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We examine the mean-field theory investigation of a hypercubic lattice model that exhibits 

structural phase transitions. In this model, with anharmonicity as main characteristic and 

displacement-displacement stiffness constant, the occurrence of phase transitions mechanism 

is analyzed and the effects of the anharmonicity on the order of the transition are studied. 

Discussing the features of the Hamiltonian, thermodynamic properties calculated show the 

occurrence of the structural phase transitions, which are either (i) a second-order transition 

(characteristic of short-range attractive part of the double- Morse one-site potential) or (ii) a 

first-order transition with sharp melting transition and bifurcation entropy, depending on the 

strength of the anharmonicity. 
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1. INTRODUCTION 

 

Since a pioneering work by Landau on structural phase transitions, the diversity of both the 

categories of phase transitions and mechanism for causing them continue to motivate further 

research; particularly the first order structural phase transitions where the observed 

microscopic mechanisms responsible for the macroscopic features continue to warrant and 

receive further attention [1-4, 6]. More recent research have focused and emphasized the role 

of the large amplitude fluctuations that precede the transition and the intrinsically nonlinear 

mechanisms which are needed to describe such fluctuations [3, 6]. All this led to a search of 

others models possessing mechanisms which produce structural transitions and particularly 

discontinuous ones.  Then, many intuitive models and theories have been introduced and 

studied. In order to concretely study such transitions, statistical-mechanical models must 

incorporate the change in effective restoring forces between particles at the transition, as this 

coupling controls the vibrational spectrum [4, 5]. Usually, the interaction energy between 

lattice sites, taken to be harmonic and represented by a strictly convex function of the form 

[2- 3, 6] 

( ) ( )2''
2 2

1, qqKqqV −=                                            (1) 

appears to be not sufficient , as the coupling does not change at the transition. 

In order to understand the mechanism of structural phase transitions, the conditions that a 

system must fulfill to exhibit such a transition, and the effects of interparticle anharmonicty 

on the order of the phase transition, we propose a D-dimensional hypercubic lattice model, 

with a symmetric double Morse-type on-site potential and anharmonic nearest-neighbors 

interaction potential, that exhibits structural phase transitions and particularly first-order one. 

The essentials features of our lattice–dynamical model are that (i) each particle moves in an 

symmetric double-well potential and (ii) the interparticle interactions are anharmonic. 

Consequently, nonlinear forces acting on each particle arise both from the on-site potential 
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and the interactions with neighboring particles. The intersite coupling which models the 

cooperative effects is introduced at the microscopic level, and reflects the change in the 

electronic distribution on the particles. This idea derives from an argument due to Zener 

showing the importance of the vibrational contribution to the entropy to the transitions [4]. 

The mean-field theory (MFT) is developed for this model which incorporates the change in 

effective restoring force between particles at the transition. This anharmonicity in the 

interparticle introduces a competing factor and the system shows a sharp melting transition. 

Although we cannot claim that this is a true first-order transition, it exhibits close similarities. 

Thus, for sufficiently strong anharmonicity, when the temperature is increased to a critical 

one, the structure with the higher internal energy achieves the lower free energy and 

discontinuous change to that structure occurs. Although such a model Hamiltonian was 

recently proposed by us [7], our aim here is to display the interesting dynamics obtained in 

this model, whose anharmonicity is the main characteristic and discuss the origin of this 

particular behavior.  

