1	Anti-Müllerian hormone and its receptor is colocalized in the
2	majority of gonadotropin-releasing-hormone cell bodies and
3	fibers in heifer brains
4	
5	O. Kereilwe ^a , H. Kadokawa ^{a*}
6	^a Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken
7	1677-1, Japan.
8	
9	*Corresponding author.
10	Tel.: + 81 83 9335825; fax: +81 83 9335938
11	E-mail address: hiroya@yamaguchi-u.ac.jp (H. Kadokawa)
12	
13	

14 ABSTRACT

Circulating concentrations of Anti-Müllerian hormone (AMH) can indicate fertility in 15various animals, but the physiological mechanisms underlying the effect of AMH on 1617fertility remain unknown. We recently discovered that AMH has extragonadal functions via its main receptor, AMH receptor type 2 (AMHR2). Specifically, AMH stimulates the 18 secretion of luteinizing hormone and follicle stimulating hormone from bovine 19gonadotrophs themselves express AMH 20gonadotrophs. Moreover, to exert paracrine/autocrine functions, and AMH can activate gonadotropin-releasing-hormone 2122(GnRH) neurons in mice. This study aimed to evaluate whether AMH and AMHR2 are 23detected in areas of the brain relevant to neuroendocrine control of reproduction: the preoptic area (POA), arcuate nucleus (ARC), and median eminence (ME), and in 24particular within GnRH neurons. Reverse transcription-polymerase chain reaction 25detected both AMH and AMHR2 mRNA in tissues containing POA as well as in those 2627containing both ARC and ME, collected from post-pubertal heifers. Western blotting detected AMH and AMHR2 protein in the collected tissues. Triple fluorescence 28immunohistochemistry revealed that the majority of cell bodies or fibers of GnRH 2930 neurons were AMHR2-positive and AMH-positive, although some were negative. Immunohistochemistry revealed that 75 to 85% of cell bodies and fibers of GnRH neurons 31

32	were positive for both AMH and AMHR2 in the POA, ARC, and both the internal and
33	external zones of ME. The cell bodies of GnRH neurons were situated around other AMH-
34	positive cell bodies or fibers of GnRH and non-GNRH neurons. Our findings thus indicate
35	that AMH and AMHR2 are detected in the majority of cell bodies or fibers of GnRH
36	neurons in POA, ARC, or ME of heifer brains. These data support the need for further
37	study as to how AMH and AMHR2 act within the hypothalamus to influence GnRH and
38	gonadotropin secretion.
39	
40	Keywords:
41	Anti-Mullerian hormone receptor type 2; Arcuate nucleus; Gonadotropin-releasing
42	hormone neuron; Preoptic area; External zone of the median eminence; Ruminants
43	
44	Highlights:
45	AMH and AMHR2 are detected in the bovine POA, ARC, and ME, including the external
46	zone of ME.
47	
48	Majority of cell bodies or fibers of GnRH neurons are positive for both AMH and
49	AMHR2 in the POA, ARC, or ME.

- 51 There are also GnRH-negative AMHR2-positive cell bodies or fibers of neurons, and
- 52 GnRH-negative AMH-positive cell bodies or fibers of neurons.

54 **1. Introduction**

The hypothalamic-pituitary-gonadal axis drives reproduction and some of the most 55important components of the axis are the gonadotropin-releasing-hormone (GnRH) 56neurons [1, 2]. GnRH neurons originate in the preoptic area (POA) and arcuate nucleus 57(ARC) and project to the median eminence (ME), the interface between the neural and 58peripheral endocrine systems, and secrete GnRH into the pituitary portal blood vessels [3, 5960 4]. The secreted GnRH binds to the GnRH receptors on the lipid raft portion of the plasma membrane of gonadotrophs to stimulate the secretion of luteinizing hormone (LH) and 61 follicle stimulating hormone (FSH) [5]. It is thus important to clarify mechanisms 6263 controlling GnRH neurons in the hypothalamus.

