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Abstract. We study the diffusion of Brownian particles in a Gaussian random

velocity field with short memory. By extending the derivation of an effective Fokker–

Planck equation for the Lanvegin equation with weakly colored noise to a random

velocity-field problem, we find that the effect of thermal noise on particles is suppressed

by the existence of memory. We also find that the renormalization effect for the relative

diffusion of two particles is stronger than that for single-particle diffusion. The results

are compared with those of molecular dynamics simulations.
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1. Introduction

Diffusion in nonequilibrium environments has recently attracted considerable attention

[1, 2, 3, 4, 5]. Particularly, the recent development of single-particle tracking [6, 7]

enabled the observation of the trajectories of a tracer particle in biological systems, and

many qualitatively new phenomena have been discovered. Although several anomalous

diffusion phenomena have been explained in terms of the associated stochastic process

[8], the origins of others are still unclear. In order to classify their origins, a deep

understanding of theoretical models is necessary.

Compared with single-particle diffusion, the diffusive behavior of the relative

distance between two noninteracting tracer particles in a common random velocity

field is often diverse and complicated. Several counterintuitive phenomena have been

theoretically discovered. One remarkable example is the aggregation of two independent

particles in a common velocity field, which obeys Gaussian statistics with no memory

[9, 10, 11]. Although normal diffusion is observed in the corresponding single-particle

problem, two particles in a common velocity field aggregate with time, and therefore,

relative diffusion is completely suppressed. It should be noted that while this behavior

is not stable against the independent thermal noise that independently acts on the

two particles and the two particles diffuse from each other in the large time limit

in the existence of such independent noise, the relative diffusion is still slightly

suppressed. Another example is diffusion in a time-independent random velocity field—

Sinai diffusion [12]. In a single-particle problem, ultraslow diffusion is observed in the

presence of thermal noise [13]. In contrast, it is known that the relative distance between

two particles in a relative diffusion problem remains finite with probability one even in

the infinite time limit, although they are subject to independent noise sources [14], which

implies the complete suppression of relative diffusion. This phenomenon is understood

as the existence of an infinitely deep well in a potential landscape [15].

The main purpose of this study is to investigate the effect of memory in random

velocity fields on the thermal noise acting on the tracer particles. We study the case

where the correlation time of a velocity field is small, and we perturbatively derive an

effective time-evolution equation for the probability distribution of the particle positions

by extending the derivation of an effective Fokker–Planck equation for the Lanvegin

equation with weakly colored noise [16] to our random velocity-field problem. We then

find that the effect of thermal noise on both single-particle and relative diffusion is

suppressed by the existence of the memory of the velocity field, although suppression in

the latter is stronger.

This paper is organized as follows. In section 2, the model is introduced. In section

3, an effective time-evolution equation for the probability distribution of two particles is

perturbatively derived, and the properties of this equation are investigated. In section

4, the results in the previous section are compared with those obtained from molecular

dynamics simulations. Section 5 is devoted to the concluding remarks.



Suppression of thermal noise in non-Markovian random velocity field 3

2. Model

We study two Brownian particles on a common random velocity field:

ẋ(a)(t) = F
(
x(a)(t), t

)
+ ξ(a)(t), (1)

where a = 1, 2. A zero-mean random velocity field F (x, t) obeys Gaussian statistics as

follows:

⟨F (x, t)F (x′, t′)⟩ = C(x− x′, t− t′) (2)

with

C(x, t) = Cs(x)
1

τ
e−

|t|
τ , (3)

and the zero-mean Gaussian white thermal noise ξ(a)(t) obeys⟨
ξ(a)(t)ξ(b)(t′)

⟩
= 2Tδa,bδ(t− t′) (4)

with
⟨
F (x, t)ξ(a)(t)

⟩
= 0, where ⟨· · ·⟩ represents the average with respect to both

random variables. The parameter T is interpreted as the temperature of the thermal

environment. We assume that (i) Cs(x) > 0, (ii) Cs(−x) = Cs(x), (iii) Cs(x) reaches

a maximum at x = 0, and (iv) C ′
s(0) = 0. In the limit τ → 0, the Markovian case is

recovered.

