
Quantum susceptibility for structural transitions based 

on exact solutions of the dingeroSchr &&  equation 

 
M. ASHIDA and H. MASHIYAMA 
Department of Physics, Graduate School of Science and Engineering, 
Yamaguchi University, Yamaguchi 753-8512, Japan 

 
(Revised on November 30, 2006 ) 

 
The static susceptibility of a quantum system is considered to discuss the structural 
phase transition.  The linear response theory is applied with assuming a mean field 
treatment for the interaction between unit cells.  The energy eigen state is solved 
exactly for the dingeroSchr &&  equation of a single particle within a two-Morse type 
self-potential.  The parameter dependence of the transition temperature is 
discussed analytically, which will give a general insight into the structural phase 
transition. The pressure-temperature phase diagram for KDP-type crystal is 
constructed theoretically. 
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Introduction 
  A phase transition is characterized by divergence of the static susceptibility[1, 2], which 
can be calculated by the linear response theory[3].  The non-linearity in the self-potential of 
a particle and the interaction between particles are indispensable to the phase transition[4], but 
these prevent usually to derive analytic relations.  If an exact solution would be solved, we 
could view the nature of the phase transition straightforwardly.  
  The general formalism of the structural transition was presented by Onodera for a classical 
system[5].  Recently, a single particle susceptibility has been reinvestigated by using 
quantum mechanics[6, 7] to discuss the pressure-temperature phase diagram of KH2PO4[8], 
which is famous for a proton tunneling[9].  The Barrett equation[10] has been derived for the 
static susceptibility, and the pressure dependence of the transition line was calculated[7].  
However, the single particle states were obtained by numerical solutions for the 

dingeroSchr && equation. 
  Here we present exact ground and first excited state wave-functions for a one dimensional 
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motion of a quantum particle within a two-Morse potential function.  The analytic form of 
the eigen energy is helpful to discuss the parameter dependence of the phase transition.   
 
 
Susceptibility and Tc 

The thermodynamic properties of a crystal system can be described by a susceptibility χ, 
which relates the thermodynamic variable with the conjugate external field[2].  In dielectric 
crystals, for example, the Polarization P is induced by an electric field E as 
  EP χ=  .     (1) 
The polarization stems from a displacement of ions with charge qj from the equilibrium 

position by xj: j
j

j xqP ∑= .  According to the linear response theory[3], χ is calculated by 

using the equilibrium density matrix ρ by the formula 

  )(
0

xexeTrd HH λλβ
ρλχ −∫=  .   (2) 

Here H is the Hamiltonian of the system without the external field and β=1/kB T, where kB is 
the Boltzman constant and T is temperature.  The density matrix is related to the partition 
function Z as 

  Ze H /βρ −=  , and HeTrZ β−= .   (3) 

  Now let’s consider a particle within a one-dimensional local potential V(x).  The 

dingeroSchr &&  equation permits discrete energy levels εn for a localized wave function ψn(x); 
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With representing the eigen states as |n>, single particle susceptibility can be explicitly written 
as [3, 6]; 
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If only two eigen states are predominant, then the single particle susceptibility is represented 
as 
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where 011 εεω −=h  is the gap energy, and 100 xx =  is the transition element.  At high 
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temperature, the susceptibility obeys the classical relation of 
Tk

x

B
S

2
0=χ . 

  Now let’s introduce an interaction between the particles as 

  ∑
<

−
kj

kj xxγ ,      (7) 

and apply a mean field approximation to get the susceptibility [5]; 
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By using (6), we obtain the Barrett equation 
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where 2
00 xTkB γ=  is the interaction energy, and 11 ωh=TkB  is the gap energy.  At high 

temperature, the susceptibility can be approximated by a Curie-Weiss relation: 

)( 0
2
0 TTkx B −=χ .  The susceptibility diverges at T=Tc; the transition temperature is given 

by [7] 
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Once the dingeroSchr && equation (4) is solved, the static susceptibility and the transition 
temperature would be given explicitly. 
 