Anti-Mullerian hormone (AMH) is a glycoprotein that belongs to the transforming 64 growth factor (TGF)- β superfamily, which includes inhibin and activin. The best-studied 65tissue that secretes AMH are the immature granulosa cells in the ovaries of adult humans 66 67 and animals [6] and AMH reportedly plays various important roles therein [7, 8]. 68 Interestingly, plasma AMH concentrations can predict the fertility of adult female goats, ewes, cows, and women [9-11]. Recent studies have revealed that AMH exerts 69 extragonadal functions in the gonadotrophs of the anterior pituitaries. The main AMH 70receptor, AMH receptor type 2 (AMHR2), colocalizes with GnRH receptors on the lipid 71raft of gonadotrophs [12]. Furthermore, AMH activates AMHR2 and thereby stimulates 72

the synthesis and secretion of LH and FSH in the gonadotrophs of bovines and rodents
[12-14]. However, it remains unknown whether AMH and AMHR2 play any significant
roles in the hypothalamus.

76Little is known concerning the relationship between AMH and the brain. While the brains of adult tilapia express AMH, the localization of AMH expression in the brain 77 remains unclarified [15]. Another recent study found that GnRH neurons contain AMHR2 78 in various regions of female human and rodent brains, including the POA, ARC, and ME 79 [16]. Furthermore, both *in vivo* and *in vitro* studies have demonstrated that AMH potently 80 81 activates GnRH neurons, and consequently GnRH-dependent LH secretion in adult female mice [16]. However, it remains unknown as to whether female mammalian brains 82 express AMH. Therefore, this study evaluated whether AMH and AMHR2 are detected 83 in the POA, ARC, and ME of heifers, and especially within GnRH neurons. 84

85

86 2. Materials and Methods

87 2.1 Brain and ovary sample collection

All experiments were performed in accordance with the Guiding Principles for the Care and Use of Experimental Animals in the Field of Physiological Sciences (Physiological Society of Japan) and were approved by the Committee on Animal

91 Experiments of Yamaguchi University.

We obtained brain samples from healthy, post-pubertal (26 months of age) non-92lactating Japanese Black heifers managed by our contracted farmers in western Japan. 93 94 The farms had open free stall barns with free access to water. The heifers were fed twice daily with a total mixed ration according to the Japanese feeding standard [17]. 95 96 The heifers were slaughtered for harvesting beef according to the regulation of Ministry of Agriculture, Forestry and Fisheries of Japan. The heifers were in periestrus -97 i.e., -3 d to +4 d from estrus – as determined by macroscopic examination of the ovaries 98 99 and uterus [18]. We used the samples (n = 5) obtained from the periestrus period for the 100 following three reasons. First, there is no difference in GnRH immunoreactivity in the bovine POA, ARC, and ME between the periestrus and diestrus phases, however, while 101 102kisspeptin immunoreactivity in the bovine POA and ME does not differ between the periestrus and diestrus phases, it is higher in the periestrus phase than in the diestrus phase 103104 in the ARC [19]. Second, the promoter regions of bovine AMH and AMHR2 genes lack the consensus response element for estrogen and progesterone [12, 20]. Third, there are 105106 no changes in-AMH and AMHR2 expression in the anterior pituitary gland [12, 20] or in 107 blood AMH concentrations during the estrous cycle [21]. We followed a method established by previous studies to collect brain block samples from cows to perform 108

109	immunohistochemistry [19]. Briefly, blocks were dissected with the following margins:
110	rostrally-rostral border of the optic chiasm; caudally-rostral to the mammillary bodies;
111	lateral to the optic chiasm; and 0.5 cm dorsal to the third ventricle. We then followed
112	previously reported methods [22] for splitting the block into two parts by cutting rostral
113	to the ME, yielding an anterior part containing the POA (POA block) and a posterior part
114	containing the ARC and ME (ARC&ME block). Each block was stored in 4%
115	paraformaldehyde at 4° C for 24 h. The fixed blocks were placed in a 20% sucrose
116	solution at 4° C for 72 h. They were then stored in 30% sucrose solution at 4° C until the
117	block sank – at least 48 h. Serial coronal sections were cut into 50 μ m thick sections using
118	a cryostat (CM1900, Leica Microsystems Pty Ltd., Wetzlar, Germany).
119	We used previous papers showing an atlas of bovine brain sections as a guide [23, 24].
120	Briefly, sections were cut while monitoring (from both anterior and lateral views) the
121	shape of the third ventricle and ventral or dorsal edge line, and the position and size of
122	the anterior commissure, optic chiasm, mammilothalamic tract, or fornix. The selected
123	POA tissues contained both anterior commissure or optic chiasm, and POA was medial
124	or lateral to the third ventricle, similar to Fig 8, 9, and 10 in Okamura [23] and Fig 2E
125	and 2F in Leshin et al. [24]. The selected ARC&ME tissues contained fornix and ARC
126	adjacent to both the evident infundibular recess of third ventricle and the median

