Nucleotide Sequence Analysis of *p10* Gene of *Antheraea pernyi* Nucleopolyhedrovirus and Construction of Two Transfer Vector Plasmids

Ken-ichi Maegawa, Xue Ying Wang, Jun Kobayashi and Tetsuro Yoshimura

Reprinted from Int. J. Wild Silkmoth & Silk Vol. 9, 2004 ©The Japanese Society for Wild Silkmoths

Nucleotide Sequence Analysis of *p10* Gene of *Antheraea pernyi* Nucleopolyhedrovirus and Construction of Two Transfer Vector Plasmids

Ken-ichi Maegawa¹⁾, Xue Ying Wang²⁾, Jun Kobayashi^{1),*} and Tetsuro Yoshimura¹⁾

¹⁾ Faculty of Engineering, Mie University, Tsu, Mie 514-8507, Japan.

²⁾ Bioscience and Technology College of Shenyang Agricultural University, Shenyang 110161, China.

* Present Address; Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.

Abstract The p10 gene of Antheraea pernyi nucleopolyhedrovirus (AnpeNPV) was identified in 4.8-kbp PstI I fragment of viral DNA by comparing genome maps between AnpeNPV and Orgyia pseudotsugata multinucleocapsid NPV. The nucleotide sequence analysis revealed that the AnpeNPV p10 gene consists of the promoter sequence (55 bp) and the coding sequence (264 bp) encoding 87 amino acids. The predicted amino acid sequence of the AnpeNPV p10 gene product showed the highest identity (93%) to that of Choristoneura fumiferana NPV among other NPVs by homology search using the BLAST program. Two transfer vector plasmids, p10 locus-based pApp10 and polyhedrin locus-based pApCH3, were constructed for the foreign gene expression under the p10 gene promoter. Among them, pApCH3 is a dual expression vector, which contains a copy of the p10 promoter and polyadenylation signal inserted in tandem, downstream of the polyhedrin promoter, but opposite orientation. Key words: Antheraea pernyi, nucleopolyhedrovirus, p10, transfer vector

Introduction

Previously, we have constructed a transfer vector plasmid pApCH1 using the strong *polyhedrin* promoter of *Antheraea pernyi* NPV (AnpeNPV) and established a baculovirus expression vector system (Kobayashi *et al.*, 2001). Using the system, we have demonstrated the high-level expression of foreign genes in cultured A. *pernyi* cells (AnPe) and diapausing pupae (Huang *et al.*, 2001), and the mammalianlike biantennary, complex N-glycan addition to a recombinant glycoprotein in AnPe cells (Nagaya *et al.*, 2002, 2003). Because of these advantageous characteristics for the protein production, we consider the AnpeNPV vector system is an ideal natural bioreactor (Kobayashi, 2002). We have also succeeded to suppress proteolytic degradation and liquefaction of virus-infected AnPe cells and pupae by deleting the virus-encoded *cathepsin* gene (Huang and Kobayashi, 2003).

In addition to the *polyhedrin* promoter, the promoter of another baculovirus very late gene, *p10*, have been frequently used for the high level expression of foreign genes not only for single gene expression but also for dual gene expression in other systems using *Autographa californica* NPV (AcNPV) and *Bombyx mori* NPV (BmNPV) (Vlak *et al.*, 1990; Weyer, U *et al.*, 1990; Tomita *et al.*, 1995). Therefore, it is expected that the utilization of the p10 promoter could enhance potential capability and usability to produce recombinant proteins by the AnpeNPV vector system.

In this paper, we describe the identification and nucleotide sequence of the p10 gene of AnpeNPV, and construction of two transfer vector plasmids containing the p10 promoter, which enable us to insert foreign genes in the AnpeNPV genome at the p10 locus for single expression and at the *polyhedrin* locus for dual expression, respectively.

