sequencing. We repeated the TAIL-PCR method to further obtain the complete structural genes for the FDH complex.

Construction of plasmids

For plasmid construction, we used Herculase II Fusion DNA polymerase (Agilent Technologies, Santa Clara, CA, USA) to amplify the designed DNA fragments. A putative promoter region of the *adhAB* genes, which encode two major subunits of the pyrroloquinoline quinone-dependent alcohol dehydrogenase, was amplified with Herculase II Fusion DNA polymerase using a genomic DNA preparation of *G. oxydans* 621H and two primers, 621H-adh-pro(+) and 621H-adh-pro(-) (Table S1). The PCR product was inserted into pBBR1MCS-4 (9) treated with *Kpn*I and *Xho*I to yield pSHO8. The *fdhSCL* genes were amplified with the DNA polymerase using the genome DNA of *G. japonicus* NBRC3260 and two primer sets, *fdhS*-5-*Eco*(+) and *fdhL*-3-*PstBam*(-) and *fdhS*-370-ATG-*Xho*(+) and *fdhL*-3-*PstBam*(-) (Table S1), respectively. The PCR products were inserted into pSHO8 treated with *Eco*RI and *Bam*HI and with *Xho*I and *Bam*HI to yield pSHO12 and pSHO13, respectively. To construct a plasmid to express only the *fdhSL* genes, an in-frame deletion in the *fdhC* gene was introduced in pSHO13 by fusion PCR as
Expression of the \textit{fdhSCL} genes of \textit{Gluconobacter} sp.

follows. The 5’ and 3’ fragments for a deletion derivative of pSHO13, in which most of
subunit II (from His11 to Trp451, amino acid number of the putative mature subunit II) is lost
in-frame, were amplified with the DNA polymerase with the primer sets of
\textit{fdhS-370-ATG-Xho(+)} and delta-\textit{fdhC(-)} and delta-\textit{fdhC(+)} and \textit{fdhL-3-PstBam(-)},
respectively (Table S1). The two PCR products were purified and conducted to fusion PCR
with the primers \textit{fdhS-370-ATG-Xho(+)} and \textit{fdhL-3-PstBam(-)}. The amplified 2.4-kb
DNA fragment was inserted into pSHO8 treated with \textit{XhoI} and \textit{BamHI} to yield pSHO16.
All nucleotide sequences of PCR cloning were confirmed by cycle sequencing techniques
using a 310 DNA sequencer (Applied Biosystems, CA, USA).

\textbf{Expression of recombinant FDH and preparation of the membrane fraction}

\textit{G. oxydans} NBRC12528 \textit{ΔadhA::Km}R was transformed with the plasmids via a triparental
mating method using the HB101 strain harboring pRK2013 (11). Acetic acid was added to
the media for selection at a final concentration of 0.1\% (wt vol-1) to eliminate \textit{E. coli} growth.
Acetic acid- and ampicillin-resistant conjugant colonies were screened twice on ΔP agar
medium containing 0.1\% (wt vol-1) acetic acid and 250 μg ml-1 ampicillin. Finally, the
transconjugants were screened in liquid ΔP medium containing 250 μg ml-1 ampicillin.
\textit{Gluconobacter} cells were cultivated in ΔP medium with or without 250 μg ml-1
ampicillin to the late exponential growth phase. Cells were collected by centrifugation at
10,000 g for 10 min and washed twice with 20-fold-diluted McIlvaine buffer (McB, mixture of 0.1 M citric acid and 0.2 M disodium hydrogenphosphate) (pH 6.0). Preparation of the membrane fraction was carried out as described by Ameyama et al. (1) with some modifications, as follows. Cells were suspended in 20-fold-diluted McB (pH 6.0) and were disrupted by two passages through a French pressure cell press (Thermo Fisher Scientific, Waltham, MA, USA). After cell debris was sedimented by low speed centrifugation (10,000 g, 10 min, 4°C), the supernatant was ultracentrifuged (100,000 g, 1 h, 4°C). The supernatant was used as the soluble fraction and precipitates were resuspended in 20-fold-diluted McB (pH 6.0) and used as the membrane fraction.