127	eminence which attached to infundibulum, the same as Fig. 18, 19, and 20 of the atlas
128	[23] and Fig2E, F of another atlas [24]. Every sixth section of the tissue was subjected to
129	triple immunostaining for GnRH, AMH, and AMHR2. At least four sections-from the
130	rostral end of the organum vasculosum of the lamina terminalis to the rostral edge of the
131	hypothalamic paraventricular nucleus were used for the POA. At least four sections from
132	the rostral edge of the dorsomedial hypothalamic nucleus to the rostral edge of the
133	mammillary bodies were used for the ME and ARC. As performed in a previous study
134	[22], the sections were then stored in 25 mM PBS containing 50% glycerol, 250 mM
135	sucrose, and 3.2 mM MgCl ₂ •6H ₂ O at -20°C until used for immunohistochemistry.
136	We also collected POA and ARC&ME tissue samples from other periestrous heifers
137	(n = 5) to perform reverse transcription-polymerase chain reaction (RT-PCR) or western
138	blotting. Both POA and ARC&ME blocks were cut at their midlines to obtain left and
139	right sides. Using the bovine brain atlas [23, 24] as a reference, the blocks were further
140	cut using their exterior shapes and the third or lateral ventricles as landmarks. Finally, the
141	size of each tissue sample containing POA was less than 1 cm along its lateral axis; 2 cm
142	along the rostrocaudal axis; and 3 cm along the vertical axis. The size of each tissue
143	containing the ARC&ME was less than 1 cm along its lateral axis; 2 cm along the
144	rostrocaudal axis; and 1 cm along the vertical axis. The POA and ARC&ME tissues were

immediately frozen in liquid nitrogen and stored at -80° C until RNA or protein extraction. Granulosa cells in preantral and small antral follicles express AMH [25] and AMHR2 mRNA [26]. Therefore, we also collected ovary tissue samples from the same heifers to use as a positive-controls for AMH and AMHR2 in the RT-PCR (n = 5) and western blotting (n = 5) analyses.

150

2.2 RT-PCR, sequencing of amplified products, and homology search in gene databases 151We used previously reported RT-PCR and sequencing methods [12, 20] in order to 152153detect AMH or AMHR2 mRNA in the POA tissue (n = 5) and ARC&ME tissue (n = 5). Briefly, total RNA was extracted from the either side of POA or ARC & ME tissue as 154well as the ovary samples (used as positive controls) using mortar, liquid nitrogen, and 155156RNAzol RT Reagent (Molecular Research Center Inc., Cincinnati, OH, USA) according to the manufacturer's protocol. The extracted RNA samples were treated with 157158ribonuclease-free deoxyribonuclease (Thermo Fisher Scientific, Waltham, MA, USA) to eliminate possible genomic DNA contamination. The concentration and purity of each 159RNA sample were evaluated to ensure the A260/A280 nm ratio measured by 160161spectrophotometer was in the acceptable range of 1.8 to 2.1. The mRNA quality of all samples was verified by electrophoresis of total RNA followed by staining with ethidium 162

163	bromide, and the 28S:18S ratios were 2:1. Complementary DNA was synthesized from 2
164	μg of the total RNA per sample using Verso cDNA synthesis Kit (Thermo Fisher
165	Scientific). PCRs were conducted using the previously reported primers (Table 1) [12,
166	20], which were designed by Primer3 based on reference sequence of bovine AMH
167	[National Center for Biotechnology Information (NCBI) reference sequence of bovine
168	AMH is NM_173890] or bovine AMHR2 (NCBI reference sequence is
169	NM_001205328.1). The expected PCR-product sizes of AMH and AMHR2 using the
170	primer pairs are 328 bp, and 320 bp, respectively. PCR was performed using 20 ng of
171	cDNA and polymerase (Tks Gflex DNA Polymerase, Takara Bio Inc., Shiga, Japan)
172	under the following thermocycles: 94°C for 1 min for pre-denaturing followed by 35
173	cycles of 94°C for 60 s, 60°C for 15 s, and 68°C for 30 s. PCR products were separated
174	on a 1.5% agarose gel by electrophoresis with a molecular marker [Gene Ladder 100 (0.1
175	to 2 kbp), Nippon Gene, Tokyo, Japan], stained with fluorescent stain (Gelstar, Lonza,
176	Allendale, NJ), and observed using a charge-coupled device (CCD) imaging system
177	(GelDoc; Bio-Rad, Hercules, CA, USA). The PCR products were purified with the
178	NucleoSpin Extract II kit (Takara Bio Inc.) and then sequenced with a sequencer
179	(ABI3130, Thermo Fisher Scientific) using one of the PCR primers and the Dye
180	Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific). The sequences

