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Abstract. Certain trace inequalities related to matrix logarithm are shown. These results
enable us to give a partial answer of the open problem conjectured by A.S.Holevo. That is,
concavity of the auxiliary function which appears in the random coding exponent as the lower
bound of the quantum reliability function for general quantum states is proven in the case of
0 ≤ s ≤ 1.
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1 Introduction

In noncommutative(quantum) communication theory, the concavity of the auxiliary function of
the quantum reliability function has remained as an open question [6] and unsolved conjecture
[8]. The auxiliary function E(s), (0 ≤ s ≤ 1) is defined by

E(s) ≡ − log

Tr

( a∑
i=1

πiS
1

1+s

i

)1+s
 , (1)

where each Si is the density matrix and each πi is nonnegative number satisfying
∑a

i=1 πi = 1.
See [2, 6] for details on quantum reliability function theory. For the above problem, we gave the
sufficient condition on concavity of the auxiliary function in the previous paper [4].

Proposition 1.1 [4] If the trace inequality

Tr

A(s)s


a∑

j=1

πjS
1

1+s

j

(
log S

1
1+s

j

)2
−A(s)−1+s


a∑

j=1

πjH

(
S

1
1+s

j

)
2 ≥ 0. (2)

holds for any real number s (0 ≤ s ≤ 1), any density matrices Si(i = 1, · · · , a) and any prob-

ability distributions π = {πi}a
i=1, under the assumption that A(s) ≡

∑a
i=1 πiS

1
1+s

i is invertible,
then the auxiliary function E(s) defined by Eq.(1) is concave for all s (0 ≤ s ≤ 1). Where
H(x) = −x log x is the matrix entropy introduced in [7].
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We note that our assumption “A(s) is invertible” is not so special condition, because A(s)
becomes invertible if we have one invertible Si at least. Moreover, we have the possibility such
that A(s) becomes invertible even if all Si is not invertible for all πi 6= 0.

In the present paper, we show some trace inequalities related to matrix logarithm, and then
give a partial solution of the open problem in noncommutative communication theory as an
application of them.

2 Main results

In the previous section, we found that in order to prove the concavity of the auxiliary function
Eq.(1), we have only to prove the sufficient condtion Eq.(2) for any a, s, (0 ≤ s ≤ 1) and any
density matrices Si. For this purpose, we consider the simple case a = 2 and then we put

A = S
1

1+s

1 , B = S
1

1+s

2 and π1 = π2 = 1
2 for simplicity. Thus our problem can be deformed as

follows:

Problem 2.1 Prove

Tr[(A + B)s
{
A(log A)2 + B(log B)2

}
− (A + B)−1+s(A log A + B log B)2] ≥ 0 (3)

for any s, (0 ≤ s ≤ 1) and two positive matrices A ≤ I and B ≤ I.

Theorem 2.2 For two positive matrices A ≤ I and B ≤ I, Eq.(3) holds in the case of s = 1:

Tr[(A + B)
{
A(log A)2 + B(log B)2

}
− (A log A + B log B)2] ≥ 0.

Proof of Theorem 2.2. Eq.(3) can be directly calculated by

Tr[(A + B)s
{
A(log A)2 + B(log B)2

}
]− Tr[(A + B)−1+s(A log A + B log B)2]

= Tr[(A + B)−1+s(A + B)
{
A(log A)2 + B(log B)2

}
]

−Tr[(A + B)−1+s(A log A + B log B)2]
= Tr[(A + B)−1+s{A2(log A)2 + AB(log B)2 + BA(log A)2 + B2(log B)2}]

−Tr[(A + B)−1+s{A2(log A)2 + A log AB log B + B log BA log A + B2(log B)2}]
= Tr[(A + B)−1+s{AB(log B)2 + BA(log A)2}]

−Tr[(A + B)−1+sA log AB log B]− Tr[(A + B)−1+sB log BA log A]
= Tr[(A + B)−1+sAB(log B)2] + Tr[(A + B)−1+sBA(log A)2]