Materials and Methods

Virus, Bacterium and Plasmid

The 4.8-kbp *PstI* I fragment of DNA genome of AnpeNPV A strain (Huang *et al.*, 2002) was used for the *p10* gene analysis and transfer vector construction. For the vector construction, the 1.8-kbp *PstI* b fragment (Huang *et al.*, 2002) was also used. Competent *E. coli* strain XL1-Blue cells (Stratagene) were used for plasmid DNA transformations. Plasmids, pBluescriptII (Stratagene), pCR 2.1 (Invitrogen) and pApCH1 (Kobayashi *et al.*, 2001) were used for construction of the transfer vector plasmids pApp10 and pApCH3 as described later.

DNA manipulations

All plasmid DNA recombination techniques were essentially as described by Sambrook *et al.* (1989). Restriction enzymes and other DNA modifying enzymes were purchased from Takara-Shuzo Co. Ltd.

DNA sequencing and sequence analysis

The nucleotide sequence of the AnpeNPV p10 gene region was determined by using DNA sequencer (ABI PRISM 310 Genetic Analyzer, Applied Biosystems) and BigDye terminator cycle sequencing kit (Applied Biosystems) with the following oligonucleotide primers.

M13 forward, 5'-CGTTGTAAAACGACGGCCAG-3' M13 reverse, 5'-CAGGAAACAGCTATGACCAT-3' P26DN, 5'-TTACCACGTGTGCAACAAGC-3' P10UP, 5'-AGATCTGGTAAAATATTATAACTATT-3'

P10DN, 5'-AGATCTCAAGTCAATGGTTTTAAAAT-3' P74DN, 5'-CAGATTTTGACGAGGCGACG-3'

At each 5' end of P10UP and P10DN, a *Bgl*II restriction site (AGATCT) was added to create a foreign gene-cloning site just downstream of the p10 promoter by PCR.

Homology search of predicted amino acid sequence of the AnpeNPV *p10* gene product was carried out using the basic local alignment search tool (BLAST) program provided by the GenomeNet WWW Server (Bioinformatics Center, Kyoto University). The GENETYX program (Genetyx) was used for both sequence data analysis and phylogenetic tree construction by the unweighted pair-group method with arithmetic mean (UPGMA).

Nucleotide sequence accession number

The 1873-bp nucleotide sequence within *PstI* I fragment containing AnpeNPV *p26*, *p10* and *p74* (partial) has been submitted to the DDBJ/EMBL/Genbank databases under accession number AB106130.

Results and Discussion

Identification and sequence analysis of the AnpeNPV p10 gene

By comparing genome maps between AnpeNPV, and OpMNPV, the p10 gene of AnpeNPV was predicted to exist within PstI I fragment (Huang et al., 2002). By constructing several deletion mutants and using the various primers described in Materials and Methods, 1873-bp nucleotide sequence within 4.8-kbp PstI I fragment was determined. As shown in Fig. 1, three ORFs (2 complete and 1 partial ORFs) were found in the sequenced region. Homology search revealed that these 3 ORFs were homologs of OpMNPV ORFs 132 (p26), 133 (p10) and 134 (p74) (Ahrens et al., 1997), respectively. Relative positions and directions of these OpMNPV ORF homologs were conserved in the AnpeNPV genome, except p74 whose relative direction was reverse as found in several group I NPVs such as AcNPV (Kuzio et al., 1989), BmNPV (Gomi et al., 1999) and Choristoneura fumiferana NPV (CfNPV) (Hill

Fig. 1. Physical map of 4.8-kbp *PstI* I fragment of AnpeNPV genome. Positions of consensus late promoter transcription start signal (TAAG) and polyadenylation signal (AATAAA) are indicated. Several restriction sites are also indicated. Small arrows and a large arrow indicate positions and directions of oligonucleotide primers and *p10* coding region, respectively. A scale bar represents 500 bp.

et al., 1993).

