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Abstract

We introduce a generalized Wigner-Yanase skew infor-
mation and then derive the trace inequality related to
the uncertainty relation. This inequality is a non-trivial
generalization of the uncertainty relation derived by
S.Luo for the quantum uncertainty quantity exclud-
ing the classical mixture. And we introduce a general-
ized Fisher information and then derive a generalized
Cramér-Rao inequality. We also give an example for
our generalized Fisher information and then derive the
uncertainty relation for two observables.

1. INTRODUCTION

As a degree for non-commutativity between a quan-
tum state ρ and an observable H, Wigner-Yanase skew
information

Iρ(H) ≡ 1
2
Tr

[(
i
[
ρ1/2,H

])2
]

was defined in [10]. Here we denote the commutator
by [X,Y ] = XY − Y X. This quantity was generalized
by Dyson

Iρ,α(H) =
1
2
Tr

[
(i[ρα, H])(i[ρ1−α,H])

]
which is known as the Wigner-Yanase-Dyson skew in-
formation. It is famous that the convexity of Iρ, α(H)
with respect to ρ was successfully proven by E.Lieb in
[7]. From the physical point of view, an observable H
is generally considered to be an unbounded operator,
however in the present paper, unless otherwise stated,
we consider H ∈ B(H), where B(H) represents the set
of all bounded linear operators on the Hilbert space
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H, as a mathematical interest. We also denote the
set of all self-adjoint operators (observables) by Lh(H)
and the set of all density operators (quantum states) by
S(H) on the Hilbert space H. The relation between the
Wigner-Yanase skew information and the uncertainty
relation was studied in [9]. Moreover the relation be-
tween the Wigner-Yanase-Dyson skew information and
the uncertainty relation was studied in [6, 11]. In our
previous paper [11], we defined a generalized skew in-
formation and then derived a kind of an uncertainty
relation. In the section 2, we introduce a new gen-
eralized Wigner-Yanase-Dyson skew information. On
a generalization of the original Wigner-Yanase-Dyson
skew information, our generalization is different from
the Wigner-Yanase-Dyson skew information and a gen-
eralized skew information defined in our previous paper
[11].

On the other hand, we have some definitions for the
Fisher information in quantum mechanical system. In
the section 3, we consider the standard definition and
its one-parameter extended one. For a parameterized
density operator ρθ ∈ Sθ(H), we define the Fisher in-
formation by

I(ρθ, Lθ) ≡ Tr[ρθLθL
∗
θ],

where the logarithmic derivative Lθ is defined by

∂ρθ

∂θ
≡ 1

2
(ρθLθ + L∗

θρθ)

and Sθ(H) represents the set of all quantum states with
one-parameter θ ∈ R. In the section 3 of the present
paper, we define a one-parameter extended Fisher in-
formation and study some trace inequalities between
this quantity and the variance (a generalized Cramér-
Rao type inequality). See the literatures [2, 3] on recent
advances of the skew information, the Fisher informa-
tion and the uncertainty relation.



2. TRACE INEQUALITIES ON A GENER-
ALIZED WIGNER-YANASE SKEW INFOR-
MATION

We review the relation between the Wigner-Yanase
skew information and the uncertainty relation. In
quantum mechanical system, the expectation value of
an observable H in a quantum state ρ is expressed
by Tr[ρH]. It is natural that the variance for a
quantum state ρ and an observable H is defined by
Vρ(H) ≡ Tr[ρ(H − Tr[ρH]I)2] = Tr[ρH2] − Tr[ρH]2.
It is famous that we have the Heisenberg’s uncertainty
relation:

Vρ(A)Vρ(B) ≥ 1
4
|Tr[ρ[A, B]]|2 (1)

for a quantum state ρ and two observables A and B.
The further strong result was given by Schrödinger

Vρ(A)Vρ(B) − |Covρ(A,B)|2 ≥ 1
4
|Tr[ρ[A,B]]|2,

where the covariance is defined by Covρ(A,B) ≡
Tr[ρ(A − Tr[ρA]I)(B − Tr[ρB]I)]. However, the un-
certainty relation for the skew information failed. (See
[9, 6, 11].)

Iρ(A)Iρ(B) ≥ 1
4
|Tr[ρ[A,B]]|2.

Recently S.Luo introduced the quantity Uρ(H) repre-
senting a quantum uncertainty excluding the classical
mixture:

Uρ(H) ≡
√

Vρ(H)2 − (Vρ(H) − Iρ(H))2.