obtained were used as query terms with which to search the homology sequences in the
DNA Data Bank of Japan/GenBank/European Bioinformatics Institute Data Bank using
the basic nucleotide local alignment search tool (BLAST) optimized for highly similar
sequences (available on the NCBI website).

185

197

186 2.3 Antibodies used in this study

We used anti-human AMH and anti-bovine AMHR2 antibodies, whose efficacies 187 were previously verified with bovine ovaries and anterior pituitaries [12, 20], to detect 188 189AMH and AMHR2 proteins in bovine brain samples via western blotting and 190immunohistochemistry. The anti-human AMH rabbit polyclonal antibody (ARP54312 P050; Aviva Systems Biology, CA, USA) recognizes the mature C-terminal 191 192form of human AMH (corresponding to amino acids 468 to 517; SVDLRAERSVLIPETYQANNCQGVCGWPQSDRNPRYGNHVVLLLKMQARG) 193194 [20]. This sequence had 98% homology to amino acids 483 to 532 of the mature Cterminal form of bovine AMH but no homology to other bovine proteins, as determined 195using protein BLAST. Our original anti-bovine AMHR2 chicken polyclonal antibody 196

recognizes the extracellular region that is located near the N-terminus of the bovine

198 AMHR2 (corresponding to amino acids 31 to 45; GVRGSTQNLGKLLDA) [12].

201 synthetic GnRH I decapeptide by Urbanski (1991) [27]. This antibody was used for

immunohistochemistry to visualize GnRH neurons in rat and monkey [28, 29].

203

199

200

204 2.4 Western Blotting for AMH or AMHR2 detection

205The western blotting in our previous studies [12, 20] showed similar bands of AMHR2 and AMH in the anterior pituitaries and ovaries; however, there are a few differences in 206207the band size between the two tissues, probably because of the differences in glycosylation [30-32]. Therefore, we used a previously reported method of western 208blotting to detect AMH or AMHR2 [12, 20]. Briefly, proteins were extracted from the 209 frozen-stock POA (n = 5), ARC & ME (n = 5), or ovary samples (n = 5, used as positive 210controls) utilizing mortar, liquid nitrogen, and a tissue protein extraction reagent (T-PER; 211212Thermo Fisher Scientific) with protease inhibitors (Halt Protease Inhibitor Cocktail; Thermo Fisher Scientific). The total protein content of each tissue homogenate was 213estimated using the bicinchoninic acid kit (Thermo Fisher Scientific). The extracted 214215protein sample (33.4 µg of total protein in 37.5 µL) was mixed in 12.5 µL of 4x Laemmli sample buffer (Bio-rad) containing 10% (v/v) β -mercaptoethanol, then boiled for 3 min 216

217	at 100 °C. The boiled protein samples were quickly cooled down in ice. The protein
218	samples (8 μ g of total protein) were loaded onto a polyacrylamide gel along with a
219	molecular weight marker (Precision Plus Protein All Blue Standards; Bio-Rad), and
220	resolved by electrophoresis on sodium dodecyl sulfate polyacrylamide gels at 100 V for
221	90 min. Proteins were then transferred to polyvinylidene fluoride (PVDF) membranes.
222	Blocking was done with 0.1% Tween 20 and 5% non-fat dry milk for 1 h at 25 °C then
223	immunoblotting was performed with the anti-AMH rabbit antibody or anti-AMHR2
224	chicken antibody (1:25,000 dilution each) overnight at 4 °C. After washing the
225	membrane with 10 mM Tris-HCl (pH 7.6) containing 150 mM NaCl and 0.1% Tween
226	20, the PVDF membrane was incubated with horseradish peroxidase (HRP)-conjugated
227	goat antibody against rabbit IgG or anti-chicken IgG (Bethyl laboratories, Inc.,
228	Montgomery, TX, USA; 1:50,000 dilution) at 25 °C for 1 h. Protein bands were
229	visualized using an ECL-Prime chemiluminescence kit (GE Healthcare, Amersham,
230	UK) and a CCD imaging system (Fujifilm, Tokyo, Japan). In accordance with previous
231	studies [33-35], we defined bovine AMH bands based on their mobility as the AMH
232	precursor or the mature form (four sizes). Further, we defined bovine AMHR2 bands
233	based on their mobility as dimers, full-length monomers, or cleaved monomers,
234	according to previously reported methods [30, 36]. Antibodies were removed from the