Purification of recombinant FDH

The solubilization and purification of FDH were performed as described (1) with some modifications, as follows. Membranes were suspended in 20-fold diluted McB (pH 6.0) at a concentration of 10 mg membrane protein ml⁻¹ containing 1 mM 2-mercaptoethanol and 1.0% (wt vol⁻¹) Triton X-100 and gently stirred for 10 h at 4°C. FDH was obtained in the supernatant fraction of ultracentrifugation at 100,000 g for 1.5 h. The supernatant fraction was applied on a DEAE-sepharose column equilibrated with 20-fold diluted McB (pH 6.0) containing 1 mM 2-mercaptoethanol and 0.1% (wt vol⁻¹) Triton X-100. The elution of FDH from a DEAE-sepharose column was carried out by a concentration gradient of McB,
Expression of the *fdhSCL* genes of *Gluconobacter* sp.

i.e. from 20-fold diluted McB (pH 6.0) to the original concentrations of McB (pH 6.0)

containing 1 mM 2-mercaptoethanol and 0.1% (wt vol⁻¹) Triton X-100. The purities of
recombinant FDH were judged by Coomassie brilliant blue R-250 staining of SDS-PAGE.

Oxygen consumption rates by intact cells

Oxygen consumption of intact *Gluconobacter* cells was measured at 25°C with a Clark-type
oxygen electrode (OPTO SCIENCE, Tokyo, Japan). Cell suspensions were prepared at
concentrations of 1.0 OD₆₀₀nm with 50 mM sodium phosphate buffer (pH 6.0). D-Glucose
and D-fructose were added at 200 mM as the respiration substrate. Oxygen concentrations
were recorded amperometrically as the reduction current of oxygen at -600 mV vs. the
Ag|AgCl reference electrode.

Other analytical methods

Global identity between predicted amino acid sequences was calculated by the software
GENETYX-MAC (ver. 14; GENETYX, Tokyo, Japan). Protein concentrations were
determined with the DC Protein Assay Kit (Bio-Rad, CA, USA) using bovine serum albumin
as a standard. FDH activity was measured spectrophotometrically with potassium
ferricyanide and the ferric-dupanol reagent as described (1). One FDH unit was defined as
the enzyme amount oxidizing one micromole of D-fructose per min. Covalently bound
heme C on protein separated by SDS-PAGE was stained by heme-catalyzed peroxidase activity (14). Heme C content was determined spectrophotometrically as described (15).

Nucleotide sequence accession number
The nucleotide sequence and their predicted amino acid sequence were deposited to the DNA data bank of Japan (DDBJ) with the accession number of AB728565.

Results

Sequencing of the fdhSCL genes
We determined the N-terminal amino acid sequence of subunit I of the commercially available FDH complex purified from *G. japonicus* NBRC3260 (*Gluconobacter* sp. in the instructions provided by Toyobo) to be SNETLSADVVIIGAGICGSLLAH (in an amino to carboxyl direction) as shown in Fig. S1. Basic Local Alignment Search Tool (BLAST) analysis of the determined amino acid sequence revealed that subunit I of sorbitol dehydrogenase (SLDH) of *Gluconobacter frateurii* THD32 shows the highest identity with the N-terminal amino acid sequence of subunit I of FDH (16). We thus designed degenerate primers for PCR (Table S1) based on the N-terminal sequence and conserved the
amino acid sequence in the SLDH subunit I, respectively. To obtain sequence information upstream and downstream of the PCR product, the TAIL-PCR method was conducted as described in the Materials and Methods section. We also designed degenerate primers from the heme C binding consensus sequence, and further repeated the TAIL-PCR method. We determined the nucleotide sequence of the 4,208-base PCR product containing the complete structural genes for the FDH complex.

The nucleotide and predicted amino acid sequences of FDH and the flanking regions are shown in Fig. S1. Three open reading frames (ORFs) were found for fdhSCL encoding the small, cytochrome c, and large subunits, or subunit III, II, and I, respectively. They may be in the same transcriptional unit. A sequence of SRRKLLA, similar to the consensus motif SRRXFLK (where X is any polar amino acid) for the twin-arginine translocation (tat) system of E. coli that translocates secretory proteins across the cytoplasmic membrane, was found in the N terminus of FdhS (17). Since there was no ATG or GTG codon between the tat signal and nonsense codon in the upstream region, a TTG codon at nucleotide (nt) 93 can be the start codon for fdhS. A possible Shine-Dalgarno sequence was found at 6-bp upstream of this start codon. We did not find a rho-independent terminator-like sequence around the termination codon for fdhL, rather there seems to have been another ORF from nt 3,794 of which the product is homologous to the hypothetical protein GDI_0857 of Gluconacetobacter diazotrophicus PAI5 and the
hypothesis protein GMO_23960 of *Gluconobacter morbifer* G707. Since we failed to obtain the sequence for upstream and downstream regions of the *fdhSCL* genes, a whole structure of the *fdh* operon is uncertain. A 35-amino acid stretch in the predicted N terminus of subunit III can be recognized as a signal sequence by the SOSUIsignal program (18), whereas no signal sequence was found for the N terminus of subunit I, suggesting that subunit I may be translocated together with subunit III by the tat system. The *fdhS* gene encoded 183 amino acids but 148 for the mature protein, of which the calculated molecular mass was approx. 16 kDa.