 

 

2. MODEL AND MEAN-FIELD THEORY 

 

The lattice model Hamiltonian exhibiting the phase transition we consider is giving by [7]:  
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where n denotes the sites of a D-dimensional hypercubic lattice, δ denotes the set of 

nearest-neighbor lattice vectors and qn is a scalar displacement variable at the nth lattice site. 

np  is the momentum of the nth lattice site of mass m which moves in the double-well 

anharmonic potential of the double Morse-type. The expression of this on-site potential 

energy ( )nqV1  is   

( ) ( )[ ] ( )2
2
11cosh 2

0
2

01 +−−= AVqAVqV nn α ,                (3) 
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with 
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where V0, A and α are the positive parameters of the potential, and l is the equilibrium lattice 

spacing. It should be noted that 0<A <1 in order to ensure a double-well form of ( )nqV1 , 

which is formed by superposing the back-to-back two Morse potentials [8, 9]. α and r0 are the 

phenomenological parameters of the initial Morse [8, 10]. Also α -1 fixes the length over 

which the nonlinearity of the potential shows up while V0, which is the dissociation energy, 

sets the energy scale. The value ∆V=V0 (1-A) 2 corresponds to the potential barrier height 

between the two minima of the double-well whose positions 0q±  are given by the 

equation ( ) Aq /1cosh 0 =α . 

For the interaction potential term between neighboring lattice sites, we have used the 

following anharmonic function [11] 

( ) ( )[ ]{ }( )2'''
2 exp1

2
1, qqqqaKqqV −+−+= ρ ,                     (5) 

where K is the stiffness constant of the intersite interaction. This intersite coupling, replacing 

the simple usual harmonic one of past several approaches, [1-4, 6, 8] is one of essential 

features of the model, and it is responsible for its interesting properties. a and ρ are the 

anharmonicity parameters. It is also interesting to know that this interaction potential energy 

could be harmonic if 0=a  or 0=ρ  with interparticle harmonic force constant ( )ρ+1K  

and K , respectively. The essential idea is to stabilize the higher-energy structure at higher 

temperatures by having higher vibrational entropy. The function ( )'2 ,qqV  achieves this 

effect by decreasing the effective force coupling “constant” from ( )ρ+1K  to K when either 

one of the two interacting sites is stretched. The motivation for choosing this model energy 

potential function is given in detail in [7]. Our major concern is to see how the system 

properties change with increasing anharmonicity strength. For convenience, we introduce the 

following units: l for displacement, m for mass, MKt /=τ  for time, and Kl2 for energy 

and where the following dimensionless parameters ,/ 2KlHH = ,/ 2
00 KlV=ε  lqu nn /= , 
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,/ 2mKlpP nn =  2/T KlkT B= , lαβ = , and al=λ  are introduced.  

Mean-field theory assumes that the particles move independently, so that the 

phase-space probability distribution function factors into single-particle functions [4].  

Following the ansatz originally used by Thomas [12], we get the following expressions of the 

internal energy U and entropy S per particle  
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where we have used the fact that the coordination number of the D-dimensional hypercubic 

lattice is 2D (2D nearest-neighbor lattice vectors) [4, 13] and the translational invariance. 

Here, η and σ, which are respectively the average displacement <un> (related to order 

parameter and its variance <(un-<un>)2> (mean-square fluctuation), represent variational 

parameters. 

By using the thermodynamic relation and equations (6) and (7), the free energy per particle 

TSUf −=  is minimized with respect η andσ , and we obtain  
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These equations have to be solved self-consistently and analyzed owing the equilibrium 

values of η and σ. The solutions along with the free energy constitute the MFT description of 

the statistical mechanics of the system. 

 

 

3. RESULTS AND DISCUSSIONS 
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Now, we will present in this section the solutions of these MFT equations including 

interparticle anharmonicity interactions and analyze the state of the system, depending upon 

parameters.   

A reasonable result that there are no fluctuations about the equilibrium position at zero 

temperature is showed by Eq. (9) that, in the limit T→0, the ratio σ/T remains finite and so 

it must be that σ→0 also. Then Eq.(8) is reduced to ( ) 0/1 =ηη ddV  which states that at T=0, 

the average position is one of the positions of mechanical equilibrium of on-site potential. 

At finite temperature, these equations do not admit trivial solutions and are difficult to 

solve analytically due to their implicit characters, so we will try to solve them numerically. 

