A Note on Reversal Complexities of Real-Time Counter Machines

Hiroshi MATSUNO†, Katsushi INOUE††, Itsuo TAKANAMI†† and Hiroshi TANIGUCHI††, Members

SUMMARY This paper gives a hierarchical property on the number of reversals of real-time counter machines. That is, we show that for any \(k \geq 1 \), a real-time counter machine with \(2k+1 \) reversals is more powerful than one with \(k \) reversals.

1. Introduction

In Ref. (1), Chan investigated some properties of counter machines with non-constant reversal-bounded counters, and showed that \(n^r \)-reversal-bounded one-way deterministic counter machines are more powerful than \(n^r \) reversal bounded ones, where \(r_1 > r_2 > 0 \).

This short paper investigates a hierarchical properties of real-time one counter machines with constant reversal and shows that for each \(k \geq 1 \), a real-time counter machine with \(2k+1 \) reversals is more powerful than one with \(k \) reversals.

2. Preliminaries

A counter machine is a pushdown machine whose pushdown store operates as counter, i.e. has a single-letter alphabet. In this paper, we consider a real-time counter machine with constant reversal-bounded counter. A machine is real-time if it reads a new input symbol in every step, and the machine stops immediately after reading the endmarker.

We use the following notations. For each \(k \geq 1 \), \(\text{NRTRBCM}(k) \) (\(\text{DRTRBCM}(k) \)) denotes a nondeterministic (deterministic) real-time \(k \) reversal bounded counter machine. For each \(X \subseteq \{D, N\} \), we let \(\langle \text{XRTRBCM}(k) \rangle = \{T \mid T \text{ is accepted by some XRTRBCM}(k)\} \).

3. Result

In Ref. (2), Duriš and Galil introduce crossing sequences on the working tape of a real-time Turing machine. Note that any crossing sequence at a given boundary on the working tape defines a partition of the input string \(x \) into segments \(x_1 \cdots x_n \). Each time this boundary is crossed, a new segment is determined.

The following lemma is easily proved by using a modification of the proof of Lemma 1 in Ref. (2).

(Lemma 1) Assume there are two accepting computations by a real-time counter machine \(M \) on inputs \(x = x_1 \cdots x_k \) and \(y = y_1 \cdots y_k \) with two identical crossing sequences, and that the \(k \) segments of \(x \) and \(y \) are defined by each crossing sequence. (Note that, the boundaries which determine crossing sequences on inputs \(x \) and \(y \) are not always located at the same place on the working tape.) Then \(M \) also accepts \(x_1 y_1 x_2 y_2 \cdots (x_k y_k x_k \cdots) \).

(Theorem 1) For each \(X \subseteq \{D, X\} \) and each \(k \geq 1 \),

\[\langle \text{XRTRBCM}(k) \rangle \subseteq \langle \text{XRTRBCM}(2k+1) \rangle . \]

(Proof) For each \(r \geq 1 \), let

\[S(r) = \{0^{i_1}1^{i_2}2^{i_3}3^{i_4} \cdots 20^n10^m | \forall i (1 \leq i \leq r) [n, i] \geq 1 \}. \]

We can easily see that \(S(k+1) \subseteq \langle \text{DRTRBCM}(2k+1) \rangle \). We then show that \(S(k+1) \notin \langle \text{NRTRBCM}(k) \rangle \). We assure, to the contrary, that \(S(k+1) \) is accepted by an \(\text{NRTRBCM}(k) \) machine with a state set \(Q \). Choose a sufficiently large \(n \) so that

\[\langle 1 \rangle \
\frac{n}{k+1} - \frac{Q(Q+1) + (Q+1) \cdot |Q|^{k+1} + 1}{k+1}, \]

and let

\[\tilde{S}(n) = \{0^{i_1}1^{i_2}2^{i_3}3^{i_4} \cdots 20^n10^m | \forall i (1 \leq i \leq k+1) [Q+1 \leq n, i] \leq n \}. \]

(Fact 1) There is a subset \(S \) of \(\tilde{S}(n) \) and \(1 \leq k \leq k+1 \) such that:

(a) \(|S| = (Q+1) \cdot (Q+1) \cdot |Q|^{k+1} + 1 \);

(b) for all \(x \) in \(S \),

\[x = 0^{i_1}1^{i_2}2^{i_3}3^{i_4} \cdots 20^n10^m \]

For any set \(T \), \(|T| \) denotes the number of elements of \(T \).
\[z' = 0^{n_1}10^{n_2}20^{n_3}10^{n_4}2 \cdots 20^{n_{k-1}}10^{n_k}1, \]

\[n_i = n_i', \text{ for } 1 \leq i \leq k + 1 \text{ and } i \neq i'. \]

(Condition c) for all strings in \(S \), there is no head reversal when \(M \) reads \(0^n10^n \), in the corresponding accepting computations.