The ORF corresponding to subunit II, *fdhC*, started at the position of nt 663. A possible SD sequence, AGGA, was found 15-nt upstream of the start codon. The 25 amino acid sequence of the predicted N terminus of FdhC was suggested as a sec-dependent signal sequence by the SOSUIsignal program (18). The molecular mass of the mature protein could be calculated as approx. 49 kDa composed of 461 amino acids, but it should be higher because the deduced amino acid sequence was revealed to have three CXXCH sequence motives for heme C binding sites.

The coding region of subunit I was started at position 2,145 with the ATG codon. There was a possible SD sequence, AGG, 9-nt upstream of the initiation codon. No signal sequence for translocation was found in the predicted sequence, consistent with the result of the N-terminal amino acid sequencing of purified FDH, which started at the second Ser
residue. The fdhL gene encoded a polypeptide of 544 amino acid residues with a calculated molecular mass of approx. 60 kDa being assembled with and covalently bound to FAD.

The deduced amino acid sequence was found to have the GAGICG sequence at a position between the 14th and 19th residues, corresponding to the binding motif of FAD (GXGXXG) (19).

Global identity between the predicted amino acid sequences of each subunit of FDH and SLDH from *G. frateurii* (16) was calculated as follows using the putative mature forms of protein: subunit I, 52% identity; subunit II, 44% identity; subunit III, 24% identity. Even though there are high identities, the SLDH of *Gluconobacter thailandicus* NBRC3254 (formally *Gluconobacter suboxydans* var. α IFO3254) closely related to that of *G. frateurii* (16) has been shown to be inert on sugars but active on D-mannitol at only a 5% rate of D-sorbitol (20). The global identity of each subunit of FDH with that of GDH from *Burkholderia cepacia* (21) was 52%, 45%, and 32% for subunit I, subunit II, and subunit III, respectively. *B. cepacia* GDH shows relatively wide substrate specificity, i.e. this enzyme oxidizes maltose at half the rate of D-glucose (22). On the other hand, since thorough substrate specificity has not been reported so far, it is not clear yet whether *B. cepacia* GDH oxidizes other monosaccharides.

The putative mature form of the predicted amino acid sequence of fdhC showed considerable identity to those of the cytochrome c subunits of ADH of *G. oxydans* (36%,
Expression of the $fdhS$ genes of Gluconobacter sp.

(23)) and aldehyde dehydrogenase of *Gluconacetobacter europaeus* (31%, (24)).

Construction of Gluconobacter strains for $fdhSCL$ expression

Since *G. oxydans* NBRC12528 highly produces c-type cytochromes and flavoproteins (25) but does not have FDH activity (1), we tried heterologous expression of the $fdhSCL$ genes in this strain. Moreover, because ADH is one of major membrane proteins in NBRC12528 and may disturb protein purification, its derivative, which has gene replacement in the $adhA$ gene encoding a large subunit of ADH ($\Delta adhA::Km^R$ strain), was used in this study. The broad-host-range plasmid vector pBBR1MCS-4 was stable in *G. oxydans* NBRC12528 and easy to manipulate, thus we used this plasmid vector to express the $fdhSCL$ genes. To ensure heterologous expression, a putative promoter region for the $adhAB$ genes of *G. oxydans* 621H was inserted at the upstream region of the $fdhSCL$ genes.

Judging from the multiple alignment analysis of subunit III of several flavoprotein-cytochrome c complex dehydrogenases (data not shown), the start codon of the FdhS subunit seemed to be TTG and not ATG. In addition to simple cloning of the native $fdhSCL$ genes, in order to confirm the translational start site of subunit III and examine translation efficiency, we constructed modified $fdhSCL$ genes to designate $fdh_{ATG}SCL$, where the TTG codon was replaced with ATG and a termination codon (TAA) was inserted just before the ATG codon. The $\Delta adhA$ strain was transformed with the constructed plasmids
by conjugation-based gene transfer.

Comparison between wild-type and recombinant FDHs

The *G. japonicus* NBRC3260 strain, which produces wild-type FDH, showed 0.15 FDH units (mg membrane protein)$^{-1}$ in the membranes. Although we did not examine this in detail, the low specific FDH activity in the membranes of *G. japonicus* NBRC3260 may be attributed to the difference in the media used in the present and former studies, i.e. ΔP medium was used in this study, while the former study used synthetic medium.

Membranes of the $\Delta adhA$ cells harboring pSHO12 carrying the wild-type $fdhSCL$ genes showed 3.5 ± 0.3 units mg$^{-1}$, activity approximately 20-times higher than those of *G. japonicus* NBRC3260 (Fig. 1). Furthermore, those of ATGFDH showed 16 ± 0.8 units mg$^{-1}$, approximately 5-times higher than TTGFDH. We could not detect FDH activity in the membranes of the Δadh strain harboring pSHO8 carrying the putative promoter region only.