3. Fokker–Planck equation

3.1. Time-evolution equation for the probability distribution

We derive a time-evolution equation for the probability density function of two particles

P (x, t) ≡ ⟨δ (x− x(t))⟩ with x ≡
(
x(1), x(2)

)
. From the Langevin equation in (1), the

evolution equation for P (x, t) is written as

∂

∂t
P (x, t) = −

2∑
a=1

∂

∂x(a)

⟨
F
(
x(a), t

)
δ (x− x(t))

⟩
−

2∑
a=1

∂

∂x(a)

⟨
ξ(a)(t)δ (x− x(t))

⟩
. (5)

The second term leads to the standard diffusion term:⟨
ξ(a)(t)δ (x− x(t))

⟩
= − T

∂

∂x(a)
P (x, t). (6)

The first term is expressed by using the Furutsu–Novikov–Donsker formula [17, 18, 19]

⟨F (x, t)A[F ]⟩ =

∫
dx′

∫
dt′ ⟨F (x, t)F (x′, t′)⟩

⟨
δA[F ]

δF (x′, t′)

⟩
, (7)

where A[F ] is an arbitrary functional of F . The result is

∂

∂t
P (x, t) = −

2∑
a=1

∂

∂x(a)

∫
dx′

∫
dt′

⟨
F
(
x(a), t

)
F (x′, t′)

⟩⟨ δ

δF (x′, t′)
δ (x− x(t))

⟩

+ T
2∑

a=1

∂2

∂x(a)2
P (x, t)
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=
2∑

a=1

∂

∂x(a)

∫
dx′

∫
dt′C

(
x(a) − x′, t− t′

) 2∑
b=1

⟨
δx(b)(t)

δF (x′, t′)

∂

∂x(b)
δ (x− x(t))

⟩

+ T

2∑
a=1

∂2

∂x(a)2
P (x, t). (8)

Furthermore, by differentiating the formal solution of (1),

x(a)(t) = x(a)(0) +

∫ t

0

ds

∫
dyδ(y − x(a)(s))F (y, s) +

∫ t

0

dsξ(a)(s) (9)

with respect to F (x′, t′) (t′ < t), we obtain

δx(a)(t)

δF (x′, t′)
= δ

(
x′ − x(a)(t′)

)
−

∫ t

t′
ds

∫
dyF (y, s)

δx(a)(s)

δF (x′, t′)

∂

∂y
δ
(
y − x(a)(s)

)
. (10)

We note that the constraint t′ < s < t comes from causality. Differentiation of both

sides with respect to t yields

∂

∂t

δx(a)(t)

δF (x′, t′)
=

∂F

∂x

(
x(a)(t), t

) δx(a)(t)

δF (x′, t′)
. (11)

By integrating this with the initial condition δx(a)(t′)/δF (x′, t′) = δ
(
x′ − x(a)(t′)

)
, we

obtain

δx(a)(t)

δF (x′, t′)
= δ

(
x′ − x(a)(t′)

)
e
∫ t
t′ ds

∂F
∂x (x(a)(s),s). (12)

Therefore, (8) becomes

∂

∂t
P (x, t) =

2∑
a=1

2∑
b=1

∂

∂x(a)

∫
dx′

∫ t

0

dt′C
(
x(a) − x′, t− t′

)
× ∂

∂x(b)

⟨
δ
(
x′ − x(b)(t′)

)
e
∫ t
t′ ds

∂F
∂x (x(b)(s),s)δ (x− x(t))

⟩
+ T

2∑
a=1

∂2

∂x(a)2
P (x, t). (13)

It should be noted that for a general C(x, t), this is not a closed equation for P (x, t).

3.2. Perturbation analysis for small τ

We assume that τ is small and derive a perturbative expression for the time-evolution

equation of P (x, t) by extending the derivation of an effective Fokker–Planck equation

for weakly colored noise [16] to our random velocity-field problem. The explicit meaning

of “small” τ is explained later. First, (13) is rewritten as

∂

∂t
P (x, t) =

2∑
a=1

2∑
b=1

∂

∂x(a)

∫
dx′

∫ t

0

dt′Cs

(
x(a) − x′) 1

τ
e−

t−t′
τ

× ∂

∂x(b)

⟨
δ
(
x′ − x(b)(t′)

)
e
∫ t
t′ ds

∂F
∂x (x(b)(s),s)δ (x− x(t))

⟩
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+ T

2∑
a=1

∂2

∂x(a)2
P (x, t)