For simplicity, the values of the model parameters used for the graphs are: A=0.5,α = 8.2, 

D=2, ε0 =0.2 and ρ =1, where the set of double Morse potential result from the analysis of 

geometric and ab initio lattice characteristics of the O−H⋅⋅⋅O bonded ferroelectrics [13-15].   

Figure 1 shows the numerical solution of the absolute temperature dependence of the 

order parameter η for 2 different values of λ. In spite the fact that the solution with lower 

free energy evolves out of the two minima of the on-site potential as T increases from zero 

and that the two branches of the curves are important, the physical solution for η is the top 

branch in Fig.1 [4, 7]. Then it appears that the top branch of η vs T becomes steeper as λ 

decreases. However, the bottom branch is itself double valued and intercepts the T=0 axis at 

both 0=η and ( ) βη //1cosh 1 A−−= . One can visualize from Fig. 1 that there exits a critical 

value λc at which the top branch of η develops an infinite slope at a certain T, showing the 

appearance of the critical point [14, 16, 17]. This critical value of λc depends on the values of 

other parameters.  As λ continues to decrease, for smaller λ values the top branch of the η 

vs T graph folds back and becomes multivalued over a certain temperature interval, so that a 

discontinuity of the order parameter η develops [16, 18]. Fig. 1(b) shows the solution for 

λ=0.2, where the multivalued nature is evident.  

To compare in more details, predictions of the theory, the corresponding free energy 

function and entropy are shown in figures 2 and 3. The branch of  f corresponding to the top 
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branch of η vs T graph (Fig. 1) always has lower values than the branch of f corresponding to 

the bottom branch η vs T, and so it is the equilibrium solution (equilibrium state). The 

corresponding free energy graphs develop a narrow loop which amplitude increases as λ 

decreases (large for the first-order transitions, Fig. 2(b)). On the temperature interval where 

the top branch of η vs T graph is multivalued, the loop is similar to the loop of free energy 

function in the van der Waals theory of nonideal gas.[19]  Since the thermal equilibrium 

state is the one of minimum f, the transition is at the temperature Tc where the free energy 

graph intercepts itself [4, 5, 18]. At this temperature the system undergoes a change in η 

which must be continuous (second-order) or discontinuous (first-order). The discontinuity is 

characterized by a jump between two points of the same solution branch of the MFT 

equations. Then parts of the loop may be metastable achievable by superheating or 

supercooling and are solutions of these MFT equations. Also the critical value λc, where the 

transition first develops, is the value for which the first and second derivatives of temperature 

with respect to average displacement η vanish, and have common solution for η>0.  

These equations along with Eq. (9) determine λc and the values of Tc and η where the 

transition initially occurs. Figure 3 shows the T-dependence of entropy Tfs ∂−∂= / ; so it 

increases discontinuously at the transition for the first-order structural phase transition (Fig. 

3(b)) and increases continuously at low temperature (Fig. 3(a)). Then it appears that the 

anharmonicity of the interparticle interactions makes the lattice vibrational frequencies 

dependent on the structure parameters [20] and this dependence provides the mechanism 

which creates a bifurcation on the high energy structure relative to the low energy-one and 

also on entropy.  
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Figure 1. Temperature dependence of the order parameter (average displacement) for models 

parameters and for two different values of anharmonicity parameter λ: (a) λ=8.0 and (b) 

λ=0.2.  Broken lines indicate the second-order transition for the case of ρ=0. 
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Figure 2. Free energy versus temperature corresponding to average displacement graphs in 

figure 1 for (a) λ=8.0 and (b) λ=0.2 respectively. The solid curve corresponds to the top 

branch of Fig. 1 and contains the equilibrium solution.  The dashed curve corresponds to the 

bottom branch of Fig. 1, and is a very narrow loop in the first-order transition case ((b) 

λ=0.2). 

 

 

Figure 3. Entropy per particle versus temperature for two different anharmonicity parameter 

λ values: (a) λ=8.0 and (b) λ= 0.2.  

 

 