Heme-catalyzed peroxidase staining of the SDS-PAGE gel revealed that both membranes having TTGFDH and ATGFDH showed approx. 51-kDa bands, while the Δadh strain harboring pSHO8 did not. The apparent intensity of staining of ATGFDH was the highest in the samples examined in this study, and that of TTGFDH was also higher than that of *G. japonicus* NBRC3260 (data not shown). These results clearly indicate that the initiation codon for subunit III is TTG at nt 93, and also suggest that expressions of not only
of the fdhSC genes of Gluconobacter sp.

subunit III, but also the whole FDH complex are increased by changing the initiation codon
to ATG.

Characterization of purified ATG^{FDH}

The specific activity of ATG^{FDH} purified in this study was 260 units (mg protein)$^{-1}$ at 25°C,
which is approx. 1.5-times higher than that reported in the previous study (1). The purified ATG^{FDH} had three main bands of 68, 51, and 18 kDa on SDS-PAGE (Fig. S2),
which are similar sizes to those reported previously (1), and correspond with the expected
molecular masses from the $fdhSCL$ genes determined in this study. At least two smaller
bands could be seen in the CBB-stained SDS-PAGE of our FDH preparation (Fig. S2).

However, we did not find these bands when we used other detergents for preliminary FDH
purification, such as n-dodecyl-β-D-maltoside and n-octyl-β-D-glucoside (S. Kawai, T.
Yakushi, K. Matsushita, and K. Kano, unpublished data). Thus, we likely consider them as
contaminants.

The purified ATG^{FDH} showed a reduced cytochrome c-like absorption spectrum
(data not shown), which is derived from the heme C moieties in subunit II. Based on the
FDH complex being a heterotrimeric structure, the number of heme C was determined to be
2.1 per complex, which was calculated from spectrometric heme C contents and protein
contents as described in the Materials and Methods section. We suggest that FDH has three
heme C moieties as predicted from the deduced amino acid sequence of subunit II, although
the estimated value is more than two but much less than three, because some protein
impurities can be seen in the CBB-stained SDS-PAGE of our FDH preparation (Fig. S2) and
minor invisible contaminations are also possible.

The purified ATG^{FDH} transferred electrons to the electrodes directly, as
commercially available FDH does (S. Kawai, T. Yakushi, K. Matsushita, and K. Kano,
unpublished data).

Characterization of the subunit I/III subcomplex

To examine the roles of subunit II in the electron transfer to ubiquinone, the physiological
electron acceptor, and ferricyanide, an artificial electron acceptor, and in the subcellular
localization of the FDH complex, we constructed a strain to produce only subunits I and III.
Oxygen consumption with d-glucose and d-fructose by the ΔadhA cells harboring pSHO8
(vector), pSHO13 ($\text{fdh}_{\text{ATG}}\text{SCL}$), or pSHO16 ($\text{fdh}_{\text{ATG}}\text{SL}$) were measured (Fig. 2).
D-Fructose-dependent oxygen consumption by the ΔadhA cells harboring the empty vector
was much lower than oxygen consumption with glucose by the same cells ($p < 0.01$,
Student's t test; $n = 6$), suggesting that the ΔadhA strain and even the parental strain $G.$
oxydans NBRC12528 have the glucose oxidizing respiratory chain as previously reported
(26), but do not have the fructose oxidizing respiratory chain. They presumably have the
ability to metabolize D-fructose to produce NADH being re-oxidized by the respiratory chain.

D-Glucose-dependent oxygen consumption rates by the \(\Delta \text{adhA} \) cells harboring pSHO13 (\(\text{fdh}_{\text{ATG}SCL} \)) and pSHO16 (\(\text{fdh}_{\text{ATG}SL} \)) were increased by approx. 1.5-fold that of the cells harboring pSHO8 (vector) by a mechanism that has yet to be elucidated (\(p < 0.01 \), Student's \(t \) test; \(n = 6 \)). The cells harboring pSHO13 (\(\text{fdh}_{\text{ATG}SCL} \)) showed the ability to consume oxygen depending on fructose at approx. a 10-fold faster rate than that of the cells harboring the empty vector (\(p < 0.01 \), Student's \(t \) test; \(n = 6 \)), which is much higher than that observed with glucose, suggesting that the fructose-oxidizing respiratory chain was heterologously reconstituted in the \(\Delta \text{adhA} \) cells. On the other hand, the difference in D-fructose-dependent oxygen consumption between the cells harboring pSHO16 (\(\text{fdh}_{\text{ATG}SL} \)) and those harboring the empty vector may be considered negligible (\(p > 0.1 \), Student's \(t \) test; \(n = 6 \)).

