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Abstract

We investigate the repeated prisoner’s dilemma game where both players alter-

nately use reinforcement learning to obtain their optimal memory-one strategies.

We theoretically solve the simultaneous Bellman optimality equations of rein-

forcement learning. We find that the Win-stay Lose-shift strategy, the Grim

strategy, and the strategy which always defects can form symmetric equilib-

rium of the mutual reinforcement learning process amongst all deterministic

memory-one strategies.

Keywords: Repeated prisoner’s dilemma game; Reinforcement learning

1. Introduction

The prisoner’s dilemma game describes a dilemma where rational behavior of

each player cannot achieve a favorable situation for both players [1]. In the game,

each player chooses cooperation or defection. Each player can obtain more payoff

by taking defection than by taking cooperation regardless of the opponent’s

action. Then, mutual defection is realized as a result of rational thought of

both players, while payoffs of both players increase when both players choose

cooperation. Although the Nash equilibrium of the one-shot game is mutual
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defection, when the game is infinitely repeated, it has been known that mutual

cooperation can be achieved as the Nash equilibrium. This fact is known as the

folk theorem. Because the repeated version of the prisoner’s dilemma game is

also simple, it has substantially been investigated [2].

Recently, reinforcement learning technique attracts much attentions in the

context of game theory [3, 4, 5, 6, 7, 8, 9, 10, 11]. In reinforcement learning,

a player gradually learns his/her optimal strategy against his/her opponents.

Both learning by a single player and learning by several players have been in-

vestigated. Because rationality of players is bounded in reality, modeling of

players as learning agents is crucial [12]. It is also significant in the context

of reinforcement learning, since the original reinforcement learning was formu-

lated for Markov decision process with stationary environments [13]. Because

the existence of multiple agents in game theory leads to non-stationarity of envi-

ronments for each player, the standard application of reinforcement learning to

games breaks down [4, 14], and further theoretical understanding of reinforce-

ment learning in game theory is needed. Moreover, since the acquisition process

of optimal strategies in reinforcement learning is generally different from that

in evolutionary game theory [15], accumulating knowledge about equilibrium in

each learning dynamics is needed.

In this paper, we investigate the situation where both players alternately

learn their optimal strategies by using reinforcement learning in the repeated

prisoner’s dilemma game. We theoretically derive equilibrium points of mutual

reinforcement learning where both players take the same deterministic strategy.

We find that the strategy which always defects (All-D), the Win-stay Lose-

Shift (WSLS) strategy [16], and the Grim strategy can form such symmetric

equilibrium amongst all memory-one deterministic strategies.

This paper is organized as follows. In Section 2, we introduce the repeated

prisoner’s dilemma game, and players using reinforcement learning. In Section

3, we theoretically derive deterministic optimal strategies against the strategy

of a learning opponent. In Section 4, we provide numerical results by using

Q-learning which support our theoretical results. Section 5 is devoted to con-
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clusion.

2. Model

We consider the repeated prisoner’s dilemma game [3]. There are two players

in the game, and each player is described as 1 and 2. Each player chooses

cooperation (C) or defection (D) on every trial. The action of player a is

written as σa ∈ {C,D}, and we collectively write σ := (σ1, σ2). The payoff of

player a ∈ {1, 2} when the state is σ is described as ra (σ). The payoffs in the

prisoner’s dilemma game are defined as r1 (C,C) , r2 (C,C) r1 (C,D) , r2 (C,D)

r1 (D,C) , r2 (D,C) r1 (D,D) , r2 (D,D)

 =

 R,R S, T

T, S P, P

 (1)

with T > R > P > S and 2R > T + S. We consider the situation where

both players use memory-one strategies. The memory-one strategy of player a

is described as the conditional probability Ta (σa|σ′) of taking action σa when

the state in the previous round is σ′. (In this paper, we investigate only the

game with perfect monitoring, where players can perfectly observe the actions

of both players in the previous round.) Then, when we define the probability

distribution of a state σ′ at time t by P (σ′, t), the time evolution of this system

is described as the Markov chain

P (σ, t+ 1) =
∑
σ′

T (σ|σ′)P (σ′, t) (2)

with the transition probability

T (σ|σ′) :=

2∏
a=1

Ta (σa|σ′) . (3)

Below we introduce the notation −a := {1, 2}\a.

We consider the situation that both players learn their strategies by re-

inforcement learning [13]. We assume that two players alternately learn and

update their strategies [17], that is, player 1 first learns her strategy against

a fixed initial strategy of player 2, then player 2 learns his strategy against
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the strategy of player 1, then player 1 learns her strategy against the strategy

of player 2, and so on. In other words, the two players infinitely repeat the

infinitely repeated game, and their strategies are updated after each repeated

game is played and their long-term payoffs are calculated. We assume that the

strategy of player 1 is updated in n-th game with n = 2m− 1 (m ∈ N) and the

strategy of player 2 is updated in n-th game with n = 2m (m ∈ N). We write

the strategies of player a at n-th game as T
(n)
a (σa|σ′).