Note that we have the relation among quantities as

0 ≤ Iρ(H) ≤ Uρ(H) ≤ Vρ(H). (2)

For a quantum state ρ and observables X,Y , he derived
the following uncertainty relation in [8]:

Uρ(X)Uρ(Y ) ≥ 1
4
|Tr[ρ[X,Y ]]|2. (3)

The inequality (3) is a refinement of the inequality (1)
in the sense of (2). In this section, we study two types of
one-parameter extended inequalities for the inequality
(3).

Definition 2.1 For 0 ≤ α ≤ 1, a quantum state ρ and
an observable H, we define the Wigner-Yanase-Dyson
skew information

Iρ,α(H) ≡ 1
2
Tr

[
(i[ρα, H0])(i[ρ1−α,H0])

]

and we also define

Jρ,α(H) ≡ 1
2
Tr

[
{ρα, H0}{ρ1−α,H0}

]
,

where H0 ≡ H − Tr[ρH]I and we denote the anti-
commutator by {X,Y } = XY − Y X.

Note that we have
1
2
Tr

[
(i[ρα,H0])(i[ρ1−α,H0])

]
=

1
2
Tr

[
(i[ρα,H])(i[ρ1−α,H])

]
,

but we have
1
2
Tr[{ρα,H0}{ρ1−α,H0}] 6=

1
2
Tr[{ρα, H}{ρ1−α,H}].

Then we have the following inequalities:

Iρ,α(H) ≤ Iρ(H) ≤ Jρ(H) ≤ Jρ,α(H), (4)

since we have Tr[ρ1/2Hρ1/2H] ≤ Tr[ραHρ1−αH]. If
we define

Uρ,α(H) ≡
√

Vρ(H)2 − (Vρ(H) − Iρ,α(H))2,

as a direct generalization of Eq.(1), then we have

0 ≤ Iρ,α(H) ≤ Uρ,α(H) ≤ Uρ(H)

due to the first inequality of (9). We also have

Uρ,α(H) =
√

Iρ,α(H)Jρ,α(H).

In this paper, we introduce a generalized Wigner-
Yanase skew information which is a generalized
Wigner-Yanase skew information by

Kρ,α(H) ≡ 1
2
Tr

[(
i

[
ρα + ρ1−α

2
,H0

])2
]

and we also define

Lρ,α(H) ≡ 1
2
Tr

[({
ρα + ρ1−α

2
,H0

})2
]

.

Throughout this section, we put X0 ≡ X − Tr[ρX]I
and Y0 ≡ Y − Tr[ρY ]I. Then we show the following
trace inequality.

Theorem 2.2 For a quantum state ρ and observable
X,Y and α ∈ [0, 1], we have

Wρ,α(X)Wρ,α(Y ) ≥ 1
4

∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X,Y ]

]∣∣∣∣∣
2

,

where
Wρ,α(X) ≡

√
Kρ,α(X)Lρ,α(X).



Remark 2.3 Theorem 2.2 is not trivial by the follow-
ing two reasons.

(1) There is no relation between∣∣∣∣Tr

[
(
ρα + ρ1−α

2
)2[X,Y ]

]∣∣∣∣2
and |Tr [ρ[X,Y ]]|2.

(2) Though Uρ,α(H) ≤ Uρ(H) and Uρ,α(H) ≤
Ũρ,α(H) hold, there is no relation between Uρ(H)
and Ũρ,α(H).

Proof of Theorem 2.2. We put

Aα(H) ≡ i[ρα,H0], Bα(H) ≡ {ρα,H0},

K =
1
2
(Aα(X) + A1−α(X))x +

1
2
(Bα(Y ) + B1−α(Y )).

It follows from K∗ = K that

0 ≤ Tr[KK∗]

=
1
4
Tr[(Aα(X) + A1−α(X))2]x2

+
1
2
Tr[(Aα(X) + A1−α(X))(Bα(Y ) + B1−α(Y ))]x

+
1
4
Tr[(Bα(Y ) + B1−α(Y ))2]

=
(

1
4
Tr[Aα(X)2 + A1−α(X)2] + Iρ,α(X)

)
x2

+
1
2
Tr[(Aα(X) + A1−α(X))(Bα(Y ) + B1−α(Y ))]x

+
(

1
4
Tr[Bα(Y )2 + B1−α(Y )2] + Jρ,α(Y )

)
.