In order to know whether the functional subunit I/III subcomplex is expressed, we examined the \textit{in vitro} fructose dehydrogenase activity of the cell-free extract of the \(\Delta \text{adhA} \) cells harboring pSHO16 (\(\text{fdh}_{\text{ATG}SL} \)). The activity of the cells that express whole FDH complex could be found mostly in the membrane fraction at a specific activity of 20 ± 5 units mg\(^{-1}\) at pH 5.0 (Fig. 3A). However, the activity of the cells that express the subunit I/III subcomplex (I/III) was detected mostly in the soluble fraction at a specific activity of 3.8 ± 0.4 units mg\(^{-1}\), indicating that functional I/III is produced and subunit II is a membrane-anchoring subunit for the FDH complex. Because I/III had significant activity...
to oxidize fructose but failed to link the respiratory chain, it is reasonable to conclude that subunit II is responsible for ubiquinone reduction. By using the purified FDH complex and partially purified I/III, we determined bimolecular rate constants for the reduction of several artificial electron acceptors. I/III had no selectivity for electron acceptors, while the FDH complex reacted specifically with 2,3-dimethoxy-5-methyl-1,4-benzoquinone (Q-0) and 2,3-dimethoxy-5-farnesyl-1,4-benzoquinone (Q-1) (S. Kawai, T. Yakushi, K. Matsushita, and K. Kano, unpublished data). We examined the pH-dependency of fructose dehydrogenase activity for the FDH complex in the membrane fraction and I/III in the soluble fraction (Fig. 3B). They were different from each other, i.e. the optimum pH of the FDH complex in the membrane fraction was pH 4.0, whereas I/III showed the highest activity at pH 6.0.

Discussion

We purified the FDH complex from the membranes of *G. japonicus* NBRC3260 (formerly *G. industrius* IFO3260) in 1981 (1). This enzyme is useful for the determination of D-fructose, which can be applied in diagnosis (2), and more recently for basic research to understand the properties of enzyme electrodes that can transfer electrons directly (3). Here, we sequenced whole structural genes for the heterotrimeric complex for the first time. The genes for several kinds of flavoprotein-cytochrome c complexes have been sequenced so far, such as
Expression of the \textit{fdhSCL} genes of \textit{Gluconobacter} sp.

Gluconate 2-dehydrogenase from \textit{Erwinia cypripedi} (27), glucose dehydrogenase from \textit{B. cepacia} (BcGDH) (21), and sorbitol dehydrogenase from \textit{G. fraterculi} (16). Each enzyme including FDH has strict substrate specificity, the genes determined in this study offer the 4th new member of the flavoprotein-cytochrome \textit{c} complex family as fructose-specific enzyme. Genes for 2-ketogluconate 5-dehydrogenase, a flavoprotein-cytochrome \textit{c} complex, still remain to be determined (28). The gene organization of the \textit{fdh} genes is unique to the others, i.e. the order of the genes is the small, large, and cytochrome \textit{c} subunits in the 5´ to 3´ direction for those reported so far, whereas that of the \textit{fdh} genes was the small, cytochrome \textit{c}, and large subunits. However, we anticipate that there is less physiological significance for the difference in gene organization because we qualitatively reconstituted an FDH complex from partially purified I/III and the cytochrome subunit independently expressed (S. Kawai, T. Yakushi, K. Matsushita, and K. Kano, unpublished data). Another unique feature predicted from the primary sequence of the FDH complex is a hydrophobic patch in the C terminus of subunit II for integration into the membrane by a hydrophobic helical structure, which can be predicted by a hydropathy plot using the SOSUI program (29) (data not shown). However, we ran the secondary structure prediction program Jpred 3 (30), and the hydrophobic patch would be part of a sheet structure rather than helix with a relatively high probability (data not shown). Thus, it is an interesting issue whether the hydrophobic patch has a role in the membrane localization of subunit II or not.
We successfully overexpressed the FDH complex in the *G. oxydans* ΔadhA strain. This strain is beneficial for the expression of the heterologous protein in the host strain for purification because it fails to produce the ADH complex, one of the major membrane proteins in *Gluconobacter*. In addition, compared to *E. coli*, our expression system does not need to consider heme C assembly because *Gluconobacter* produces high amounts of *c*-type cytochromes naturally (25). Tsuya et al. reported on the heterologous expression of BeGDH in the *E. coli* strain harboring a plasmid to express the heme C assembly system (21). When pSHO13 (fdh_{ATG}SCL) was used, the membranes contained a specific FDH activity of 16 units mg^{-1}, suggesting that approx. 5% of the membrane proteins were the FDH complex, taking into account purified FDH, which had a specific activity of 260 units mg^{-1}. We suggest that *G. oxydans* can produce the FDH complex at such high productivity because it is a related species of *G. japonicus*.