Sequence analysis of the p10 gene region revealed the consensus late promoter transcription start signal (TAAG), translation start codon (ATG), translation stop codon (TAG) and putative polyadenylation signal (AATAAA), respectively (Fig. 2), indicating that the AnpeNPV p10 gene consisted of a promoter sequence of 55 bp and a coding sequence of 264 bp encoding 87 amino acids.

Homology search for predicted amino acid sequence of the AnpeNPV p10 gene product using BLAST program revealed very high identity (93%) to that of CfNPV and relatively high identities $(45 \sim 52\%)$ to those of other group I NPVs, while those of group II NPVs showed lower identities $(31 \sim 36\%)$, except 47% of Buzura suppressaria NPV (BusuNPV). A phylogenetic tree constructed on the basis of multiple alignments of p10 sequences. however, supported the separation of the group I and II NPVs (Fig. 3). Therefore, the relatively high identity of p10 sequence between AnpeNPV and BusuNPV is likely to be an overestimation derived by the BLAST program algorithm for sequence comparison.

All of the results indicated that AnpeNPV possesses a p10 gene homolog, which is highly identical to the CfNPV p10 and has no obvious sequence deficiency disturbing its expression at the very late phase of virus infection.

Construction of transfer vector pApp10 and pApCH3

Two transfer vector plasmids, pApp10 and pApCH3, were constructed for generating recombinant AnpeNPVs expressing foreign genes under the control of the p10 promoter as follows (Fig. 4).

First, 0.5 kbp of 5' upstream fragment containing the *p10* promoter and 0.3 kbp of 3' downstream fragment containing the polyadenylation signal were amplified by PCR using the *Pst*I I fragment as a template and two different primer pairs, P26DN/P10UP and P10DN/P74DN, respectively. Then, after trimming the amplified upstream fragment with restriction enzymes, *Hind*III and *Bgl*II, and the downstream fragment with *Bgl*II and *Xho*I, a 0.4-kbp *Hind*III-*Xho*I fragment was obtained by ligation of the trimmed upstream and downstream fragments (0.2 kbp each) at their *Bgl*II end.

For the construction of p10 locus-based transfer vector plasmid, the 0.4-kbp *Hin*dIII-*Xho*I fragment was cloned into pBluescriptII together with the 1.8-kbp *Pst*I b fragment and 2 subfragments derived from the *Pst*I I fragment, 0.8-kbp *PstI-Hin*dIII and 2.0-kbp *XhoI-Kpn*I fragments (Fig. 4a). The resulting pApp10 (7.9 kbp) contains both 5' and 3' flanking regions of the *p10* gene for homologous recombination with AnpeNPV DNA at the *p10* locus and between them 1 unique restriction site (*BgI*II) for insertion of a foreign gene just downstream of the *p10* promoter. 56