=
2∑

a=1

2∑
b=1

∂

∂x(a)

∫
dx′

∫ t
τ

0

duCs

(
x(a) − x′) e−u ∂

∂x(b)

×
⟨
δ
(
x′ − x(b)(t− τu)

)
e
∫ t
t−τu ds ∂F

∂x (x(b)(s),s)δ (x− x(t))
⟩

+ T
2∑

a=1

∂2

∂x(a)2
P (x, t). (14)

By expanding it with respect to τ , we obtain the following up to the first order of τ :

∂

∂t
P (x, t) ≃

2∑
a=1

2∑
b=1

∂

∂x(a)

∫
dx′Cs

(
x(a) − x′) ∂

∂x(b)

[⟨
δ
(
x′ − x(b)

)
δ (x− x(t))

⟩
+ τ

⟨
ẋ(b)(t)

∂

∂x′ δ
(
x′ − x(b)

)
δ (x− x(t))

⟩
+τ

⟨
δ
(
x′ − x(b)

) ∂F
∂x

(
x(b), t

)
δ (x− x(t))

⟩]
+ T

2∑
a=1

∂2

∂x(a)2
P (x, t)

≡ J1 + J2 + J3 + T
2∑

a=1

∂2

∂x(a)2
P (x, t), (15)

where we have defined Ji (i = 1, 2, 3) as each term on the right hand side. The first

term J1 is calculated by using C ′
s(0) = 0 as

J1 =
2∑

a=1

2∑
b=1

∂

∂x(a)

∂

∂x(b)

∫
dx′Cs

(
x(a) − x′) ⟨δ (x′ − x(b)

)
δ (x− x(t))

⟩
−

2∑
a=1

2∑
b=1

∂

∂x(a)

∫
dx′

{
∂

∂x(b)
Cs

(
x(a) − x′)} ⟨

δ
(
x′ − x(b)

)
δ (x− x(t))

⟩
=

2∑
a=1

2∑
b=1

∂2

∂x(a)∂x(b)
Cs

(
x(a) − x(b)

)
P (x, t). (16)

The second term J2 is calculated as

J2 = τ

2∑
a=1

2∑
b=1

∂

∂x(a)

∫
dx′Cs

(
x(a) − x′) ∂

∂x(b)

∂

∂x′ δ
(
x′ − x(b)

) ⟨
ẋ(b)(t)δ (x− x(t))

⟩
= τ

2∑
a=1

2∑
b=1

∂

∂x(a)

∫
dx′∂Cs

∂x

(
x(a) − x′) ∂

∂x(b)
δ
(
x′ − x(b)

) ⟨
ẋ(b)(t)δ (x− x(t))

⟩
= τ

2∑
a=1

2∑
b=1

∂

∂x(a)

∂

∂x(b)

∂Cs

∂x

(
x(a) − x(b)

) ⟨
ẋ(b)(t)δ (x− x(t))

⟩
− τ

2∑
a=1

∂

∂x(a)

∂2Cs

∂x2
(0)

⟨
ẋ(a)(t)δ (x− x(t))

⟩
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≃ − τ

2∑
a=1

2∑
b=1

∂2

∂x(a)∂x(b)

∂Cs

∂x

(
x(a) − x(b)

)
×

[
2∑

c=1

∂

∂x(c)
Cs

(
x(b) − x(c)

)
P (x, t) + T

∂

∂x(b)
P (x, t)

]
+ τC ′′

s (0)
∂

∂t
P (x, t). (17)

In order to derive the first term in the last line, we have used the fact that J2 is already

O(τ). Similarly, the third term J3 is expressed as

J3 = τ

2∑
a=1

2∑
b=1

∂2

∂x(a)∂x(b)
Cs

(
x(a) − x(b)

)⟨∂F

∂x

(
x(b), t

)
δ (x− x(t))

⟩

= τ
2∑

a=1

2∑
b=1

∂2

∂x(a)∂x(b)
Cs

(
x(a) − x(b)

)
×
[

∂

∂x(b)

⟨
F
(
x(b), t

)
δ (x− x(t))

⟩
−

⟨
F
(
x(b), t

) ∂

∂x(b)
δ (x− x(t))

⟩]
≃ τ

2∑
a=1

2∑
b=1

∂2

∂x(a)∂x(b)
Cs

(
x(a) − x(b)