The translation of subunit III was found to start at the TTG codon, by constructing the plasmid derivative pSHO13 (fdh_{ATG}SCL) containing a termination codon in-frame just before the initiation codon, which was substituted to the ATG codon. The *G. oxydans* strain harboring pSHO13 not only produced the FDH complex, but also a much higher amount of FDH. Translation initiation by the TTG codon is enhanced by the T signal (ATTT) in the 5’ side of the initiation codon (31). However, we did not find a candidate for the T signal in the nucleotide sequence near the initiation codon. The results in this
study suggest that the TTG codon is a less efficient codon even in *Gluconobacter*, and its substitution to the ATG codon improves translation efficiency.

Since we reconstituted the D-fructose oxidizing respiratory chain in *G. oxydans* Δ*adhA* cells, we suggest that the FDH complex is a D-fructose:ubiquinone 5-oxidoreductase functioning as the primary dehydrogenase in the respiratory chain of *G. japonicus*. Moreover, the Δ*adhA* cells harboring pSHO16 (fdh_{ATG}SL) producing I/III only failed to support the D-fructose oxidizing ability, even though these cells showed significantly high D-fructose:ferricyanide oxidoreductase activity in the soluble fraction. Thus, we suggest that subunit II is responsible for anchoring the FDH complex to the cytoplasmic membrane and transferring electrons to ubiquinone. Another *Gluconobacter* membrane-bound enzyme ADH consists of three subunits; one of which is a triheme cytochrome c subunit (AdhB) responsible for ubiquinone reduction and membrane anchoring (32). The cytochrome c subunit of heterotrimeric BeGDH has a functionally critical role in the ubiquinone reaction and membrane localization (21). Indeed, a significant homology was observed among FdhC, AdhB, and the β subunit of BeGDH (see the Results section). Our results suggest an analogy of the cytochrome c function of other *Gluconobacter* enzymes such as molybdopterin-dependent aldehyde dehydrogenase (24, 33) and other heterotrimeric flavoprotein-cytochrome c complexes that can be found in many kinds of bacterial genomes.

As described earlier, the FDH complex was characterized by its ability to transfer
439 electrons to electrodes directly. As far as we know, this ability is unique to this enzyme
440 and details of the mechanisms remain unknown. We can start creating FDH derivatives
441 through genetic engineering procedures to characterize their electrochemical properties and
442 discuss the mechanism underlying direct electron transfer. Indeed, we observed large
443 differences in the pH-dependencies of the FDH complex and I/III (Fig. 3B). These findings
444 suggest that I/III has a different intramolecular electron transport pathway and different
445 electrochemical properties from the FDH complex.

446

447 **Acknowledgements**

448 We thank Yuichi Yoshino for his technical assistance. We are grateful to Osao Adachi
449 who continuously encourages us to proceed with our FDH study. This work was supported
450 in part by a Grant-in-Aid from the Japan Society for the Promotion of Science.

451

452 **References**

454 dehydrogenase of *Gluconobacter industrius*: purification, characterization, and

Expression of the *fdhSCL* genes of *Gluconobacter* sp.

Figure legends

Fig. 1. Comparison of specific FDH activity in the membranes of *G. japonicus* NBRC3260 (wild type) and the ΔadhA strains harboring pSHO8 (vector), pSHO12 (native *fdhSCL*), or pSHO13 (*fdh*ATG*SCL*). Data are shown as mean values with 90% confidence intervals (error bars; *n* = 3).

Fig. 2. D-Fructose-dependent oxygen consumption (heavy gray columns) of the whole cell preparations of the ΔadhA strains harboring pSHO8 (vector), pSHO13 (*fdh*ATG*SCL*), or pSHO16 (*fdh*ATG*SL*). Control experiments were also conducted with D-glucose (light gray columns). The rates of oxygen consumption were normalized by optical density of the cell.
Expression of the \textit{fdhSCL} genes of \textit{Gluconobacter} sp.

preparations. Data are shown as mean values with 90\% confidence intervals (error bars; \(n = 3 \)). Significance can be seen between columns with a and b, a and c, and c and d (\(p < 0.01 \), Student's \(t \) test; \(n = 6 \)). Columns with the same letters were not significantly different (\(p > 0.1 \), Student's \(t \) test; \(n = 6 \)).

