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It is found that the nonlinear wave-particle interaction based on the single-wave model
can be changed strongly by introducing effects of weak collisions into plasma electrons.
These collisions are too weak to change the linear stage. However, they alter the phase
relation between the single wave and the trapped electrons in the nonlinear stage. As a
result, the wave amplitude of the first minimum decreases anomalously and the persis-
tent trapped-particle oscillations in the collisionless case are destroyed.

A nonlinear wave-particle interaction in a sys-
tem of a small cold beam plus a plasma has been
investigated both theoretically* and 'experimental—
ly.? Theoretical predictions® based on the single-
wave model agree with experimental observa-
tions? through the initial trapping of beam elec-
trons and up to the first amplitude oscillation.
Beyond this point, however, experiments® exhib-
it a rapid decay of the saturated wave rather than
persistent trapped-particle oscillations predicted
by numerical results! using the single-wave mod-
el. Recently, Dimonte and Malmberg® observed
destruction of trapped-particle oscillations when
the background plasma was simulated by a trav-
eling wave tube.

The spatial evolution of a beam-plasma insta-
bility in a small-cold-beam, warm-plasma sys-
tem has been studied using a particle simulation
by Naitou and Abe.? The behavior of an unstable
monochromatic wave is in agreement with the
numerical results' up to the point where it satu-
rates due to beam trapping. However, their sim-
ulation results are different from the numerical
results! after this point. The wave damps strong-
ly to the first minimum and fails to regrow to the
amplitude of the first maximum. The ratio of
the amplitude of the first maximum to that of the
first minimum is about three times as large as
the expected value from the numerical results.!

In order to examine some differences between
numerical results,' laboratory experiments, and
particle simulations, we have extended the single-
- wave model® to a more rigorous one including the
collisional effect of the plasma electrons. In Ref.
1, the collisional effects and higher-order temper-
ature effects have been neglected. In the warm
background plasma with collisions, however, the
behavior of the wave amplitude and beam elec-

trons in the nonlinear stage can be changed strong-

ly from that expected by the collisionless trapping

model, even if collisions are too weak to change
the linear stage. As an effective collision fre-
quency, we may adopt the reciprocal of the slow-
ing down time associated with Coulomb collisions
in a dense plasma. Even when collisions are
negligible, however, some weakly nonlinear proc-
esses (such as parametric instabilities) may re-
suli in an effective damping of the saturated
wave.» Since the beam velocity may be much
greater than the plasma thermal velocity, colli-
sional effects of beam electrons'with plasma
electrons are neglected. When plasma is gener-
ated by the injected beam, however, electron-
neutral collisions.of beam electrons may be im-
portant in the nonlinear stage. These collisional
effects may also have other effects which are dif-
ferent from that considered here. \

We consider the spatial evolution of a single
wave of frequency w. Following Ref. 1, we can
treat the plasma as a linear dielectric medium.
The plasma dielectric function €(w,%) is given as
follows in standard notation:
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Here v is the effective collision frequency be-
tween plasma electrons. We obtain the following
system of equations in terms of a natural exten-
sion of the model by O’Neil and co-workers® and
Jungwirth and Krlin®:
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where

Wy, 2= w, (1 + 30,2 /v,2).

Equation (2) is obtained algebraically from a
Taylor expansion of the dielectric function up to
the second order of ok =k —k, where k,=w/v,.

The real part of the dielectric function, € _(w,k,),
is not necessarily equal to zero. In-these equa-
tions, 8w denotes a detuning ® i.e., the difference
between the frequency- of the most unstable mode
(w,;) and w, and k is the spatial scaling factor,
where 3 V3 kk, is the spatial growth rate in the col-
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FIG. 1. (a) Square of the wave amplitude Ei(m) vs n;
(b) beam energy loss AW/W, Vs 1.
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lisionless warm plasma. The normalized elec-
tric field E () of the wave and the spatial coordi-
nate 1 are defined in terms of x and « by E(n)
=¢E (x)/mv,wk® and n=kx(w/v,), respectively.
The phase-space coordinate £; of the jth beam
electron is defined as &;=w[#;(x) -x/v,]. The
function ¢,{x) is the time when the jth beam elec-
tron passes the point x. The velocity ¥, in the
laboratory frame is obtained from £;=d¢;/dn by
using the relation x;=v,/(1+ Kéj).