)
×

[
− ∂

∂x(b)

∫
dx′Cs

(
x(b) − x′) 2∑

c=1

∂

∂x(c)

⟨
δ
(
x′ − x(c)

)
δ (x− x(t))

⟩
+

∫
dx′Cs

(
x(b) − x′) 2∑

c=1

∂2

∂x(b)∂x(c)

⟨
δ
(
x′ − x(c)

)
δ (x− x(t))

⟩]

= − τ
2∑

a=1

2∑
b=1

∂2

∂x(a)∂x(b)
Cs

(
x(a) − x(b)

) ∫
dx′∂Cs

∂x

(
x(b) − x′)

×
2∑

c=1

∂

∂x(c)

⟨
δ
(
x′ − x(c)

)
δ (x− x(t))

⟩
= − τ

2∑
a=1

2∑
b=1

∂2

∂x(a)∂x(b)
Cs

(
x(a) − x(b)

)
×

[
2∑

c=1

∂

∂x(c)

∂Cs

∂x

(
x(b) − x(c)

)
P (x, t)− ∂2Cs

∂x2
(0)P (x, t)

]
. (18)

Therefore, we finally obtain

∂

∂t
P (x, t) =

2∑
a=1

2∑
b=1

∂2

∂x(a)∂x(b)
Cs

(
x(a) − x(b)

)
P (x, t) + τC ′′

s (0)
∂

∂t
P (x, t)

− τ
2∑

a=1

2∑
b=1

∂2

∂x(a)∂x(b)

∂Cs

∂x

(
x(a) − x(b)

)
×

[
2∑

c=1

∂

∂x(c)
Cs

(
x(b) − x(c)

)
P (x, t) + T

∂

∂x(b)
P (x, t)

]
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− τ

2∑
a=1

2∑
b=1

∂2

∂x(a)∂x(b)
Cs

(
x(a) − x(b)

)
×

[
2∑

c=1

∂

∂x(c)

∂Cs

∂x

(
x(b) − x(c)

)
P (x, t)− C ′′

s (0)P (x, t)

]

+ T
2∑

a=1

∂2

∂x(a)2
P (x, t), (19)

or

∂

∂t
P (x, t) ≃ {1 + τC ′′

s (0)}
2∑

a=1

2∑
b=1

∂2

∂x(a)∂x(b)
Cs

(
x(a) − x(b)

)
P (x, t)

− τ

2∑
a=1

2∑
b=1

∂2

∂x(a)∂x(b)

∂Cs

∂x

(
x(a) − x(b)

)
×

[
2∑

c=1

∂

∂x(c)
Cs

(
x(b) − x(c)

)
P (x, t) + T

∂

∂x(b)
P (x, t)

]

− τ
2∑

a=1

2∑
b=1

∂2

∂x(a)∂x(b)
Cs

(
x(a) − x(b)

)
×

[
2∑

c=1

∂

∂x(c)

∂Cs

∂x

(
x(b) − x(c)

)
P (x, t)− C ′′

s (0)P (x, t)

]

+ {1 + τC ′′
s (0)}T

2∑
a=1

∂2

∂x(a)2
P (x, t). (20)

This is the time-evolution equation for P (x, t) up to the order τ .

First, we discuss the properties of single-particle diffusion. By integrating (20) with

respect to x(2), we obtain the time-evolution equation for the single-particle probability

distribution P (1)(x, t) ≡
⟨
δ
(
x− x(1)(t)

)⟩
:

∂

∂t
P (1)(x, t) = {Cs(0) + T} ∂2

∂x2
P (1)(x, t) + τ {2Cs(0) + T}C ′′

s (0)
∂2

∂x2
P (1)(x, t). (21)

This equation is of the diffusion type. Particularly, the result for the Markovian case [9]

is recovered when τ = 0. Furthermore, because C ′′
s (0) < 0, we can find that the effect

of thermal noise is suppressed by the existence of memory as T → T {1 + τC ′′
s (0)}.