Then

1
4

(Tr[(Aα(X) + A1−α(X))(Bα(Y ) + B1−α(Y ))])2

≤ 4
(

1
4
Tr[Aα(X)2 + A1−α(X)2 + Iρ,α(X)

)
(5)(

1
4
Tr[Bα(Y )2 + B1−α(Y )2] + Jρ,α(Y )

)
.

Now we have

Tr[(Aα(X) + A1−α(X))(Bα(Y ) + B1−α(Y ))]

= Tr[(i[ρα, X0] + i[ρ1−α, X0])({ρα, Y
}
0 + {ρ1−α, Y0})]

= iT r[(ρα + ρ1−α)2X0Y0 − Y0X0(ρα + ρ1−α)2]
= Tr[(ρα + ρ1−α)2(i[X0, Y0])]
= Tr[(ρα + ρ1−α)2(i[X,Y ])].

Then (5) is equivalent to the following;

1
4

(
Tr[(ρα + ρ1−α)2(i[X,Y ])]

)2
(6)

≤ 4
(

1
4
Tr[Aα(X)2 + A1−α(X)2] + Iρ,α(X)

)
(

1
4
Tr[Bα(Y )2 + B1−α(Y )2] + Jρ,α(Y )

)
.

And we also have

1
4

∣∣Tr[(ρα + ρ1−α)2(i[X,Y ])]
∣∣2 (7)

≤ 4
(

1
4
Tr[Aα(Y )2 + A1−α(Y )2] + Iρ,α(Y )

)
(

1
4
Tr[Bα(X)2 + B1−α(X)2] + Jρ,α(X)

)
.

By taking a square root of (6) × (7), we have{
1
4

(
Tr[(ρα + ρ1−α)2(i[X,Y ])]

)2
}2

≤ 4
(

1
4
Tr[Aα(X)2 + A1−α(X)2] + Iρ,α(X)

)
(

1
4
Tr[Bα(Y )2 + B1−α(Y )2] + Jρ,α(Y )

)
4

(
1
4
Tr[Aα(Y )2 + A1−α(Y )2] + Iρ,α(Y )

)
(

1
4
Tr[Bα(X)2 + B1−α(X)2] + Jρ,α(X)

)
.

Thus

1
4

(
Tr[(ρα + ρ1−α)2(i[X,Y ])]

)2

≤ 2

√(
1
4
Tr[Aα(X)2 + A1−α(X)2] + Iρ,α(X)

)
√(

1
4
Tr[Bα(Y )2 + B1−α(Y )2] + Jρ,α(Y )

)

2

√(
1
4
Tr[Aα(Y )2 + A1−α(Y )2] + Iρ,α(Y )

)
√(

1
4
Tr[Bα(X)2 + B1−α(X)2] + Jρ,α(X)

)
.

Therefore

1
4

(
Tr

[(
ρα + ρ1−α

2

)2

(i[X,Y ])

])2

≤ Wα(ρ, X)Wα(ρ, Y ).



Since

Tr

[(
ρα + ρ1−α

2

)2

[X,Y ]

]

= −Tr

[(
ρα + ρ1−α

2

)2

[X,Y ]

]
,

we have

Re

[(
ρα + ρ1−α

2

)2

[X,Y ]

]
= 0.

And then

Tr

[(
ρα + ρ1−α

2

)2

[X,Y ]

]

= iImTr

[(
ρα + ρ1−α

2

)2

[X,Y ]

]
.

Hence (
Tr

[(
ρα + ρ1−α

2

)2

(i[X,Y ])

])2

= −

(
Tr

[(
ρα + ρ1−α

2

)2

[X,Y ]

])2

= −

(
iImTr

[(
ρα + ρ1−α

2

)2

[X,Y ]

])2

=

(
ImTr

[(
ρα + ρ1−α

2

)2

[X,Y ]

])2

=

∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X,Y ]

]∣∣∣∣∣
2

.

q.e.d.
We also define the followings to obtain another uncer-
tainty relation.

Definition 2.4 For a quantum state ρ and observable
H and α ∈ [0, 1], we define

W̃ρ,α(H)

≡ 1
4

√
Tr [(i[ρα,H0])2] Tr [(i[ρ1−α,H0])2]√

Tr [{ρα,H0}2] Tr [{ρ1−α,H0}2].