In reinforcement learning, each player learns mapping (called policy) from a

state to his/her action so as to maximize his/her expected future reward. In our

memory-one situation, a state and an action of player a are regarded as the state

σ′ in the previous round and the action σa in the present round, respectively.

We define the action-value function of player a as

Qa

(
σ(1)
a ,σ(0)

)
:= E

[ ∞∑
k=0

γkra(t+ k + 1)

∣∣∣∣∣σa(t+ 1) = σ(1)
a ,σ(t) = σ(0)

]
,

(4)

where γ is a discounting factor satisfying 0 ≤ γ < 1. The action σa(t) represents

the action of player a at round t. Similarly, the payoff ra(t) represents the payoff

of player a at round t, that is, ra(t) := ra (σ(t)). Due to the Markov property,

the action-value function Q obeys the Bellman equation against a fixed strategy

T−a of the opponent:

Qa

(
σ(1)
a ,σ(0)

)
=

∑
σ
(1)
−a

T−a

(
σ
(1)
−a|σ(0)

)
ra

(
σ(1)

)
+γ
∑
σ
(2)
a

∑
σ
(1)
−a

Ta

(
σ(2)
a |σ(1)

)
T−a

(
σ
(1)
−a|σ(0)

)
Qa

(
σ(2)
a ,σ(1)

)
.

(5)

It has been known that the optimal value of Q obeys the following Bellman

optimality equation:

Q∗
a

(
σ(1)
a ,σ(0)

)
=

∑
σ
(1)
−a

T−a

(
σ
(1)
−a|σ(0)

)
ra

(
σ(1)

)
+ γ

∑
σ
(1)
−a

T−a

(
σ
(1)
−a|σ(0)

)
max
σ
(2)
a

Q∗
a

(
σ(2)
a ,σ(1)

)
(6)
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with the support

suppTa

(
·|σ(0)

)
= argmax

σ
Q∗

a

(
σ,σ(0)

)
. (7)

In other words, in the optimal policy against T−a, player a takes the action σa

which maximizes the value of Q∗
a

(
·,σ(0)

)
when the state at the previous round

is σ(0).

In sum, in the (2m − 1)-th game, player 1 learns T
(2m−1)
1 (σ1|σ′) against

T
(2m−2)
2 (σ2|σ′) by calculating Q

∗(2m−1)
1

(
σ,σ(0)

)
, where Q

∗(n)
a

(
σ,σ(0)

)
repre-

sents the optimal action-value function of player a in the n-th game. In the

2m-th game, player 2 learns T
(2m)
2 (σ2|σ′) against T

(2m−1)
1 (σ1|σ′) by calculat-

ing Q
∗(2m)
2

(
σ,σ(0)

)
. We are interested in the fixed points of the dynamics, that

is, T
(∞)
a (σa|σ′) and Q

∗(∞)
a

(
σ,σ(0)

)
.

In this paper, we investigate only situations that the support (7) contains

only one action, that is, we investigate only deterministic strategies. Because

the number of deterministic memory-one strategies in the repeated prisoner’s

dilemma game is sixteen, we check whether each deterministic strategy forms

equilibrium or not.

3. Results

We consider symmetric solutions of Eq. (6), that is,

Q∗
1

(
σ
(1)
1 ,σ(0)

)
=

∑
σ
(1)
2

T2

(
σ
(1)
2 |σ(0)

)
r1

(
σ(1)

)
+ γ

∑
σ
(1)
2

T2

(
σ
(1)
2 |σ(0)

)
max
σ
(2)
1

Q∗
1

(
σ
(2)
1 ,σ(1)

)
(8)

with

T2 (C|C,C) = I (Q∗
1(C,C,C) > Q∗

1(D,C,C)) (9)

T2 (C|C,D) = I (Q∗
1(C,D,C) > Q∗

1(D,D,C)) (10)

T2 (C|D,C) = I (Q∗
1(C,C,D) > Q∗

1(D,C,D)) (11)

T2 (C|D,D) = I (Q∗
1(C,D,D) > Q∗

1(D,D,D)) (12)
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where I(· · · ) is the indicator function that returns 1 when · · · holds and 0

otherwise. Then, Eq. (6) becomes

Q∗
1 (C,C,C) = I (Q∗

1(C,C,C) > Q∗
1(D,C,C))

{
R+ γmax

σ
Q∗

1(σ,C,C)
}

+I (Q∗
1(C,C,C) < Q∗

1(D,C,C))
{
S + γmax

σ
Q∗

1(σ,C,D)
}

(13)

Q∗
1 (C,C,D) = I (Q∗

1(C,D,C) > Q∗
1(D,D,C))

{
R+ γmax

σ
Q∗

1(σ,C,C)
}

+I (Q∗
1(C,D,C) < Q∗

1(D,D,C))
{
S + γmax

σ
Q∗

1(σ,C,D)
}

(14)

Q∗
1 (C,D,C) = I (Q∗

1(C,C,D) > Q∗
1(D,C,D))