1	$\underline{\text{CTGCAG}} \\ CGCAGCGTCAGCAGCGCGGCGCGCGATTAAACTCACGGTCGTTGTACGTCGACGCCGAGTCGTCCGTAGCATACACGTAATACTTGTACATGATGATGATGATGATGATGATGATGATGATGATGATGA$	90
91	GTTGGCGAATGATGCGGCTGCACTTTATATACTGCTGTGCTCCGCAAACCTCGCATAAACACACGTGATGGATAACAAAATGTACGTGCG M D N K M Y V R	180
181	CATGGAGATTAAGTTTGACGAGGACACGGGCCGTTTGCAAATTGGTGACCGGGACGTGTTTGTGCGCGGGGTTTGAGCCCGGCCAAGAGGT M E I K F D E D T G R L Q I G D R D V F V R V F E P G Q E V	270
271	GTTTGACGAAACGTTGGACCAATACCACCAGTTTCCCGGCGTGGCCACGACGTTGTGTGTTTCCGCAAGTGGACACGGGCGCGACGGTGAG F D E T L D Q Y H Q F P G V A T D V V F P Q V D T G A T V S	360
361	CGTGCACACCGCGGCCGGCGGCGCTACCGGGCCGCTAACCGCCAGCTGCTTCAATTACCACGTGTGCAACAAGCGCTTCGTGTTTGGTGT V H T A A G A Y S G P L T A S C F N Y H V C N K R F V F G V	450
451	TTTGCCGGCG <u>CTCGAG</u> GTGCCCGCCGACGTAAGCCCGCACCTGCGCGCGCGCCCATCCTCTGCAACGAGCAATTGGTGTCCGTGGT L P A L E V P A D V S P H L R V G A P I L C N E Q L V S V V	540
541	GACGGCCGTGCACGAGGCGCCGCGGCGCGCGCGCGCGCGC	630
631	GTGCAATGGCGTGCGCGCGGGGCGGCGGGCGGGGGGGGGG	720
721	GCTATCGCAAACGGCGCCACACGCT <u>GAAGCTT</u> CCGAATCGTGCGCGCTGTTTTACAATGACTCTGAAGTGCGCATTACTTTTAACAAAGG L S Q T A P H A E A S E S C A L F Y N D S E V R I T F N K G	810
811	$\begin{array}{c} \text{HINDIII} \\ \text{CAGTTTTGAATTGATGCACTGGCGATTGCCGGGGCCTTTTGTTGCCACAGCGTTAAATAAGCATTATTGACAATTTATTATTATTATCATT \\ \text{S F E L } M \text{ H } W \text{ R L } P \text{ G } P \text{ F } V \text{ A T A L } N \text{ K H } Y \text{ *} \end{array}$	900
901	<pre>< P10UP GAPATAGTTATAATATTTTACCAPTGTCCAAACCAAGCATTTTACCAACAAATTTTGACAGCTGTGCAAGATGTCGACACAAAAGTTGACGC M S K P S I L Q Q I L T A V Q D V D T K V D A</pre>	990
991	p10> GTTGCAAGCGCAACTGAATTGGACGGCAAAGTTCAGCCGTTAGATGGTTTGTCCGAGCAACTGACCGCTTTGGATACTAAAGTGAC L Q A Q L T E L D G K V Q P L D G L S E Q L T A L D T K V T	1080
.081	CACAATTCAAGACATACTAGGTGGAGCGGAAATTCCCGATATTCCCGATGTGCCTCTACCCGACAATCCTTTGAACAAAACCCGCAGTCA T I Q D I L G G A E I P D I P D V P L P D N P L N K T R S Q	1170
.171	* F L L D I T K F Y E Y P E K I L Y Y L A I M L F I A F AGCAAAAATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	1260
261	Y V F F T L E K Y L I F A A V A A G T N L L F L G A V V R N AGTACACAAAAAATGTAAGCTCTTTGTACAATATAAAGGCCGCAACGGCCGCCCCCGTGTTCAGCAAA <u>AATAAA</u> CCCGCTACCACCTAT	1350
.351	L K N N N E N M D L L T N Q R F T Y Q M F E L R T Y L S S S TTAATTTGTTATTATTTTCGTTCATGTCCAATAGCGTGTTTTGCCTAAACGTGTACTGCAATAA <u>CCTCGAG</u> ACGCGTGTACAGCGAGCTGC	1440
441	A L A Q G V L T A E D F D T I Q D S E D L Q L M Q G D S N V TGGCCAGCGCTTGGCCCACCAC $GCGCCGCCTCGTCAAAATCTGTAATCTGGTCACTTTCATCCAATTGTAGCATTGACCGTCCGAATTGA< PTADN$	1530
531	E L A A V Y D L L H Y L S Q F M A D D D T E V F D A F F E P CCTCAAGCGCCGCCACGTAGTCGAGCAGGTGGTACAGCGATTGGAACATGGCGTCGTCGTCTGTCT	1620
621	L F E I I E R S S N A D L T E F Y A T L F T R S L D D P F E GCAAAAACTCTATGATTTCGCGCGAGCTGTTGGCGTCCAGCGTTCAAAGTAGGCGGTAAGAAACGTGGCGGCACAAGTCGGCGGAAACT	1710
711	R P F M N S Y G F P D W L A L V L D A L T F L I L V I G V V CGCGCGGAAACATGTTGCTGTACCCAAACGGGTCCCACAGCGCCAGCACCAAATCGGCCAGCGTGAACAAAATCAAGACTATGCCCACCA <p74< td=""><td>1800</td></p74<>	1800
801	S S A K I A I R T L A K A A T T L T K I A I R N CGGAGCTGGCCTTGATGGCGATGCGCGTTAGGGCTTTGGCTGCCGTGGTGAGGGCATTCGGTT 1873	
Fig. 2. Nucleotide sequence of 1873 bp within <i>Pst</i> I I fragment containing the AnneNPV <i>b26</i> . <i>b10</i> and <i>b74</i> (partial). The		