The we have the following theorem.

Theorem 2.5 For a quantum state ρ and observable
X,Y and α ∈ [0, 1], we have√

W̃ρ,α(X)W̃ρ,α(Y )

≥ 1
4

∣∣∣Tr
[
ρ2α[X,Y ]

]
Tr

[
ρ2(1−α)[X,Y ]

]∣∣∣ .

Remark 2.6 There is no relation between Theorem
2.2 and Theorem 2.5 by the following (1), (2).

(1) There is no relation between 4W̃ρ,α(X) and(
Tr

[
(i[ρα, X0])2 + (i[ρ1−α, X0])2

4

]
+ Iρ,α(X)

)
(

Tr

[
({ρα, X0})2 + ({ρ1−α, X0})2

4

]
+ Jρ,α(X)

)
.

That is, there are no relation between√
Tr [(i[ρα, X0])2] Tr [(i[ρ1−α, X0])2]

and

Tr

[
(i[ρα, X0])2 + (i[ρ1−α, X0])2

4

]

+
1
2
Tr

[
(i[ρα, X0])(i[ρ1−α, X0])

]
.

and there is no relation between√
Tr [{ρα, X0}2] Tr [{ρ1−α, X0}2]

and

Tr

[
{ρα, X0}2 + {ρ1−α, X0}2

4

]
+

1
2
Tr

[
{ρα, X0}{ρ1−α, X0}

]
.

(2) There is no relation between∣∣∣Tr
[
ρ2α[X,Y ]

]
Tr

[
ρ2(1−α)[X,Y ]

]∣∣∣
and ∣∣∣∣Tr

[
(
ρα + ρ1−α

2
)2[X,Y ]

]∣∣∣∣2 .

That is, there is no relation between∣∣Tr
[
ρ2α[X,Y ]

]∣∣
and ∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X,Y ]

]∣∣∣∣∣.



and there in no relation between∣∣∣Tr
[
ρ2(1−α)[X,Y ]

]∣∣∣
and ∣∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X,Y ]

]∣∣∣∣∣.
(3) When α = 1/2, both Theorem 2.2 and Theorem

2.5 reduce the result of Luo.

Proof of Theorem 2.5. We put

K = i[ρα, X0]x + {ρα, Y0}.

It follows from K∗ = K that

0 ≤ Tr [KK∗]
= Tr

[
(i[ρα, X0]x + {ρα, Y0})2

]
= Tr

[
(i[ρα, X0])2

]
x2 + 2iT r [[ρα, X0]{ρα, Y0}] x

+Tr
[
{ρα, Y0}2

]
= Tr

[
(i[ρα, X0])2

]
x2 + 2iiImTr

[
ρ2α[X,Y ]

]
x

+Tr
[
{ρα, Y0}2

]
.

Then

|Tr
[
ρ2α[X,Y ]

]
|2 = (ImTr

[
ρ2α[X,Y ]

]
)2

≤ Tr
[
(i[ρα, X0])2

]
Tr

[
{ρα, Y0}2

]
.

By exchanging X and Y we have

|Tr
[
ρ2α[X,Y ]

]
|2

≤ Tr
[
(i[ρα, Y0])2

]
Tr

[
{ρα, X0}2

]
.

And we also have

|Tr
[
ρ2(1−α)[X,Y ]

]
|2

≤ Tr
[
(i[ρ1−α, X0])2

]
Tr

[
{ρ1−α, Y0}2

]
.

By exchanging X and Y we have

|Tr
[
ρ2(1−α)[X,Y ]

]
|2

≤ Tr
[
(i[ρ1−α, Y0])2

]
Tr

[
{ρ1−α, X0}

]
.

We put as follows;

Sρ,α(X) ≡ 1
2
Tr

[
(i[ρα, X0])2

]
,

Sρ,1−α(X) ≡ 1
2
Tr

[
(i[ρ1−α, X0])2

]
,

Sρ,α(Y ) ≡ 1
2
Tr

[
(i[ρα, Y0])2

]
,

Sρ,1−α(Y ) ≡ 1
2
Tr

[
(i[ρ1−α, Y0])2

]
,

Tρ,α(X) ≡ 1
2
Tr

[
{ρα, X0}2

]
,

Tρ,1−α(X) ≡ 1
2
Tr

[
{ρ1−α, X0}2

]
,

Tρ,α(Y ) ≡ 1
2
Tr

[
{ρα, Y0}2

]
,

Tρ,1−α(Y ) ≡ 1
2
Tr

[
{ρ1−α, Y0}2

]
.