PVDF membrane with stripping solution (Nacalai Tesque Inc., Kyoto, Japan) prior to
immunoblotting with an anti-β-actin mouse monoclonal antibody (A2228, 1:50,000
dilution; Sigma-Aldrich, St. Louis, MO, USA).

238

239 2.5 Fluorescent immunohistochemistry and confocal microscopy

The frozen-stock POA or ARC&ME tissue was thawed and washed twice with PBS. 240Free-floating tissue sections were permeabilized with PBS containing 0.5% Tween 20 for 2412423 min. We then combined two quenching methods, glycine/hydrogen peroxide [37] and 243Vector True VIEW autofluorescence quenching kit (Vector Laboratories Inc., Burlingame, CA, USA), because we observed tissue autofluorescence in a preliminary study. Briefly, 244the tissue was blocked with PBS containing 2% normal goat serum, 50 mM glycine, 2450.05% Tween 20, 0.1% Triton X 100, and 0.1% BSA for 30 min [37]. We subsequently 246employed Vector True VIEW autofluorescence quenching kit following the 247manufacturer's protocol. After 5 min of incubation with the quencher kit, the sections 248were washed twice with PBS. The sections were then incubated with a cocktail of primary 249antibodies (anti-GnRH mouse, anti-AMH rabbit, and anti-AMHR2 chicken antibodies 250251[all diluted as 1:1,000]) dissolved in PBS containing 10 mM glycine, 0.05% Tween 20, 0.1% Triton X 100, and 0.1% hydrogen peroxide at 4° C for 16 h. After the primary 252