{
R+ γmax

σ
Q∗

1(σ,C,C)
}

+I (Q∗
1(C,C,D) < Q∗

1(D,C,D))
{
S + γmax

σ
Q∗

1(σ,C,D)
}

(15)

Q∗
1 (C,D,D) = I (Q∗

1(C,D,D) > Q∗
1(D,D,D))

{
R+ γmax

σ
Q∗

1(σ,C,C)
}

+I (Q∗
1(C,D,D) < Q∗

1(D,D,D))
{
S + γmax

σ
Q∗

1(σ,C,D)
}

(16)

Q∗
1 (D,C,C) = I (Q∗

1(C,C,C) > Q∗
1(D,C,C))

{
T + γmax

σ
Q∗

1(σ,D,C)
}

+I (Q∗
1(C,C,C) < Q∗

1(D,C,C))
{
P + γmax

σ
Q∗

1(σ,D,D)
}

(17)

Q∗
1 (D,C,D) = I (Q∗

1(C,D,C) > Q∗
1(D,D,C))

{
T + γmax

σ
Q∗

1(σ,D,C)
}

+I (Q∗
1(C,D,C) < Q∗

1(D,D,C))
{
P + γmax

σ
Q∗

1(σ,D,D)
}

(18)

Q∗
1 (D,D,C) = I (Q∗

1(C,C,D) > Q∗
1(D,C,D))

{
T + γmax

σ
Q∗

1(σ,D,C)
}

+I (Q∗
1(C,C,D) < Q∗

1(D,C,D))
{
P + γmax

σ
Q∗

1(σ,D,D)
}

(19)
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Q∗
1 (D,D,D) = I (Q∗

1(C,D,D) > Q∗
1(D,D,D))

{
T + γmax

σ
Q∗

1(σ,D,C)
}

+I (Q∗
1(C,D,D) < Q∗

1(D,D,D))
{
P + γmax

σ
Q∗

1(σ,D,D)
}
.

(20)

For simplicity, we introduce the following notation:

q1 := Q∗
1 (C,C,C)

q2 := Q∗
1 (C,C,D)

q3 := Q∗
1 (C,D,C)

q4 := Q∗
1 (C,D,D)

q5 := Q∗
1 (D,C,C)

q6 := Q∗
1 (D,C,D)

q7 := Q∗
1 (D,D,C)

q8 := Q∗
1 (D,D,D) . (21)

We consider the following sixteen situations separately.

3.1. Case 1: q1 > q5, q2 > q6, q3 > q7, and q4 > q8

For this case, the strategy obtained by reinforcement learning is the All-C

strategy. The solution of Eq. (6) is

q1 = q2 = q3 = q4 =
1

1− γ
R (22)

q5 = q6 = q7 = q8 = T +
γ

1− γ
R. (23)

This contradicts with the definition of the game T > R.

3.2. Case 2: q1 > q5, q2 > q6, q3 > q7, and q4 < q8

The solution of Eq. (6) is

q1 = q2 = q3 =
1

1− γ
R (24)

q4 = S +
γ

1− γ
R (25)

q5 = q6 = q7 = T +
γ

1− γ
R (26)

q8 =
1

1− γ
P. (27)
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This contradicts with the definition of the game T > R.

3.3. Case 3: q1 > q5, q2 > q6, q3 < q7, and q4 > q8

The solution of Eq. (6) is

q1 = q3 = q4 =
1

1− γ
R (28)

q2 =
1

1− γ
S (29)

q5 = q7 = q8 =
1

1− γ
T (30)

q6 = P +
γ

1− γ
R. (31)

This contradicts with the definition of the game T > R.

3.4. Case 4: q1 > q5, q2 > q6, q3 < q7, and q4 < q8

For this case, the strategy obtained by reinforcement learning is “Repeat”

[18]. The solution of Eq. (6) is

q1 = q3 =
1

1− γ
R (32)

q2 = q4 =
1

1− γ
S (33)

q5 = q7 =
1

1− γ
T (34)

q6 = q8 =
1

1− γ
P. (35)

This contradicts with the definition of the game T > R.

3.5. Case 5: q1 > q5, q2 < q6, q3 > q7, and q4 > q8

The solution of Eq. (6) is

q1 = q2 = q4 =
1

1− γ
R (36)

q3 =
1

1− γ2
S +

γ

1− γ2
T (37)

q5 = q6 = q8 =
1

1− γ2
T +

γ

1− γ2
S (38)

q7 = P +
γ

1− γ
R. (39)

This contradicts with 2R > T + S.
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3.6. Case 6: q1 > q5, q2 < q6, q3 > q7, and q4 < q8

For this case, the strategy obtained by reinforcement learning is Tit-for-Tat

(TFT) [1, 19]. The solution of Eq. (6) is

q1 = q2 =
1

1− γ
R (40)

q3 = q4 =
1

1− γ2
S +

γ

1− γ2
T (41)

q5 = q6 =
1

1− γ2
T +

γ

1− γ2
S (42)

q7 = q8 =
1

1− γ
P. (43)

This solution becomes consistent with the condition of the case only when T +

S = R+ P and γ = T−R
R−S .