Then we have
|Tr

[
ρ2α[X,Y ]

]
|2

≤ 4
√

Sρ,α(X)Tρ,α(X)Sρ,α(Y )Tρ,α(Y ).

|Tr
[
ρ2(1−α)[X,Y ]

]
|2

≤ 4
√

Sρ,1−α(X)Tρ,1−α(X)Sρ,1−α(Y )Tρ,1−α(Y ).

By putting

W̃ρ,α(X) ≡
√

Sρ,α(X)Sρ,1−α(X)Tρ,α(X)Tρ,1−α(X),

W̃ρ,α(Y ) ≡
√

Sρ,α(Y )Sρ,1−α(Y )Tρ,α(Y )Tρ,1−α(Y ),

we have √
W̃ρ,α(X)W̃ρ,α(Y )

≥ 1
4
|Tr

[
ρ2α[X,Y ]

]
Tr

[
ρ2(1−α)[X,Y ]

]
|.

q.e.d.

3. A GENERALIZED FISHER INFORMA-
TION AND A GENERALIZED CRAMÉR-
RAO INEQUALITY

We review the Fisher information and the Cramér-
Rao inequality in quantum mechanical system. We
consider the set of all quantum states:

Sθ(H) ≡ {ρθ ∈ B(H)|ρθ ≥ 0, T r[ρθ] = 1},

with one parameter θ ∈ R. Let H ∈ Lh(H) ≡ {H ∈
B(H)|H = H∗} be an estimater of the parameter
θ. In the sequel, we consider the case which an es-
timater is unbiased, that is, Eθ[H] ≡ Tr[ρθH] = θ.
The variance Vθ[H] of the estimater H is defined by
Vθ[H] ≡ Tr[ρθ(H − Tr[ρθH]I)2]. Then the famous
Cramér-Rao inequality, which is a relation between the
Fisher information and the variance, Vθ[H] ≥ 1

I(ρθ,Lθ)

holds. We should note that the logarithmic derivative



Lθ ∈ B(H) is not uniquely determined. Thus we define
the symmetric logarithmic derivative LS

θ ∈ Lh(H) by

∂ρθ

∂θ
≡ 1

2
(ρθL

S
θ + LS

θ ρθ).

Then the symmetric logarithmic derivative LS
θ is

uniquely determined [1, 4, 5] and we have

I(ρθ, Lθ) ≥ I(ρθ, L
S
θ ). (8)

In addition, for the symmetric logarithmic derivative
LS

θ , we have the Cramér-Rao inequality [1, 4, 5]:

Vθ[H] ≥ 1
I(ρθ, LS

θ )
. (9)

Due to the inequality (8), we have the following theo-
rem known as Cramér-Rao inequality.

Theorem 3.1

Vθ[H] ≥ 1
I(ρθ, Lθ)

.

That is, the symmetric logarithmic derivative LS
θ gives

the best estimation of the lower bound for the variance
Vθ[H].

We here introduce a generalized Fisher information
with one-parameter α ∈ [0, 1].

Definition 3.2 We define a generalized Fisher infor-
mation by

Iα(ρθ, Lθ,α) ≡ Tr[ρα
θ Lθ,αρ1−α

θ L∗
θ,α], α ∈ [0, 1],

where a generalized logarithmic derivative Lθ,α is de-
fined by

∂ρθ

∂θ
≡ 1

2

(
ρ

1+α
2

θ Lθ,αρ
1−α

2
θ + ρ

1−α
2

θ L∗
θ,αρ

1+α
2

θ

)
. (10)

Note that α = 1 or [ρθ, Lθ,α] = 0 recovers
Iα(ρθ, Lθ,α) = I(ρθ, Lθ). We also have Iα(ρθ, Lθ,α) ≥ 0
and the following trace inequality.

Theorem 3.3 For a self-adjoint operator H, a density
operator ρθ with the parameter θ and α ∈ [0, 1], if we
have Eθ[H] = θ, then we have the inequality

Vθ[H] ≥ 1
Iα(ρθ, Lθ,α)

. (11)

It is clear that (11) is obtained by putting

Lρ,θ = ρ
1−α

2
θ Lθρ

α−1
2

θ .
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