253	antibody incubation, the sections were washed twice with PBS and then incubated with a
254	cocktail of fluorochrome-conjugated secondary antibodies (Alexa Fluor Alexa Fluor 488
255	goat anti-chicken IgG, Alexa Fluor 546 goat anti-mouse IgG, and Alexa Fluor 647 goat
256	anti-rabbit IgG [all from Thermo Fisher Scientific and diluted to 1 $\mu g/mL$]) and 1 $\mu g/mL$
257	of 4', 6'-diamino-2-phenylindole (DAPI; Wako Pure Chemicals, Osaka, Japan) for 4 h at
258	room temperature. Each free-floating section was then transferred onto a slide glass (76
259	\times 26 mm, Crest-adhesive glass slide, Matsunami-Glass, Osaka, Japan) with the dorsal-
260	ventral axis of the bovine brain section parallel to the long axis of slides. Cover glass (55
261	\times 24 mm, Neo micro cover glass, Matsunami-Glass) was then attached using Vectashield
262	hardset mounting medium (Vector Laboratories Inc.).
262 263	hardset mounting medium (Vector Laboratories Inc.). The sections were observed with a confocal microscope (LSM710; Carl Zeiss,
262 263 264	hardset mounting medium (Vector Laboratories Inc.). The sections were observed with a confocal microscope (LSM710; Carl Zeiss, Göttingen, Germany) equipped with a 405 nm diode laser, a 488 nm argon laser, a 533
262 263 264 265	hardset mounting medium (Vector Laboratories Inc.).The sections were observed with a confocal microscope (LSM710; Carl Zeiss, Göttingen, Germany) equipped with a 405 nm diode laser, a 488 nm argon laser, a 533 nm HeNe laser, and a 633 nm HeNe laser. Images obtained by fluorescence microscopy
262 263 264 265 266	hardset mounting medium (Vector Laboratories Inc.). The sections were observed with a confocal microscope (LSM710; Carl Zeiss, Göttingen, Germany) equipped with a 405 nm diode laser, a 488 nm argon laser, a 533 nm HeNe laser, and a 633 nm HeNe laser. Images obtained by fluorescence microscopy were scanned with a 20× or 40× oil-immersion objective and recorded with a CCD camera
262 263 264 265 266 267	hardset mounting medium (Vector Laboratories Inc.). The sections were observed with a confocal microscope (LSM710; Carl Zeiss, Göttingen, Germany) equipped with a 405 nm diode laser, a 488 nm argon laser, a 533 nm HeNe laser, and a 633 nm HeNe laser. Images obtained by fluorescence microscopy were scanned with a 20× or 40× oil-immersion objective and recorded with a CCD camera system controlled by ZEN2012 black edition software (Carl Zeiss). GnRH, AMH, and
262 263 264 265 266 267 268	hardset mounting medium (Vector Laboratories Inc.). The sections were observed with a confocal microscope (LSM710; Carl Zeiss, Göttingen, Germany) equipped with a 405 nm diode laser, a 488 nm argon laser, a 533 nm HeNe laser, and a 633 nm HeNe laser. Images obtained by fluorescence microscopy were scanned with a 20× or 40× oil-immersion objective and recorded with a CCD camera system controlled by ZEN2012 black edition software (Carl Zeiss). GnRH, AMH, and AMHR2 localization were examined in confocal images of triple-immunolabeled
262 263 264 265 266 267 268 269	hardset mounting medium (Vector Laboratories Inc.). The sections were observed with a confocal microscope (LSM710; Carl Zeiss, Göttingen, Germany) equipped with a 405 nm diode laser, a 488 nm argon laser, a 533 nm HeNe laser, and a 633 nm HeNe laser. Images obtained by fluorescence microscopy were scanned with a 20× or 40× oil-immersion objective and recorded with a CCD camera system controlled by ZEN2012 black edition software (Carl Zeiss). GnRH, AMH, and AMHR2 localization were examined in confocal images of triple-immunolabeled specimens. To verify the specificity of the signals, we included several negative controls

antigen peptide [12, 20], or in which normal rabbit IgG (Wako Pure Chemicals) was used
instead of the primary antibody.

273	We distinguished the internal zone (iME; ventral to third ventricle) and the external
274	zone on the ME (eME) based on differences in fluorescence intensity. We defined various
275	segments of neurons based on the following criteria: cell body is round or polygonal shape
276	and diameter is more than 8 μ m; axon is shown as a continuous line of immunopositive
277	signal; varicosity is shown as a dotted line; bouton is shown as a single dot with a diameter
278	more than $3\mu m$. In the POA, ARC, and iME, we decided on the presence of a fiber of
279	neuron if the axon, or varicosity were observed in these areas; whereas we decided on the
280	presence of a fiber of neuron if axon, varicosity, or bouton were observed in the eME. We
281	specified GnRH neuron if the neuron had a similar shape compared to the previous paper
282	reporting bovine GnRH neuron [24] and showed GnRH-positive signal (red color).
283	To evaluate colocalization, the GnRH signal was shown in red and either AMH or
284	AMHR2 was shown in green. Therefore, yellow coloration in the images indicated
285	colocalization of GnRH with AMH or AMHR2. The percentage of cell bodies or fibers
286	of GnRH single-labeled neurons and the percentage of double/triple-labeled cell bodies
287	or fibers of neurons among all of the GnRH-positive cell bodies or fibers of neurons were

288 determined in the POA, ARC, iME, or eME of five heifers. From each heifer, four sections

290	ARC, iME, and eME with a similar shape to those shown in Fig. 18 and 19 of the atla
291	[23] were analyzed.
292	Additionally, z-stacks of the optical sections of triple-labeled cell bodies in PO
293	tissues or triple-labeled fibers in eME were captured using a confocal microscope syste
294	and transparent projection (i.e., the strongest and nearest colors to observer were shown
295	Images of the confocal microscope findings were generated using ZEN2012 black edition
296	software (Carl Zeiss). To evaluate colocalization, the signals corresponding to AMHR
297	GnRH, and AMH are depicted in green, red, and blue, respectively.
200	

containing the POA and four sections containing the anterior or intermediate part of the

```
298
```