(Proof) There are \((n - |Q|)^{k+1}\) strings in \(\overline{S}(n) \). For each of them, there is \(1 \leq i \leq k + 1 \) such that there is no head reversal when \(M \) reads \(0^n10^n \). Therefore, there are \(1 \leq i \leq k + 1 \) and a subset \(S_i \) of \(\overline{S}(n) \) such that \(|S_i| \geq (n - |Q|)^{k+1}/(k + 1) \) and there is no head reversal when \(M \) reads \(0^n10^n \), for all strings in \(S_i \). There are \((n - |Q|)^k\) possible \(k \) tuples

\[(n_1, n_2, \ldots, n_{k-1}, n_{k+1})\]

with \(|Q| + 1 \leq n_i \leq n \). Hence there is a subset \(S \) such that

\[|S| \geq \frac{(n - |Q|)^{k+1}}{k + 1} \cdot \frac{1}{(n - |Q|)^{k+1}} = \frac{n - |Q|}{k + 1} \]

that satisfies (b) and (c). It also satisfies (a) because of Eq. (1).

We let \(x = 0^{m_1}10^{m_2} \cdots 20^{m_k}10^{m_{k-1}} \) (\(x = \varepsilon \) if \(i = 1 \)) and \(y = 20^{m_k}10^{m_{k-1}} \cdots 20^{m_2}10^{m_1} \) (\(y = \varepsilon \) if \(i = k + 1 \)). Hence, each string in \(S \) is of the form \(x0^n10^n y \) (with the same \(x \) and \(y \)).

(Fact 2) For all strings in \(S \), during the \(|Q| + 1\) steps after reading \(0^n1 \), the counter head of \(M \) must move (left or right) at least once. (Note that \(|Q| + 1\) steps include the step that follows reading the 1.)

(Proof) Otherwise, there is \(x0^n10^n y \) in \(S \) such that the counter head of \(M \) does not move \(|Q| + 1\) steps after reading \(0^n1 \). Using a pumping technique \(0^n1 = 0^n10^n10^n \), \(n_i = 0(n_i \geq |Q| + 1) \) by the definition of \(S(n) \) and \(M \) also accepts \(x0^n10^n y \). Hence, \(M \) moves for the first time immediately after the input head completes reading \(10^n \). (Possibly \(n_i = 0 \)). This head movement defines a boundary on the counter tape of \(M \), a crossing sequence at that boundary. While \(M \) reads an input string in \(S(k + 1) \), it crosses the boundary defined above at most \(k + 1 \) times. On the other hand, by (c) of Fact 1, \(M \) crosses this boundary exactly once while reading \(0^n10^n \). We let this crossing be the \(p \)-th crossing \((1 \leq p \leq k + 1)\) of this boundary. The number of different crossing sequences of \(M \) is at most \(|Q|^{k+1}\), and the number of possible \(0^n1s \) is \(|Q| + 1 \). Hence by (a) of Fact 1, there are two strings in \(S \):

\[w = x0^n10^n10^n y, \text{ and} \]

\[w' = x0^n10^n10^n y \]

with \(m_i = m_i', m_3 \neq m_3' \), with the same crossing sequences at the corresponding boundaries, and the same \(p \). By (c) of Fact 1, \(M \) crosses the corresponding boundary exactly once while reading \(0^n10^n \) for both \(w \) and \(w' \). By Lemma 1, \(M \) also accepts two mixed versions of \(w \) and \(w' \). One is of the form \(x0^n10^n10^n y \) and one is of the form \(x0^n10^n10^n y \). Both strings are not in \(S(k + 1) \). This is a contradiction.

\[\text{(Q.E.D.)} \]

4. Conclusions

In this short paper, we show that nearly twice the number of reversals bring out the increase of accepting powers of real-time one counter machines. It is unknown whether or not \(k + 1 \) reversals are more powerful than \(k \) reversals for \(k \geq 1 \).

References