Fig. 3. Comparison of the FDH complex (FDH) and I/III. (A) The membrane (light gray columns) and soluble (heavy gray columns) fractions of the \(\Delta \text{adhA} \) strains harboring pSHO8 (vector), pSHO13 (\textit{fdh}_{ATGSCL}), or pSHO16 (\textit{fdh}_{ATGSL}) were prepared, and FDH activity in the membrane and soluble fractions were measured at pH 5.0 and pH 6.0, respectively. Total activity in each fraction was shown. (B) FDH activities of the membrane fraction for the FDH complex and the soluble fraction for I/III were measured under various pH conditions. Relative activity to that of the highest activity was shown individually. Data are shown as mean values with 90\% confidence intervals (error bars; \(n = 3 \)). The specific FDH activities of the membrane fraction of the cells harboring pSHO13 (\textit{fdh}_{ATGSCL}) and the soluble fraction of the cells harboring pSHO16 (\textit{fdh}_{ATGSL}) were 20 ± 5 and 3.8 ± 0.4 units mg\(^{-1}\), respectively.
Table 1. The bacterial strains and plasmids used in this study.

<table>
<thead>
<tr>
<th>Strains and plasmids</th>
<th>Description</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH5α</td>
<td>F' *endA1 hsdRJ7 (r_k^-, m_k^+) supE44 thi-1 (\lambda) recA1 gyrA96 relA1 deoR (\Delta(lacZYA-argF)U169 \phi80dlacZAM15)</td>
<td>(10)</td>
</tr>
<tr>
<td>HB101</td>
<td>F' *thi-1 hsdS20 (r_B, m_B) supE44 recA13 ara14 leuB6 proA2 lacY1 galK2 rpsL20 (str^r xyl-5 mtl-1 (\lambda))</td>
<td>(34)</td>
</tr>
<tr>
<td>Gluconobacter japonicus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBRC3260</td>
<td>Wild type</td>
<td>NBRC^a</td>
</tr>
<tr>
<td>Gluconobacter oxydans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBRC12528</td>
<td>Wild type</td>
<td>NBRC^a</td>
</tr>
<tr>
<td>(\Delta\text{adhA})</td>
<td>NBRC12528 (\Delta\text{adhA}:\text{Km}^R)</td>
<td>(9)</td>
</tr>
<tr>
<td>ATCC621H</td>
<td>Wild type</td>
<td>ATCC^a</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pKR2013</td>
<td>The plasmid mediates plasmid transfer, (\text{Km}^R)</td>
<td>(11)</td>
</tr>
<tr>
<td>pBBR1MCS-4</td>
<td>A broad host range plasmid, (\text{mob Ap}^R)</td>
<td>(35)</td>
</tr>
<tr>
<td>pSHO8</td>
<td>pBBR1MCS-4, a 0.7-kb fragment of a putative promoter region of the (\text{adhAB}) gene of G. oxydans 621H</td>
<td>This study</td>
</tr>
<tr>
<td>pSHO12</td>
<td>pSHO8, a 3.8-kb fragment of the (\text{fdhSCL}) genes of G. japonicus NBRC3260</td>
<td>This study</td>
</tr>
<tr>
<td>pSHO13</td>
<td>pSHO8, a 3.7-kb fragment of the (\text{fdh}_{\text{ATG}}\text{SCL}) genes</td>
<td>This study</td>
</tr>
<tr>
<td>pSHO16</td>
<td>pSHO8, a 2.4-kb fragment of the (\text{fdh}_{\text{ATG}}\text{SL}) genes (in-frame deletion of (\text{fdhC}))</td>
<td>This study</td>
</tr>
</tbody>
</table>

^a. The URL addresses of NBRC and ATCC are “http://www.nbrc.nite.go.jp/” and “http://www.atcc.org/”, respectively.
Kawai et al.