3.7. Case 7: q1 > q5, q2 < q6, q3 < q7, and q4 > q8

For this case, the strategy obtained by reinforcement learning is Win-stay-

Lose-Shift (WSLS) [16]. The solution of Eq. (6) is

q1 = q4 =
1

1− γ
R (44)

q2 = q3 = S + γP +
γ2

1− γ
R (45)

q5 = q8 = T + γP +
γ2

1− γ
R (46)

q6 = q7 = P +
γ

1− γ
R. (47)

This solution becomes consistent with the condition of the case when T+P < 2R

and γ > T−R
R−P .
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3.8. Case 8: q1 > q5, q2 < q6, q3 < q7, and q4 < q8

For this case, the strategy obtained by reinforcement learning is the Grim

strategy. The solution of Eq. (6) is

q1 =
1

1− γ
R (48)

q2 = q3 = q4 = S +
γ

1− γ
P (49)

q5 = T +
γ

1− γ
P (50)

q6 = q7 = q8 =
1

1− γ
P. (51)

This solution becomes consistent with the condition of the case when γ > T−R
T−P .

3.9. Case 9: q1 < q5, q2 > q6, q3 > q7, and q4 > q8

For this case, the strategy obtained by reinforcement learning is the anti-

Grim strategy. The solution of Eq. (6) is

q1 = S +
γ

1− γ2
R+

γ2

1− γ2
P (52)

q2 = q3 = q4 =
1

1− γ2
R+

γ

1− γ2
P (53)

q5 =
1

1− γ2
P +

γ

1− γ2
R (54)

q6 = q7 = q8 = T +
γ

1− γ2
R+

γ2

1− γ2
P. (55)

This contradicts with γ ≥ 0.

3.10. Case 10: q1 < q5, q2 > q6, q3 > q7, and q4 < q8

For this case, the strategy obtained by reinforcement learning is anti-Win-

stay-Lose-Shift (AWSLS). The solution of Eq. (6) is

q1 = q4 = S + γR+
γ2

1− γ
P (56)

q2 = q3 = R+
γ

1− γ
P (57)

q5 = q8 =
1

1− γ
P (58)

q6 = q7 = T + γR+
γ2

1− γ
P. (59)

This contradicts with γ ≥ 0.
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3.11. Case 11: q1 < q5, q2 > q6, q3 < q7, and q4 > q8

For this case, the strategy obtained by reinforcement learning is anti-Tit-

for-Tat (ATFT). The solution of Eq. (6) is

q1 = q2 =
1

1− γ
S (60)

q3 = q4 =
1

1− γ2
R+

γ

1− γ2
P (61)

q5 = q6 =
1

1− γ2
P +

γ

1− γ2
R (62)

q7 = q8 =
1

1− γ
T. (63)

This contradicts with γ ≥ 0.

3.12. Case 12: q1 < q5, q2 > q6, q3 < q7, and q4 < q8

The solution of Eq. (6) is

q1 = q2 = q4 =
1

1− γ
S (64)

q3 = R+
γ

1− γ
P (65)

q5 = q6 = q8 =
1

1− γ
P (66)

q7 =
1

1− γ
T. (67)

This contradicts with the definition of the game P > S.

3.13. Case 13: q1 < q5, q2 < q6, q3 > q7, and q4 > q8

For this case, the strategy obtained by reinforcement learning is anti-Repeat.

The solution of Eq. (6) is

q1 = q3 =
1

1− γ2
S +

γ

1− γ2
T (68)

q2 = q4 =
1

1− γ2
R+

γ

1− γ2
P (69)

q5 = q7 =
1

1− γ2
P +

γ

1− γ2
R (70)

q6 = q8 =
1

1− γ2
T +

γ

1− γ2
S. (71)

This solution becomes consistent with the condition of the case only when T +

S = R+ P and γ = 1.
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3.14. Case 14: q1 < q5, q2 < q6, q3 > q7, and q4 < q8

The solution of Eq. (6) is

q1 = q3 = q4 =
1

1− γ2
S +

γ

1− γ2
T (72)

q2 = R+
γ

1− γ
P (73)

q5 = q7 = q8 =
1

1− γ
P (74)

q6 =
1

1− γ2
T +

γ

1− γ2
S. (75)

This solution becomes consistent with the condition of the case only when T +

S > 2P and γ = P−S
T−S .

3.15. Case 15: q1 < q5, q2 < q6, q3 < q7, and q4 > q8

The solution of Eq. (6) is

q1 = q2 = q3 = S +
γ

1− γ2
P +

γ2

1− γ2
R (76)

q4 =
1

1− γ2
R+

γ

1− γ2
P (77)

q5 = q6 = q7 =
1

1− γ2
P +

γ

1− γ2
R (78)

q8 = T +
γ

1− γ2
P +

γ2

1− γ2
R. (79)

This contradicts with the definition of the game T > R.