289

```
299 3. Results
```

300 3.1 Detection of AMH and AMHR2 mRNA in POA and ARC&ME tissues

The agarose gel electrophoresis yielded PCR products of the expected sizes, indicating that AMH (328 bp; Fig. 1A) and AMHR2 (320 bp; Fig. 1B) were amplified from the POA and ARC&ME tissues. The same was found for the PCR products obtained from ovary tissues. Homology searching for the obtained sequences of amplified products in the gene databases revealed that the best match alignment was bovine *AMH* (NM_173890.1) or bovine *AMHR2* (NM_001205328.1). Both had a query coverage of

307	100%, an e-value of 0.0, and a maximum alignment identity of 99%. No other bovine
308	gene was found to have homology with the obtained sequences of the amplified products,
309	thus showing that the sequences of the amplified products were identical with the
310	sequences of bovine AMH or AMHR2.
311	
312	3.2 Detection of AMH and AMHR2 protein in POA and ARC&ME tissues
313	Western blotting confirmed the presence of AMH in the POA, ARC&ME, and ovary
314	tissues, with differences in intensity among sample types (Fig. 2A). Unlike in the ovary
315	samples, no bands for the AMH precursor (70 kDa) were detected in the POA or
316	ARC&ME samples. Stronger bands for the mature C-terminal form were observed in the
317	POA and ARC&ME samples than in the ovary samples, and differences in the number of
318	bands were found between those of POA, ARC&ME (25 kDa and 20 kDa), and ovary (25
319	kDa only) samples. Figure 2A' shows representative β -actin bands for each sample.
320	Western blotting confirmed the presence of AMHR2 in POA, ARC&ME, and ovary
321	tissues (Fig. 2B). While the anti-AMHR2 antibody revealed similar bands in the three
322	tissues, a few differences were noted. The full-length and cleaved monomers in the ovary
323	appeared as a single band but appeared as a doublet in the POA. Figure 2B' shows
324	representative β -actin bands for both tissue types.

326 3.3 Immunofluorescence analysis of AMH and AMHR2

The triple fluorescence immunohistochemistry detected AMH, AMHR2, and GnRH 327 328 in the POA and ARC&ME tissues. Figure 3 diagrammatically presents the distribution of GnRH-positive, AMH-positive or AMHR2-positive cell bodies and fibers. This drawn 329distribution represents a pattern typical to all heifers studied. The triple-positive (GnRH-330 331positive, AMH-positive and AMHR2-positive) cell bodies and fibers (green in Fig. 3) 332were observed in distribution extending from the preoptic region to the hypothalamic area. 333 GnRH neurons were shown as cell bodies with varicosities, or axons (CB1 and CB2 in Fig.4). The clusters of 2-10 cells were observed (Fig. 4, 6). 334In the preoptic region, the triple positive cell bodies were abundant in the anterior 335 336 medial preoptic area (MPOA) and anterior preoptic area (Fig. 3A, 3B), but were less frequently observed in the posterior MPOA and POA (Fig. 3C). We observed that the 337338 majority of cell bodies and fibers of GnRH neurons were AMHR2-positive and AMHpositive (CB1, CB3-8, and CB10,11 in Fig.4). Figure 5 presents a transparent projection 339 of the z-stack images of triple-stained cell bodies and fibers in the POA, with AMHR2, 340 341GnRH, and AMH depicted in green, red, and blue, respectively. The three colors were mixed in almost all areas. However, we also observed AMHR2-negative, AMH-negative 342

343	cell bodies or fibers of GnRH neurons (CB2), as less frequently in the anterior MPOA
344	and POA (red cross in Fig. 3A). We also less frequently observed GnRH-negative
345	AMHR2 cell bodies (CB9). The AMHR2-positive and AMH-positive cell bodies of
346	GnRH neurons were observed in close proximity (within 5 μ m) to cell bodies of another
347	GnRH neuron, as shown in CB2 and CB3, CB6 and CB7, and CB10 and CB11.
348	In the anterior ARC, we observed that all of the GnRH cell bodies were AMHR2-
349	positive and AMH-positive (CB1-5 in Fig. 6), although the triple positive cell bodies were
350	only occasionally observed (Fig. 3D, 3E), and not in the posterior ARC (Fig. 3F). We
351	observed that majority of GnRH fibers were AMHR2-positive and AMH-positive (Fig.
352	6A, 6C, 6D), although we also observed AMHR2-positive AMH-negative GnRH fibers
353	(Fig.5B). The triple-positive cell bodies or fibers of neurons were observed in close
354	proximity (within 5 $\mu m)$ as shown in CB1 and CB2, and CB4 and CB5.
355	In the iME, we observed that the majority of fibers of GnRH neurons were AMHR2-
356	positive and AMH-positive (low magnification of Fig. 7A, B, and Fig. 8A, yellow Vs in
357	Enlarged 1, 2, 3), although we also observed AMHR2-negative, AMH-negative
358	varicosities of GnRH neurons (red Vs in Enlarged 2, 3). These fibers were observed in
359	close proximity (within 5 μ m), as shown (Enlarged 2, 3).