Fig. 1. Comparison of specific FDH activity in the membranes of \textit{G. japonicus} NBRC3260 (wild type) and the \textit{\Delta}adh strains harboring pSHO8 (vector), pSHO12 (native \textit{fdhSCL}), or pSHO13 (\textit{fdh}_{\text{ATG}}SCL). Data are shown as mean values with 90\% confidence intervals (error bars; \(n = 3 \)).
Fig. 2. D-Fructose-dependent oxygen consumption (heavy gray columns) of the whole cell preparations of the ∆adh strains harboring either pSHO8 (vector), pSHO13 (fdhATG SCL), or pSHO16 (fdhATG SL). Control experiments were also conducted with D-glucose (light gray columns). The rates of oxygen consumption were normalized by optical density of the cell preparations. Data are shown as mean values with 90% confidence intervals (error bars; n = 3). Significance can be seen between columns with a and b, a and c, and c and d (p < 0.01, Student's t test; n = 6). Columns with the same letters were not significantly different (p > 0.1, Student's t test; n = 6).
Fig. 3. Comparison of the FDH complex (FDH) and I/III. (A) The membrane (light gray columns) and soluble (heavy gray columns) fractions of the \(\Delta \text{adhA} \) strains harboring pSHO8 (vector), pSHO13 (\(fdh_{\text{ATG}} \text{SCL} \)), or pSHO16 (\(fdh_{\text{ATG}} \text{SL} \)) were prepared, and FDH activity in the membrane and soluble fractions were measured at pH 5.0 and pH 6.0, respectively. Total activity in each fraction was shown. (B) FDH activities of the membrane fraction for the FDH complex (heavy gray diamonds) and the soluble fraction for I/III (light gray squares) were measured under various pH conditions. Relative activity to that of the highest activity was shown individually. Data are shown as mean values with 90% confidence intervals (error bars; \(n = 3 \)). The specific FDH activities of the membrane fraction of the cells harboring pSHO13 (\(fdh_{\text{ATG}} \text{SCL} \)) and the soluble fraction of the cells harboring pSHO16 (\(fdh_{\text{ATG}} \text{SL} \)) were 20 ± 5 and 3.8 ± 0.4 units mg\(^{-1} \), respectively.
Kawai et al., Fig. S1 (continued).
Kawai et al., Fig. S1 (continued).
Kawai et al., Fig. S1 (continued).
Hypothetical protein

Kawai et al.

Fig. S1. Nucleotide and predicted amino acid sequences of fdhSCL are shown. Part of the gene for a hypothetical protein downstream of fdhL is also shown. Possible ribosome-binding sites located prior to the initiation codon of each gene are shown in bold face. Consensus sequences for heme C binding and FAD binding are shown in bold face. Black arrowheads indicate putative cleavage sites for the precursor forms of subunits II and III, predicted by the SOSUIsignal program. The amino acid sequence of subunit I determined by the peptide sequencer is underlined. The nucleotide sequence and predicted amino acid sequences for fdhSCL were deposited to DDBJ with the accession number AB728565.
Kawai et al.

Fig. S2. Coomassie staining of the purified FDH complex separated by SDS-PAGE. Lane M, Molecular mass standard and 10 μg of the purified FDH complex were applied on lanes 1 and M, respectively.
Table S1. Oligonucleotides used in this study.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5´ --> 3´)(^a)</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward primer A</td>
<td>CSGCCGAYGTCGTGATYATYGGTG</td>
<td>Degenerate PCR and sequencing</td>
</tr>
<tr>
<td>Reverse primer B</td>
<td>GGCARATCGGCATRCARTTRTTRTNCC</td>
<td>Degenerate PCR and sequencing</td>
</tr>
<tr>
<td>AD1</td>
<td>NTCGASTWTSGWGTT</td>
<td>TAIL-PCR</td>
</tr>
<tr>
<td>AD2</td>
<td>NGTCGASWGANAWGAA</td>
<td>TAIL-PCR</td>
</tr>
<tr>
<td>AD3</td>
<td>WGTGNAGWANCANAGA</td>
<td>TAIL-PCR</td>
</tr>
<tr>
<td>621H-adh-pro(+)</td>
<td>GGGGTACCTTCTGGCGGTACGGAGTC(^b)</td>
<td>pSHO8</td>
</tr>
<tr>
<td>621H-adh-pro(-)</td>
<td>CCGCTCGAGATTAACCAGAAGTCATGATCCAAC(^b)</td>
<td>pSHO8</td>
</tr>
<tr>
<td>fdhS-5-Eco(+)</td>
<td>GAATTCCAAACAAAAATAGTC(^b)</td>
<td>pSHO12</td>
</tr>
<tr>
<td>fdhL-3-PstBam(-)</td>
<td>GGATCCTGCAGCGTGCCGTTGAAACACTG(^b)</td>
<td>pSHO12</td>
</tr>
<tr>
<td>fdhS-370-ATG-Xho(+)</td>
<td>CTCGAGGAGAAGGTTAAATGGAAAAATAGCTGATT(^b)</td>
<td>pSHO13</td>
</tr>
<tr>
<td>delta-fdhC(+)</td>
<td>gaaccaacacctgcttcagcgCTGATCAGCCGTGCAAAAAG</td>
<td>pSHO16</td>
</tr>
<tr>
<td>delta-fdhC(-)</td>
<td>CTTTTTGCACGGCTGATCAGcgctgaagcaggtgttggttc(^c)</td>
<td>pSHO16</td>
</tr>
</tbody>
</table>

\(^a\) N = A, C, G, or T; R = A or G; Y = C or T.

\(^b\) The engineered endonuclease recognition site is underlined.

\(^c\) The 3’ and 5’ regions of fdhC are shown in lower and upper cases, respectively.