3.16. Case 16: q1 < q5, q2 < q6, q3 < q7, and q4 < q8

For this case, the strategy obtained by reinforcement learning is the All-D

strategy. The solution of Eq. (6) is

q1 = q2 = q3 = q4 = S +
γ

1− γ
P (80)

q5 = q6 = q7 = q8 =
1

1− γ
P. (81)

This solution is always consistent with the condition of the case.
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number q1 ≶ q5 q2 ≶ q6 q3 ≶ q7 q4 ≶ q8 strategy T1(C) name Equilibrium?

Case 1 > > > > (1, 1, 1, 1)T All-C No

Case 2 > > > < (1, 1, 1, 0)T No

Case 3 > > < > (1, 1, 0, 1)T No

Case 4 > > < < (1, 1, 0, 0)T Repeat No

Case 5 > < > > (1, 0, 1, 1)T No

Case 6 > < > < (1, 0, 1, 0)T TFT No in general

Case 7 > < < > (1, 0, 0, 1)T WSLS Yes for γ > T−R
R−P

Case 8 > < < < (1, 0, 0, 0)T Grim Yes for γ > T−R
T−P

Case 9 < > > > (0, 1, 1, 1)T anti-Grim No

Case 10 < > > < (0, 1, 1, 0)T AWSLS No

Case 11 < > < > (0, 1, 0, 1)T ATFT No

Case 12 < > < < (0, 1, 0, 0)T No

Case 13 < < > > (0, 0, 1, 1)T anti-Repeat No in general

Case 14 < < > < (0, 0, 1, 0)T No in general

Case 15 < < < > (0, 0, 0, 1)T No

Case 16 < < < < (0, 0, 0, 0)T All-D Yes

Table 1: Summary of the results.

3.17. Summary

From the above subsections, we find that the symmetric solution of the Bell-

man optimality equation exists in finite regions of the parameter γ only for the

case 7, 8, and 16. In other words, only WSLS, the Grim strategy, and the All-D

strategy can form the symmetric equilibrium of mutual reinforcement learning.

TFT does not form symmetric equilibrium. (The optimal strategy against TFT

is investigated in detail in Appendix A.) The results are summarized in Table

1, where the strategy vector of player 1 is defined by

T1(C) :=


T1 (C|C,C)

T1 (C|C,D)

T1 (C|D,C)

T1 (C|D,D)

 . (82)

The reason why TFT does not form equilibrium can be intuitively explained

as follows. We consider the situation that player 2 uses TFT, and the previous
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state was (D,C). By definition, the action-value function (4) represents ex-

pected future reward when the previous state was σ(0). If the strategy of player

1 is also TFT, the sequence

(D,C) → (C,D) → (D,C) → (C,D) → · · · (83)

is realized. If the strategy of player 1 is All-C, the sequence

(D,C) → (C,D) → (C,C) → (C,C) → · · · (84)

is realized. Because of T + S < 2R, the latter results in larger total payoff

than the former. Therefore, as explained in Appendix A, the optimal strategy

against TFT is not TFT.

One may recall that All-D, WSLS and Grim form subgame perfect equilibria

in the repeated prisoner’s dilemma game, but TFT dose not [20]. Therefore,

our reinforcement learning equilibrium seems to be similar to subgame perfect

equilibrium. In fact, the above discussion that TFT does not form reinforce-

ment learning equilibrium is similar to the discussion that TFT does not form

subgame perfect equilibrium. However, we expect that reinforcement learning

equilibrium is weaker than subgame perfect equilibrium, since, in the definition

of subgame perfect equilibrium, arbitrary histories are considered. Relation

between them should be clarified in future.

4. Numerical results

In this section, we check the theoretical results in the previous section by

numerical simulation. We use Q-learning [13] as a method of reinforcement

learning. In Q-learning, the optimal action-value function of the agent a against

a fixed strategy of the agent −a is learned through the following update rule:

Q(t+1)
a

(
σ(1)
a ,σ(0)

)
= Q(t)

a

(
σ(1)
a ,σ(0)

)
+ η

(
ra + γmax

σ
(2)
a

Q(t)
a

(
σ(2)
a ,σ(1)

)
−Q(t)

a

(
σ(1)
a ,σ(0)

))
,

(85)

where ra is the reward by taking action σ
(1)
a when the state is σ(0), and σ(1) is

the next state. The parameter η is called the learning rate. Here, we assume
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that, in each step, the agent a chooses the action σ
(1)
a by using ϵ-greedy search,

that is, the agent a chooses an action uniformly randomly among all possible

actions with probability ϵ, and chooses the best action with respect to the

current action-value function with probability 1 − ϵ. As before, we consider

the situation that two agents alternately learn their optimal strategies until Q

values converge.

We set parameters (R,S, T, P ) = (4, 0, 6, 1), η = 0.2, and ϵ = 0.01. In the

numarical calculation of Q, we take the statistical average over 103 realizations.

The initial condition of Q is Q
(
σ(1),σ(0)

)
= 0 for all σ(1) and σ(0).