In order to obtain a time-evolution equation for the probability distribution of the

relative distance between two particles Prel(r, t) ≡
⟨
δ
(
r − x(1)(t) + x(2)(t)

)⟩
, we rewrite

(20) by using R ≡
(
x(1) + x(2)

)
/2 and r ≡ x(1) − x(2) and then integrate it with respect

to R:

∂

∂t
Prel(r, t) = 2

∂2

∂r2
{Cs(0)− Cs(r) + T}Prel(r, t) + 2τ

∂2

∂r2
C ′

s(r)
2Prel(r, t)

+ 2τC ′′
s (0)

∂2

∂r2
{2Cs(0)− 2Cs(r) + T}Prel(r, t)− 2τT

∂3

∂r3
C ′

s(r)Prel(r, t)

+ 2τ
∂2

∂r2
C ′′

s (r) {Cs(0)− Cs(r) + T}Prel(r, t). (22)
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When τ = 0, the result for the Markovian case [9] is recovered, and particularly,

when T is also zero, the local diffusion constant 2 {Cs(0)− Cs(r)} is zero at r = 0,

which implies that particles aggregate with time and the steady-state distribution is

P
(ss)
rel (r) = δ(r). For finite τ , we can find that the effect of thermal noise at r = 0

is 2T {1 + 2τC ′′
s (0)} < 2T and therefore is suppressed by the existence of memory.

We remark that this renormalization effect for relative diffusion is stronger than that

for single-particle diffusion since {1 + 2τC ′′
s (0)} < {1 + τC ′′

s (0)}. We also note that

r = 0 becomes the absorbing point when T equals zero, similar to the case with τ = 0,

which means that two particles in a common velocity field aggregate with time, and

P
(ss)
rel (r) = δ(r).

3.3. Convergence of the effective Fokker–Planck equations

We discuss the convergence of the effective Fokker–Planck equations obtained in the

previous subsection and the meaning of “small” τ .

First, we consider (21). From the expression for T = 0, we can find that the solution

of this equation converges for all x only when

1 + 2τC ′′
s (0) > 0. (23)

Therefore, for any T , the condition that τ should satisfy is τ < 1/ (2 |C ′′
s (0)|).

Next, in order to discuss convergence of (22), we first consider the case T = 0:

∂

∂t
Prel(r, t) = 2

∂2

∂r2
[
{1 + 2τC ′′

s (0) + τC ′′
s (r)} {Cs(0)− Cs(r)}+ τC ′

s(r)
2
]
Prel(r, t). (24)

We find that the positivity of the local diffusion constant is satisfied for all r when

1 + 2τC ′′
s (0) + τ min

r
C ′′

s (r) > 0. (25)

We remark that this condition is more strict than (23).

For the case T > 0, (22) can be rewritten as

∂

∂t
Prel(r, t) = 2

∂2

∂r2
[
{1 + 2τC ′′

s (0) + τC ′′
s (r)} {Cs(0)− Cs(r)}+ τC ′

s(r)
2
]
Prel(r, t)

+ 2
∂2

∂r2
T {1 + τC ′′

s (0) + τC ′′
s (r)}Prel(r, t)− 2τT

∂3

∂r3
C ′

s(r)Prel(r, t). (26)

The positivity of the local diffusion constant in the second term is satisfied when

1 + τC ′′
s (0) + τ minr C

′′
s (r) > 0, and this condition is weaker than (25). Thus, the

condition that “small” τ should satisfy is (25). We remark that (26) contains a third

derivative. In general, a truncated Kramers–Moyal expansion at a higher order than

the second order yields a negative probability [20]. However, it is also known that the

truncated equation often approximates the shape of the exact probability distribution

very well. Therefore, we numerically investigate behavior of (22) for a concrete setup

and check its usefulness. A comparison with molecular dynamics results is presented in

the next section.
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Figure 1. The probability distribution Prel(r, t) for τ = 0.0.
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Figure 2. The probability distribution Prel(r, t) for τ = 0.1.

3.4. Numerical solution of (22)

We numerically solve the diffusion equation in (22) and investigate the properties of

relative diffusion. We consider the case

Cs(x) = Ae−
x2

2σ2 (27)

with A = 1.0 and σ = 1.0, and we set T = 1.0. The initial condition is given by

Prel(r, 0) =
1

2
δ(r) +

1

4
[δ(r − 0.5) + δ(r + 0.5)] . (28)

In this setup, the condition in (25) becomes τ < 1/3. The equation in (22) is numerically

computed by differentiating it with step sizes ∆r = 0.5 and ∆t = 0.01.