Fig. 2. Nucleotide sequence of 1873 bp within *Pstl* I fragment containing the AnpeNPV *p26*, *p10* and *p74* (partial). The consensus late promoter transcription start signal (TAAG), translation start codon (ATG), translation stop codon (TAG) and putative polyadenylation signal (AATAAA) of the *p10* gene are underlined. Restriction sites of *PstI*, *Hind*III and *XhoI* are double underlined. Positions of oligonucleotide primers P26DN, P10UP, P10DN and P74DN are boxed, and arrows indicate their directions. Deduced amino acid sequences are shown below (*p26* and *p10*) or above (*p74*) the corresponding nucleotide sequences, and arrows indicate their directions.

Fig. 3. A phylogenetic tree of NPVs based on the deduced amino acid sequences of *p10* gene product available in the databases. Virus name, accession number in the Genbank database and amino acid sequence identity (%) to the *p10* gene product of the AnpeNPV revealed by BLAST search are indicated. The division of NPV group I and II, is also indicated.

For the construction of *polyhedrin* locusbased transfer vector plasmid, the 0.4-kbp *HindIII-XhoI* fragment was blunt-ended and cloned into *Bam*HI site, which was also bluntended, of pApCH2 (6.4 kbp) constructed by inserting 3.7-kbp *Hin*dIII-*Pst*I fragment of pApCH1 (6.4 kbp) into truncated pCR2.1 with *Hin*dIII and *Pst*I digestion (Fig. 4b). The resulting pApCH3 (6.8 kbp) contains both 5' and 3' flanking regions of the *polyhedrin* gene for homologous

Fig. 4. Schematic diagram of procedure used for the construction of transfer vector plasmids, pApp10 (a) and pApCH3 (b). P_{p10} and P_{p0h} indicate the AnpeNPV *p10* and *polyhedrin* promoters. The details are described in Results and Discussion.

recombination with AnpeNPV DNA at the *polyhedrin* locus and between them, in addition to 4 unique restriction sites (*EcoRI*, *SacI*, *KpnI* and *SmaI*) for insertion of a foreign gene just downstream of the *polyhedrin* promoter, 1 unique restriction site (*BgIII*) for insertion of one more foreign gene just downstream of the *p10* promoter. Therefore, pApCH3 enable to construct recombinant AnpeNPVs expressing two foreign genes (dual expression) under control of the *polyhedrin* and *p10* promoters, which were aligned in tandem but opposite orientation.

We are now constructing recombinant AnpeNPVs using these transfer vectors to evaluate the protein production performance of the p10 promoter as well as effectiveness of dual expression in both cell culture and diapausing pupae.

Acknowledgments

This work was partly supported by a grant for Insect Factory Research Project from National Institute of Agrobiological Sciences, Japan.