In Figure 1, we display the time evolution of Q1 when the strategy of player

2 is WSLS. According to Appendix A, the optimal strategy against WSLS is

WSLS for γ > (T − R)/(R − P ) and All-D for γ < (T − R)/(R − P ). On

the top panel of Figure 1, we provide the numerical results for γ = 0.9 >

(T−R)/(R−P ) = 2/3. The theoretical value of Q1 is also provided in Appendix

A:

q1 = q4 =
1

1− γ
R = 40 (86)

q2 = q3 = S + γP +
γ2

1− γ
R = 33.3 (87)

q5 = q8 = T + γP +
γ2

1− γ
R = 39.3 (88)

q6 = q7 = P +
γ

1− γ
R = 37. (89)

We can expect that the numerical results converge to the theoretical value in

the limit t → ∞. We emphasize that the learned strategy by player 1 is also

WSLS, which is consistent with the result in the previous section. We remark

that, as the learning proceeds, cooperation by player 1 after the state (C,D)

becomes difficult to occur, which leads to the slow convergence of Q1(C,C,D).

On the bottom panel of Figure 1, we provide the numerical results for γ =

0.2 < (T − R)/(R − P ) = 2/3. The theoretical value of Q1 is also provided in
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Figure 1: The time evolution of Q1 when the strategy of player 2 is WSLS. (Top) The value

of the discounting factor γ is γ = 0.9. The straight dash lines correspond to 40, 39.3, 37, and

33.3 from top to bottom. (Bottom) The value of the discounting factor γ is γ = 0.2. The

straight dash lines correspond to 6.46, 5.29, 2.29, and 0.458 from top to bottom.
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Appendix A:

q1 = q4 = R+
γ

1− γ2
T +

γ2

1− γ2
P ≃ 5.29 (90)

q2 = q3 = S +
γ

1− γ2
P +

γ2

1− γ2
T ≃ 0.458 (91)

q5 = q8 =
1

1− γ2
T +

γ

1− γ2
P ≃ 6.46 (92)

q6 = q7 =
1

1− γ2
P +

γ

1− γ2
T ≃ 2.29. (93)

We can expect that the numerical results also converge to the theoretical value

in the limit t → ∞. For this case, the learned strategy by player 1 is All-D.

Therefore, we conclude that WSLS forms the equilibrium of mutual reinforce-

ment learning for sufficiently large γ.

In Figure 2, we display the time evolution of Q1 when the strategy of player

2 is Grim. According to Appendix A, the optimal strategy against Grim is Grim

for γ > (T−R)/(T−P ) and All-D for γ < (T−R)/(T−P ). On the top panel of

Figure 2, we provide the numerical results for γ = 0.9 > (T −R)/(T −P ) = 2/5.

The theoretical value of Q1 is also provided in Appendix A:

q1 =
1

1− γ
R = 40 (94)

q2 = q3 = q4 = S +
γ

1− γ
P = 9 (95)

q5 = T +
γ

1− γ
P = 15 (96)

q6 = q7 = q8 =
1

1− γ
P = 10. (97)

We find that, although the learned strategy by player 1 is Grim, there are dis-

crepancies between the theoretical values and the numerical results forQ1(C,C,C),

Q1(C,D,C), Q1(D,C,C), and Q1(D,D,C). This is due to the property of the

Grim strategy. In our simulation, player 1 (a learning agent against Grim)

stochastically chooses C or D. However, once player 1 chooses D, player 2

(the agent with the Grim strategy) switches to a defector who always defects.

Therefore, the state (D,C) occurs only once. Similarly, the state (C,C) occurs

only while player 1 keeps cooperating. Therefore, the number of times that
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Figure 2: The time evolution of Q1 when the strategy of player 2 is Grim. (Top) The value

of the discounting factor γ is γ = 0.9. The straight dash lines correspond to 40, 15, 10, and 9

from top to bottom. (Bottom) The value of the discounting factor γ is γ = 0.2. The straight

dash lines correspond to 6.25, 5.25, 1.25, and 0.25 from top to bottom.
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the states (C,C) and (D,C) occur in one trial of the infinitely repeated game

cannot be large enough for the Q values to converge to the theoretical values.

(It has been known that the action-value function in Q-learning converges to

the true value if all state-action pairs are visited an infinite number of times

[13].) In addition, as the learning proceeds, cooperation by player 1 after the

state (C,D) becomes difficult to occur, which leads to the slow convergence of

Q1(C,C,D). On the bottom panel of Figure 2, we provide the numerical results

for γ = 0.2 < (T − R)/(T − P ) = 2/5. The theoretical value of Q1 is also

provided in Appendix A:

q1 = R+ γT +
γ2

1− γ
P = 5.25 (98)

q2 = q3 = q4 = S +
γ

1− γ
P = 0.25 (99)

q5 = T +
γ

1− γ
P = 6.25 (100)

q6 = q7 = q8 =
1

1− γ
P = 1.25. (101)