We plot the numerical solution of (22) with τ = 0.0 and τ = 0.1 in Figure 1 and 2,

respectively. We can see that there is no divergence, even for τ > 0 and T > 0. We

also find that Prel(r, t) with τ = 0.1 has a peak at r = 0, similar to that with τ = 0.0.

In order to focus on the behavior of the mean-squared relative distance ⟨r2⟩t and the

peak value Prel(0, t), we plot these two quantities in Figure 3 and 4, respectively. We

observe the suppression of relative diffusion induced by the memory of a velocity field.
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4. Comparison with molecular dynamics results

We check the validity of our perturbative treatment by comparing the bahavior of

(22) with the results obtained from molecular dynamics simulation using (1). We can

generate a random velocity field F that obeys (3) with (27) by

F (x, t) =

∫ ∞

−∞
dx′

∫ t

−∞

(
2

π

) 1
4

√
A

σ

1

τ
e−

(x−x′)2

σ2 e−
t−t′
τ F0(x

′, t′), (29)

where F0 is a zero-mean Gaussian random variable with

⟨F0(x, t)F0(x
′, t′)⟩ = 2δ(x− x′)δ(t− t′). (30)

In the molecular dynamics simulation, F can also be prepared by numerically solving

the equation

∂

∂t
F (x, t) = − 1

τ
F (x, t) +

∫ ∞

−∞
dx′

(
2

π

) 1
4

√
A

σ

1

τ
e−

(x−x′)2

σ2 F0(x
′, t′) (31)
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for the initial condition F (x,−tinit) = 0 with a sufficiently large tinit > 0. The equation

in (31) is numerically computed by differentiating it with step sizes ∆x = 0.5 and

∆t = 0.01. The equation in (1) is also computed by differentiating it with a step size

∆t = 0.01, and the force acting on the particles is evaluated by linear interpolation of

F .

In Figure 5, we plot the behavior of Prel(0, t) calculated by the molecular dynamics

simulation together with the numerical solution of (22). The effective time-evolution

equation in (22) is in good agreement with the molecular dynamics results. In particular,

we observe that the suppression effect on relative diffusion becomes stronger as τ

increases. Therefore, we conclude that (22) approximates the shape of the exact

probability distribution very well, even though it contains a third derivative.

5. Concluding remarks

In this paper, we report the suppression of the effect of thermal noise induced by

the memory of a random velocity field. The effective Fokker–Planck equation for the

probability distribution of the positions of the two particles is perturbatively derived

for a small corralation time τ . We find that the renormalized temperature of relative

diffusion is different from that of single-particle diffusion. Furthermore, we check that

the effective equation in (22) is in good agreement with the molecular dynamics results

for small τ .

Before concluding the paper, we present two remarks. The first remark is related

to the replica symmetry breaking in particle trajectories [21]. In reference [21], the

diffusion of two Brownian particles in a velocity field obeying the noisy Burgers equation

was studied, and it was found that the probability distribution of the overlap between

two trajectories

q(t) ≡ 1

t

∫ t

0

dsδ
(
x(1)(s)− x(2)(s)

)
(32)
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takes a nontrivial form, even for a finite T . It should be noted that the trivial relation

⟨q(t)⟩ ≡ 1

t

∫ t

0

dsPrel(0, s) (33)

holds between the overlap and the relative diffusion. Therefore, a nonzero Prel(0,∞)

is necessary for the nontrivial probability distribution of q. The results presented in

this paper suggest that the existence of memory weakens relative diffusion, even for a

finite T , although the effective temperature T {1 + 2τC ′′
s (0)} at r = 0 cannot become

zero under the condition in (25). This result is reasonable because memory plays a

role in maintaining the shape of a velocity field. Although the mechanism of complete

suppression Prel(0,∞) > 0 at a finite T is not yet clear, adding memory to the velocity

fields may be significant for the replica symmetry breaking at a finite T .

The second remark is related to the common-noise-induced synchronization of two

independent and identical phase oscillators [22]. In reference [23], a time-evolution

equation was derived for the probability distribution of the phase difference between

two oscillators subject to common white noise and was found to be equivalent to the

Fokker–Planck equation for the relative distance between two particles in a Markovian

random velocity field [9], i.e., (22) with τ = 0. In contrast, the relation between the

synchronization of two oscillators subject to common colored noise [24] and our result for

a non-Markovian random velocity field is rather unclear. This problem will be studied

in the future.
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