−2Re Tr[A log A(A + B)−1+sB log B]. (4)

Eq.(4) is further calculated for s = 1 such as

Tr[AB(log B)2] + Tr[BA(log A)2]− 2Re Tr[A log AB log B]
= Tr[AB(log B)2] + Tr[BA(log A)2]− 2Re Tr[B1/2A1/2 log AA1/2B1/2 log B]
≥ Tr[AB(log B)2] + Tr[BA(log A)2]− 2(Tr[BA(log A)2])1/2(Tr[AB(log B)2])1/2

= {(Tr[BA(log A)2])1/2 − (Tr[AB(log B)2])1/2}2 ≥ 0.

Cuachy-Schwarz inequality:

|Tr [X∗Y ] |2 ≤ Tr [X∗X] Tr [Y ∗Y ]

for the matrices X and Y , has been applied in the above calculation. q.e.d.

2



Remark 2.3 After the manner of Theorem 2.2, we can prove Eq.(2) in the case of s = 1 for
any density matrices Si and any probability distributions π = {πi}, (i = 1, 2, · · · , a), since the
left hand side of Eq.(2) can be directly calculated in the following∑

i<j

πiπj

{
Tr

[
S

1
2
i S

1
2
j

(
log S

1
2
j

)2
]

+ Tr

[
S

1
2
j S

1
2
i

(
log S

1
2
i

)2
]
− 2ReTr

[
S

1
2
i log S

1
2
i S

1
2
j log S

1
2
j

]}
.

That is, the extended version of Theorem 2.2 holds, by applying Cuachy-Schwarz inequality
to the third term of the above, after we slightly performed changes as similar as the proof of
Theorem 2.2.

Theorem 2.4 For two positive matrices A ≤ I and B ≤ I, Eq.(3) holds in the case of s = 0:

Tr[
{
A(log A)2 + B(log B)2

}
− (A + B)−1(A log A + B log B)2] ≥ 0.

To prove Theorem 2.4 we require the following lemma.

Lemma 2.5 [1, 5] For the continuous function f : [0, α) → R, (0 < α ≤ ∞), the following
statements are equivalent.

(i) f is operator convex and f(0) ≤ 0.

(ii) For the bounded linear operators Ki, (i = 1, 2, · · · , n) satisfying σ(Ki) ⊂ [0, α), where σ(Z)
represents the set of all spectrums of the bounded linear operator Z, and the bounded
linear operators Ci, (i = 1, 2, · · · , n) satisfying

∑n
i=1 C∗

i Ci ≤ I, we have

f(
n∑

i=1

C∗
i KiCi) ≤

n∑
i=1

C∗
i f(Ki)Ci.

Proof of Theorem 2.4. For C1 = A1/2(A + B)−1/2 and C2 = B1/2(A + B)−1/2, we have
C∗

1C1 + C∗
2C2 = I. Note that A ≤ I and B ≤ I. Then we set f(t) = t2,K1 = − log A and

K2 = − log B and then apply Lemma 2.5. Thus we have

{
(A + B)−1/2A1/2(− log A)A1/2(A + B)−1/2 + (A + B)−1/2B1/2(− log B)B1/2(A + B)−1/2

}2

≤ (A + B)−1/2A1/2(− log A)2A1/2(A + B)−1/2 + (A + B)−1/2B1/2(− log B)2B1/2(A + B)−1/2.

Since
[
A1/2, log A

]
= 0 and

[
B1/2, log B

]
= 0, we have{

(A + B)−1/2(−A log A−B log B)(A + B)−1/2
}2

≤ (A + B)−1/2
{
A(− log A)2 + B(− log B)2

}
(A + B)−1/2.

That is,

(A + B)−1/2(A log A + B log B)(A + B)−1(A log A + B log B)(A + B)−1/2

≤ (A + B)−1/2
{
A(log A)2 + B(log B)2

}
(A + B)−1/2.