Figure 1(a) shows the typical results of the ef-
fect of collisions on the wave. For numerical
calculation, plasma parameters are chosen as
follows: n,/1n,=5x10"%, v,/v,=9.9, and dw/w,, =0.
These parameters correspond to ones for the typ-
ical case of particle simulations.* The solid line
is E%(n) when v/w,, =2x1073, The dashed line is
EZ?(n) in the collisionless case. The correspond-
ing beam energy losses AW /W, are shown in Fig.
1(b), where

N
AW=‘—(Z)mvj2/2- Wo)
=1

and W,=Nmv,?/2. Figure 2 shows the real and
imaginary parts of the wave number, which may
be interpreted as the instantaneous phase shift
and growth rate, respectively.
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FIG. 2. Instantaneous wave number ok/kk,vs 1.



VoLUME 40, NUMBER 6

PHYSICAL REVIEW LETTERS

6. FEBRUARY 1978

Before the first maximum, collisional effects
do not significantly alter the spatial evolution of

the wave except that the wave amplitude saturates

at a slightly lower level than in the collisionless
case. After this point, however, the two curves
begin o depart from each other. The wave ampli-

tude decreases to a value much smaller than that
of the collisionless case and fails to regrow to
the initial saturation level.

Figure 3 shows the phase-~space evolution of
the beam in the collisional case. Each locus is
composed of the phase points for the beam elec-
trons at the particular position denoted in Fig.
1(a). In accordance with the amplitude oscilla~-
tion, the sloshing back and forth of the trapped
beam electrons in the wave trough appears.
Though the motion of the beam electrons in phase
space is still a reversible process, after satura-
tion their behavior changes gradually from that
of the collisionless case. Near 7,, the locus
splits into two parts. The beam electrons of the
two parts begin to be smeared out and spill into
adjacent wave iroughs in an irreversible manner
after 7,. On the other hand, the motion of the
beam electrons in the collisionless case is still a
reversible process after the second amplitude
oscillation. Figure 4 shows the phase-space loci
in the-eollisionless case.at two positions, viz.,
{a) the third maximum and (b) the third minimum
of E2(n). Although some-of the beam electrons
spill into an-adjacent wave trough, most of them
do not spread irreversibly but continue their
phase rotation in a reversible manner.

The simulation results* agree qualitatively
with numerical results in the collisional ease for
spatial evolution of the unstable wave and the
behavior of the beam electrons in the phase
space. It is clear that collisions play an impor-
tant role in the nonlinear stage of the beam-
plasma instahility.

Plasma electrons support the unstable single
wave in a linear dielectric medium. By analogy
to an electric circuit, collisions between plasma
electrons act as a phase shifter. According to
the spatial evoluticn cf Re(5%2/kk,), the wave un-
dergoes a rapid phase shift as well as a strong

FIG. 3. Phase-space loci for the beam electrons in
the collisional case plotted for six positions denoted
in Fig. 1(a). Each point gives the velocity x /v, in the
laboratory frame and the normalized spatial coordinate
¢ for one of the beam electrons. Since Egs. (2) and (3)
are solved for N =200 beam electrons which satisfy the
initial conditions £ ;(0) =~ 2r(j/N) and g'j(o) =0, phase
space is periodic in ¢ with period 2w, In this figure,
three groups of 200 electrons {the initial conditions
£;(0) are &_y99 < ;= 0=~ 27(j/N), &1 = j = 200=— 27(j/N),
and £y < ; < 400=— 47(j ~ 200) /N] are displayed and
every twentieth electron is marked. For reference,
beam electrons with £ - ; < 599 == 27(j/N) are joined by
a solid line.
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FIG. 4. Phase-space loci in the collisionless case
plotted for two positions, viz., (a) the third maximum
and (b) the third minimum of E%(n), respectively. Other
conditions are the same-as in Fig, 3.

damping of the amplitude near 7,. Asis.shown
in Fig. 3, after n,, the beam electrons spill into
adjacent wave troughs and spread in phase space.
This tendency becomes even greater beyond 7,.
Furthermore, when we compared phase-space
trajectories of some test particles in the ¥-7

396

plane in the collisional case with ones in the col-
lisionless case, we found that they clearly de-
parted from each other between 7, and 7,. Mo-
tions of test particles in the collisional case be-
come more irregular and their bounce periods
also become longer because of the reduced am-
plitude of the wave. The energy exchange be-
tween the wave and the beam electrons ceases
after 7, as shown in Fig. 1.

Oscillations could be destroyed® as a result of
particle phase mixing by either (a) wave damp-
ing or (b) modulation of the main wave by unsta-
ble sidebands. In the former case, a catastrophic
effect on the oscillation is expected, similar to
the results presented here.
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