We find that the learned strategy by player 1 is Grim, although the theoretical

prediction is All-D. Due to the same reason as above, there are discrepan-

cies between the theoretical values and the numerical results for Q1(C,C,C),

Q1(C,D,C), Q1(D,C,C), andQ1(D,D,C). In particular, althoughQ1(C,C,C)

is updated as long as player 1 keeps cooperating, Q1(D,C,C) is updated only

once, that is, when player 1 first defects. This fact leads to the discrepancy

between the theoretical prediction Q1(C,C,C) < Q1(D,C,C) and the numer-

ical result Q1(C,C,C) > Q1(D,C,C). (In order to check this conjecture, we

also provide numerical results about the situation where implementation error

exists in the action of player 2, in Appendix B. These results are consistent with

our conjecture.) In addition, due to the same reason as above, the convergence

of Q1(C,C,D) is slow. Besides these facts, our numerical results are consis-

tent with the theoretical prediction, and we conclude that Grim can form the

equilibrium of mutual reinforcement learning.
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5. Conclusion

In this paper, we theoretically investigated the situation where both play-

ers alternately use reinforcement learning to obtain their optimal memory-one

strategies in the repeated prisoner’s dilemma game. We derived the symmet-

ric solutions of the Bellman optimality equations. We found that WSLS, the

Grim strategy, and the All-D strategy can form equilibrium of the mutual re-

inforcement learning process amongst sixteen deterministic memory-one strate-

gies. We checked this result by numerical simulation using Q-learning. The

following problems should be studied in future: (i) Whether asymmetric equi-

librium points exist or not, (ii) analysis on non-deterministic strategies, and

(iii) extension of our analysis to memory-two strategies. Furthermore, exten-

sion of our analysis to the situations where the inequalities T > R > P > S

[21, 22, 23, 24] or 2R > T + S [25, 26] do not hold is also a subject of future

work. In addition, elucidating the relation between equilibrium in the mutual

reinforcement learning and equilibrium in evolutionary game theory [15] is a

significant problem.

Acknowledgement

This study was supported by JSPS KAKENHI Grant Number JP20K19884.

Appendix A. Optimal strategy against fixed strategies

In this appendix, we provide theoretical results on the deterministic optimal

strategy of a learning agent against the other agent with a fixed strategy. We

regard agent 1 and 2 as a learning agent and an agent with a fixed strategy,

respectively. The Bellman optimality equation of the agent 1 is Eq. (8) as

before. We consider the situation where the agent 2 chooses the TFT strategy,

the WSLS strategy, and the Grim strategy. We introduce the notation (21) as

before.
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Appendix A.1. Optimal strategy against TFT

Here we consider the situation that the strategy of the agent 2 is TFT:

T2(C) =


1

1

0

0

 . (A.1)

Then, the solution of Eq. (8) is as follows.

Appendix A.1.1. The case T + S < R+ P and γ > P−S
R−S

For the case, the solution is

q1 = q2 =
1

1− γ
R (A.2)

q3 = q4 = S +
γ

1− γ
R (A.3)

q5 = q6 = T + γS +
γ2

1− γ
R (A.4)

q7 = q8 = P + γS +
γ2

1− γ
R (A.5)

and because q1 > q5, q2 > q6, q3 > q7, and q4 > q8, the optimal strategy is

All-C.

Appendix A.1.2. The case T + S < R+ P and T−R
T−P < γ < P−S

R−S

For the case, the solution is

q1 = q2 =
1

1− γ
R (A.6)

q3 = q4 = S +
γ

1− γ
R (A.7)

q5 = q6 = T +
γ

1− γ
P (A.8)

q7 = q8 =
1

1− γ
P (A.9)

and because q1 > q5, q2 > q6, q3 < q7, and q4 < q8, the optimal strategy is

Repeat.
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Appendix A.1.3. The case T + S < R+ P and γ < T−R
T−P

For the case, the solution is

q1 = q2 = R+ γT +
γ2

1− γ
P (A.10)

q3 = q4 = S + γT +
γ2

1− γ
P (A.11)

q5 = q6 = T +
γ

1− γ
P (A.12)

q7 = q8 =
1

1− γ
P (A.13)

and because q1 < q5, q2 < q6, q3 < q7, and q4 < q8, the optimal strategy is

All-D.

Appendix A.1.4. The case T + S > R+ P and γ > T−R
R−S

For the case, the solution is

q1 = q2 =
1

1− γ
R (A.14)

q3 = q4 = S +
γ

1− γ
R (A.15)

q5 = q6 = T + γS +
γ2

1− γ
R (A.16)

q7 = q8 = P + γS +
γ2

1− γ
R (A.17)

and because q1 > q5, q2 > q6, q3 > q7, and q4 > q8, the optimal strategy is

All-C.