References

- Ahrens, C. H., R. L. Russell, C. J. Funk, J. T. Evans, S. H. Harwood and G. F. Rohrmann, 1997. The sequence of the *Orgyia pseudotsugata multinucleocapsid* nuclear polyhedrosis virus genome. Virology, **229**: 381-399.
- Gomi, S., K. Majima and S. Maeda, 1999. Sequence analysis of the genome of *Bombyx mori* nucleopolyhedrovirus. J. Gen. Virol., 80: 1323-1337.
- Hill, J. E., J. Kuzio, J. A. Wilson, E. A. MacKinnon and P. Faulkner, 1993. Nucleotide sequence of the p74 gene of a baculovirus pathogenic to the spruce budworm, *Choristoneura fumiferana* multicapsid nuclear polyhedrosis virus. Biochim. Biophys. Acta, **1172**: 187-189.
- Huang, Y. J. and J. Kobayashi, 2003. Antheraea pernyi nucleopolyhedrovirus mutants lacking functional cathepsin and/or chitinase genes suppress proteolysis and liquefaction of virusinfected diapausing A. pernyi pupae. Int. J. Wild Silkmoth & Silk, 8: 43-50.

- Huang, Y. J., J. Kobayashi and T. Yoshimura, 2002. Genome mapping and gene analysis of *Antheraea pernyi* nucleopolyhedrovirus for improvement of baculovirus expression vector system. J. Biosci. Bioeng., **93**: 183-191.
- Huang, Y. J., X. Y. Wang, S. Miyajima, T. Yoshimura and J. Kobayashi, 2001. Efficiency of Antheraea pernyi nucleopolyhedrovirusmediated protein production in both an established cell line and diapausing pupae of A. pernyi. Int. J. Wild Silkmoth & Silk, 6: 59-71.
- Kobayashi, J., R. Ando, X. Y. Wang, Y. J. Huang and S. Miyajima, 2001. Nucleotide sequence analysis of the polyhedrin gene of *Antheraea pernyi* nucleopolyhedrovirus and construction of a transfer vector plasmid. Int. J. Wild Silkmoth & Silk, **6**: 53-58.
- Kuzio, J., R. Jaques and P. Faulkner, 1989. Identification of p74, a gene essential for virulence of baculovirus occlusion bodies. Virology, **173**: 759-763.
- Nagaya, M., J. Kobayashi, N. Takahashi, K. Kato and T. Yoshimura, 2003. Two-dimensional high performance liquid chromatography mapping of sugar chains demonstrated the biantennary, complex *N*-glycan addition to the recombinant glycoprotein produced by baculovirus-infected *Antheraea pernyi* insect cells. J. Insect Biotechnol. Sericol., **72**: 79-86.
- Nagaya, M., J. Kobayashi and T. Yoshimura, 2002. Evaluation of N-glycosylation property of cultured *Antheraea pernyi* cells in comparison with four other lepidopteran cell lines used in baculovirus expression vector systems. Int. J. Wild Silkmoth & Silk, 7: 59-68.
- Sambrook, J., E. F. Fritsch and T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, New York, NY.
- Tomita, S., T. Kanaya, J. Kobayashi and S. Imanishi, 1995. Isolation of p10 gene from *Bombyx mori* nuclear polyhedrosis virus and study of its promoter activity in recombinant baculovirus vector system. Cytotechnology, **17**: 65-70.
- Vlak, J. M., A. Schouten, M. Usmany, G. J. Belsham, E. C. Klinge-Roode, A. J. Maule,

J. B. F. van Lent and D. Zuidema, 1990. Expression of cauliflower mosaic virus gene I using a baculovirus vector based upon the p10 gene and a novel selection method. Virology, **179**: 312-320.

Weyer, U., S. Knight and R. D. Possee, 1990.

Analysis of very late gene expression by *Autographa californica* nuclear polyhedrosis virus and the further development of multiple expression vectors. J. Gen Virol., **71**: 1525-1534.