 

The two-Morse potential and the exact solution for the dingeroSchr && equation 
  It is widely accepted that a harmonic force cannot induce the transition.  In order to 
consider the phase transition, we adopt a two-Morse potential[6, 7] 

  ( ))cosh(2)2cosh(2)( 2 axeaxeDxV adad −− −=  , (11) 

which is constructed from the usual Morse potential by back-to-back location with a splitting 
distance of 2d .  The potential actually takes two minimum if ad>log2. 
  Generally, the exact solution for this local potential is not written analytically.  But for a 
special value of D, we can write an analytic form of wave functions and eigen values.  With 
scaling the space coordinate by 2/a and putting 
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ade−= 8λ ,      (12) 
the dingeroSchr && equation is written as  
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It can be shown straightforwardly that the following wave functions are ground and first 

excited states, if 12 22 =aDm h ; 
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Here Nj is a normalization factor.  Figure 1 displays the two-Morse potential and these wave 
functions.  In this figure the scaled potential  

)2cosh(2)4cosh(8//)(4 2 xxDxV λλ −⋅=   (15) 

is shown for λ=5, 1, 0.1 and 0.01, as well as their normalized wave functions.  The scaled 

potential takes a minimum value 8/4 2λ−−  at )
2

44ln(
λ

λλ ++−
±=x  if λ<4.  The 

barrier energy at x=0 is 8/2 2λλ +− .  The ground state wave function becomes a 

single-peak shape if 1≥λ , while the wave function takes two peaks at )11ln(
λ

λ−+
±=x  

if 1<λ .  It should be noted that the ground state wave function is single peaked both for the 
single minimum potential( 4≥λ ) and for the double minimum potential if the zero point 
energy is above the barrier level(4>λ>1). 

Here we define a scaled temperature DTkB /4=τ .  From (10), the transition 
temperature is estimated, if λ/τ0 is small:  

})(1{log/2 2

0
3
1

0
0

0

τ
λτ

λτ
λτ

λτ −≅
−
+

=c .  (16) 

At a classical limit, the last approximation is appropriate.  On the other hand, the transition 

disappears logarithmically at 00 τλ ≥ : quantum paraelectricity.  The scaled transition 

temperature τc/τ0 is plotted against λ/τ0 in Fig. 2. 
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Discussions 
  Now we discuss how the transition temperature depends on potential parameters.  This 
would describe the phase diagram of the system, since parameter d, for example, will shrink 

with applying the hydrostatic pressure p as pddd 10 −= .  So the parameter λ  is given by 

)exp( 10 padλ .  Figure 3 gives the pressure dependence of the transition temperature.  The 

phase diagram coincides qualitatively with the pressure-temperature phase diagram of KDP[8,  
11, 12]. 

The result of the present report is equivalent to the previous publication[7].  However, the 

exact solutions of the dingeroSchr &&  equation allow us analytical discussions.  One of the 
consequences is the criterion of the peak of the nuclear density.  Even if the self-potential has 
two minima, the nuclear density takes a single-peaked form when the zero-point energy 
exceeds the potential barrier.  

Finally it should be noted that the exact solutions (14) are restricted to the condition of 

12 22 =aDm h ; the nuclear mass cannot be changed freely.  If d is 0.5A, a=5A-1, and 

D=2eV[7], then m is too lighter than proton.  Strictly speaking, the solution cannot be 
applied to KDP, but the qualitative behavior of the quantum particle is described in the present 
model. 
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Figure captions 
 
Fig. 1  The two-Morse potential and wave functions for λ=5, 1, 0.1 and 0.01, in (a), (b), 
(c) and (d), respectively.  The energy levels are shown by dashed lines.   
 
 
Fig. 2  Transition temperature as a function of parameter λ.  The longitudinal and 

the abscissa axes are 0/TTc  and 04/ TkD Bλ , respectively. 

 
 
Fig. 3  Transition temperature as a function of pressure p.  The longitudinal and the 

abscissa axes are 0/TTc  and pad1 , respectively, where 00 /τλ  is set to 0.9. 

 



Quantum susceptibility based on exact solutions 

 - 8 -

Figure 1 （M. Ashida and H. Mashiyama） 
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Figure 2 （M. Ashida and H. Mashiyama） 
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Figure3 （M. Ashida and H. Mashiyama） 
 

 