Appendix A.1.5. The case T + S > R+ P and P−S
T−P < γ < T−R

R−S

For the case, the solution is

q1 = q2 = R+
γ

1− γ2
T +

γ2

1− γ2
S (A.18)

q3 = q4 =
1

1− γ2
S +

γ

1− γ2
T (A.19)

q5 = q6 =
1

1− γ2
T +

γ

1− γ2
S (A.20)

q7 = q8 = P +
γ

1− γ2
S +

γ2

1− γ2
T (A.21)

and because q1 < q5, q2 < q6, q3 > q7, and q4 > q8, the optimal strategy is

anti-Repeat.
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Appendix A.1.6. The case T + S > R+ P and γ < P−S
T−P

For the case, the solution is

q1 = q2 = R+ γT +
γ2

1− γ
P (A.22)

q3 = q4 = S + γT +
γ2

1− γ
P (A.23)

q5 = q6 = T +
γ

1− γ
P (A.24)

q7 = q8 =
1

1− γ
P (A.25)

and because q1 < q5, q2 < q6, q3 < q7, and q4 < q8, the optimal strategy is

All-D.

Appendix A.2. Optimal strategy against WSLS

Here we consider the situation that the strategy of the agent 2 is WSLS:

T2(C) =


1

0

0

1

 . (A.26)

Then, the solution of Eq. (8) is as follows.

Appendix A.2.1. The case T + P < 2R and γ > T−R
R−P

For the case, the solution is

q1 = q4 =
1

1− γ
R (A.27)

q2 = q3 = S + γP +
γ2

1− γ
R (A.28)

q5 = q8 = T + γP +
γ2

1− γ
R (A.29)

q6 = q7 = P +
γ

1− γ
R (A.30)

and because q1 > q5, q2 < q6, q3 < q7, and q4 > q8, the optimal strategy is

WSLS.
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Appendix A.2.2. The case T + P < 2R and γ < T−R
R−P

For the case, the solution is

q1 = q4 = R+
γ

1− γ2
T +

γ2

1− γ2
P (A.31)

q2 = q3 = S +
γ

1− γ2
P +

γ2

1− γ2
T (A.32)

q5 = q8 =
1

1− γ2
T +

γ

1− γ2
P (A.33)

q6 = q7 =
1

1− γ2
P +

γ

1− γ2
T (A.34)

and because q1 < q5, q2 < q6, q3 < q7, and q4 < q8, the optimal strategy is

All-D.

Appendix A.2.3. The case T + P > 2R

For the case, the solution is

q1 = q4 = R+
γ

1− γ2
T +

γ2

1− γ2
P (A.35)

q2 = q3 = S +
γ

1− γ2
P +

γ2

1− γ2
T (A.36)

q5 = q8 =
1

1− γ2
T +

γ

1− γ2
P (A.37)

q6 = q7 =
1

1− γ2
P +

γ

1− γ2
T (A.38)

and because q1 < q5, q2 < q6, q3 < q7, and q4 < q8, the optimal strategy is

All-D.

Appendix A.3. Optimal strategy against Grim

Here we consider the situation that the strategy of the agent 2 is Grim:

T2(C) =


1

0

0

0

 . (A.39)

Then, the solution of Eq. (8) is as follows.
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Appendix A.3.1. The case γ > T−R
T−P

For the case, the solution is

q1 =
1

1− γ
R (A.40)

q2 = q3 = q4 = S +
γ

1− γ
P (A.41)

q5 = T +
γ

1− γ
P (A.42)

q6 = q7 = q8 =
1

1− γ
P (A.43)

and because q1 > q5, q2 < q6, q3 < q7, and q4 < q8, the optimal strategy is

Grim.

Appendix A.3.2. The case γ < T−R
T−P

For the case, the solution is

q1 = R+ γT +
γ2

1− γ
P (A.44)

q2 = q3 = q4 = S +
γ

1− γ
P (A.45)

q5 = T +
γ

1− γ
P (A.46)

q6 = q7 = q8 =
1

1− γ
P (A.47)

and because q1 < q5, q2 < q6, q3 < q7, and q4 < q8, the optimal strategy is

All-D.

Appendix B. Numerical results under implementation error

In this appendix, we provide numerical results about the situation where

implementation error exists in the action of a player. The setup of numerical

simulation is the same as one in Section 4. We assume that the strategy of

player 2 is Grim with implementation error, which takes wrong action with

small probability 10−2. The strategy of player 1 is learned by Q-learning.

In Figure B.3, we display the time evolution ofQ1 when the strategy of player

2 is Grim with implementation error. We can see that the learned strategy of
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Figure B.3: The time evolution of Q1 when the strategy of player 2 is Grim with implemen-

tation error. (Top) The value of the discounting factor γ is γ = 0.9. The straight dash lines

correspond to 40, 15, 10, and 9 from top to bottom. (Bottom) The value of the discounting

factor γ is γ = 0.2. The straight dash lines correspond to 6.25, 5.25, 1.25, and 0.25 from top

to bottom.
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player 1 is Grim for γ = 0.9, and All-D for γ = 0.2, in contrast to the case

without implementation error in Figure 2, where the learned strategy is Grim

for both γ = 0.9 and γ = 0.2. This is because Grim with implementation error is

not irreversible, although Grim is irreversible, and Q1(C,C,C) and Q1(D,C,C)

are updated sufficiently many times.
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