Thus we have

(A log A + B log B)(A + B)−1(A log A + B log B) ≤ A(log A)2 + B(log B)2. (5)

Therefore, if we take the trace in the both sides, then the proof is completed. q.e.d.
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Remark 2.6 After the manner of Theorem 2.4, we can prove Eq.(2) in the case of s = 0 for
any density matrices Si and any probability distributions π = {πi}, (i = 1, 2, · · · , a), since
Lemma 2.5 is available for any finite number n. Indeed, we can apply Lemma 2.5 by putting
Ki = − log Si, Ci = π

1/2
i Si

1/2 (
∑a

k=1 πkSk)
−1/2 for i = 1, 2, · · · , a and f (t) = t2.

Question 2.7 From Eq.(5), the matrix inequality holds in the case of s = 0. However, we do
not know whether the following matrix inequalities

(A + B)1/2
{

A (log A)2 + B (log B)2
}

(A + B)1/2 ≥ (A log A + B log B)2 (6)

or{
A (log A)2 + B (log B)2

}1/2
(A + B)

{
A (log A)2 + B (log B)2

}1/2
≥ (A log A + B log B)2 (7)

corresponding to the case of s = 1 for any two positive matrices A ≤ I and B ≤ I hold or not.
We have not yet found any counter-examples, namely the examples that the matrix ineqalities
both Eq.(6) and Eq.(7) are not satisfied simultaneously, for some positive matrices A ≤ I and
B ≤ I.

Theorem 2.8 Suppose A and B are 2× 2 positive matrices. Then for any 0 ≤ s ≤ 1 we have

Tr[(A + B)s
{
A(log A)2 + B(log B)2

}
− (A + B)−1+s(A log A + B log B)2] ≥ 0.

Proof of Theorem 2.8 We consider the Schatten decomposition of A + B as follows:

A + B =
∑

n

tn|φn〉〈φn|, (8)

where {tn} are the eigenvalues of A + B, {|φn〉} are the corresponding eigenvectors. Then we
have

Tr[(A + B)s
{
A(log A)2 + B(log B)2

}
]

=
∑

n

〈φn|(A + B)s/2
{
A(log A)2 + B(log B)2

}
(A + B)s/2|φn〉

=
∑

n

〈φn(A + B)s/2|
{
A(log A)2 + B(log B)2

}
|(A + B)s/2φn〉

=
∑

n

tsn〈φn|
{
A(log A)2 + B(log B)2

}
|φn〉

=
∑

n

tsnan.

As similarly, we have

Tr[(A + B)−1+s(A log A + B log B)2]

=
∑

n

t−1+s
n 〈φn|(A log A + B log B)2|φn〉

=
∑

n

t−1+s
n bn.

Where we put an = 〈φn|
{
A(log A)2 + B(log B)2

}
|φn〉 and bn = 〈φn|(A log A + B log B)2|φn〉.

The proof is completed by using the following lemma. q.e.d

4



Lemma 2.9 Suppose the positive numbers t1, t2, a1, a2, b1 and b2 satisfy the following two con-
ditions.

(i) t1a1 + t2a2 ≥ b1 + b2

(ii) a1 + a2 ≥ t−1
1 b1 + t−1

2 b2

Then for any 0 ≤ s ≤ 1 we have

ts1a1 + ts2a2 ≥ t−1+s
1 b1 + t−1+s

2 b2.

Proof of Lemma 2.9 It is trivial for t1 = t2 so that we can suppose t1 > t2 without loss of
generality. From the condition (i), we then have the following

ts1a1 + ts2a2 − t−1+s
1 b1 − t−1+s

2 b2

= ts1a1 − t−1+s
1 b1 + ts2a2 − t−1+s

2 b2

= t−1+s
1 (t1a1 − b1) + t−1+s

2 (t2a2 − b2)
≥ t−1+s

1 (b2 − t2a2) + t−1+s
2 (t2a2 − b2)

= (t−1+s
2 − t−1+s

1 )(t2a2 − b2).

Since t−1+s
2 − t−1+s

1 ≥ 0, if t2a2 − b2 ≥ 0, then the lemma follows. On the other hand, if
t2a2 − b2 < 0, from the condition (ii) we then have

ts1a1 + ts2a2 − t−1+s
1 b1 − t−1+s

2 b2

= ts1a1 − t−1+s
1 b1 + ts2a2 − t−1+s

2 b2

= ts1(a1 − t−1
1 b1) + ts2(a2 − t−1

2 b2)
≥ ts1(t

−1
2 b2 − a2) + ts2(a2 − t−1

2 b2)
= (ts1 − ts2)(t

−1
2 b2 − a2) ≥ 0.

q.e.d.

Remark 2.10 After the manner of Theorem 2.8, we can prove Eq.(2) for any 2 × 2 density
matrices Si and any probability distributions π = {πi}, (i = 1, 2, · · · , a), by considering the

Schatten decomposition of the 2× 2 positive matrix
∑a

k=1 πkS
1

1+s

k as follows:

a∑
k=1

πkS
1

1+s

k =
∑

n

λn|φn〉〈φn|,

where λ1 and λ2 are the eigenvalues of
∑a

k=1 πkS
1

1+s

k , {|φ1〉} and {|φ2〉} are corresponding
eigenvectors, respectively. Therefore it was shown the concavity of the auxiliary function E (s)
of the quantum reliability function for any 2 × 2 density matrices Si. Thus we gave a partial
solution for the open probelm given in [6].

Remark 2.11 We expect that our Lemma 2.9 can be extended to the general n ≥ 3, where n
represents the number of the eigenvalues given in Eq.(8). However it is impossible to prove it,
because we have a counter-example for such a generalization. For example, we take

s =
1
2
, t1 = 3, t2 = 2, t3 = 1, a1 =

2
3
, a2 = 1, a3 =

3
2
, b1 =

1
2
, b2 = 4, b3 = 1.
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Although it holds two conditions corresponding to the generalization of two conditions (i) and
(ii) in Lemma 2.9:

t1a1 + t2a2 + t3a3 = b1 + b2 + b3 =
11
2

and
a1 + a2 + a3 = t−1

1 b1 + t−1
2 b2 + t−1

3 b3 =
19
6

,

the following calculations:

ts1a1 + ts2a2 + ts3a3 =
2
√

3
3

+
√

2 +
3
2
' 4.068914

and

t−1+s
1 b1 + t−1+s

2 b2 + t−1+s
3 b3 =

√
3

6
+ 2

√
2 + 1 ' 4.1171021,

show that
ts1a1 + ts2a2 + ts3a3 ≥ t−1+s

1 b1 + t−1+s
2 b2 + t−1+s

3 b3

does not hold. This means that our Lemma 2.9 can not be extended to the general case of
n ≥ 3. Therefore we must produce an another method to prove Theorem 2.8 for any n × n
positive matrices A and B. Our Theorem 2.8 is constructed by a kind of the interpolation
between two conditions generated by Theorem 2.2 and Theorem 2.4. If we extend this method
to the case of n ≥ 3, we may require the further conditions.

3 The related inequalities

We introduce the following symbol in the relation to quantum relative entropy. For the positive
matrices A and B, we define

D (A‖B) = A (log A− log B) .

Then we have the next theorem.

Theorem 3.1 (1) Tr[D(A‖B)D(B‖A)] ≤ 0.

(2) Tr[(A + B)−1D(A‖B)D(B‖A)∗] ≤ 0.

Remark 3.2 The quantum relative entropy is defined by H(A‖B) = Tr[D(A‖B)] for any den-
sity matrices A and B. The relative matrix entropy [3] is defined by

S(A‖B) = A1/2(log A−1/2BA−1/2)A1/2

for any invertible positive matrices A and B. Moreover, if A and B are commutative, then we
have D(A‖B) = −S(A‖B).
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