360	In the eME, we observed that the majority of fibers of GnRH neurons were AMHR2-
361	positive and AMH-positive (yellow arrows in Enlarged 1 and 2 in Fig. 8); we also
362	observed AMHR2-negative, AMH-negative fibers of GnRH neurons (red arrows in
363	Enlarged 2), and GnRH-negative fibers of AMH neurons (blue arrows in Enlarged 2).
364	Figure 9 presents a transparent projection of the z-stack images of triple-stained fibers
365	(Fig. 9A) and the terminal (Fig. 9B) in eME. AMHR2, GnRH, and AMH signals are
366	depicted in green, red, and blue, respectively. These colors were mixed in almost all parts
367	of the fibers, whereas, most areas of the terminal exhibited only GnRH and AMH staining.
368	Table 2 and Table 4 show the number of examined GnRH-positive, AMHR2-positive,
369	or AMH-positive cell bodies and fibers in the POA, ARC, iME, or eME. As shown in
370	Table 3 and Table 5, 75 to 85% of cell bodies and fibers of GnRH neurons are positive
371	for both AMH and AMHR2 in the POA, ARC, and both the internal and external zones
372	of ME.
373	

4. Discussion

The present study detected AMH and AMHR2 in the bovine POA, ARC, and ME. To the best of our knowledge, this study is the first to report AMH in the brains of mammals and AMHR2 in the brains of ruminants. The discovered AMH and AMHR2 in the POA, ARC, and ME warrant further exploration because their localization havesignificant implications for reproduction.

In the POA, ARC and ME, we observed that the majority of cell bodies or fibers of 380 381GnRH neurons were AMHR2-positive and AMH-positive. Little is known of the relationship between AMH and GnRH neurons. However, Cimino et al. [16] reported that 382383 (1) more than 50% of mouse and human GnRH neurons express AMHR2, and (2) AMH 384directly activates 50 to 64% of GnRH neurons in a dose-dependent manner in mice. The great majority of GnRH neurons (86%) form multiple close appositions with dendrites of 385386 other GnRH neurons, probably for GnRH neuron synchronization via the dendro-387 dendritic communication [38]. Therefore, AMH and AMHR2 in GnRH neurons might indeed be relevant to the regulation of GnRH secretion by direct actions on GnRH 388 389 neurons. Further studies are required to clarify the importance of AMH and AMHR2 in the regulation of GnRH neurons. 390

GnRH neurons in the POA and ARC project to the ME and secrete GnRH into the
pituitary portal blood vessels [3, 4]. Cimino *et al.* [16] observed AMHR2 in the eME in
mice and women. In addition, the present study found AMH signals in the bovine eME.
Intracerebroventricular injection of AMH induces a LH surge within 15 min in mice [16].
AMHR2 is expressed in bovine gonadotrophs, and AMH can stimulate LH and FSH

secretion from the cultured bovine gonadotrophs [12]. Therefore, AMH may be secretedinto the pituitary portal blood to stimulate LH and FSH secretion from gonadotrophs.

There is one caveat to our study that should be considered: both the POA and 398 399 ARC&ME specimens also contained other brain areas and nuclei because it was impossible to obtain precisely cut samples under our experimental conditions. However, 400 401 western blotting conducted in the present study showed differences in band strength 402and/or size between brains and ovaries. Unlike findings obtained from ovary samples, the 403 POA and ARC&ME exhibited no bands that indicated the presence of the AMH precursor 404 (70 kDa), suggesting that cells in POA and ARC&ME store fewer AMH precursors than 405do ovaries. Two bands for the mature C-terminal form were observed in the POA and ARC&ME, whereas only a single band was observed in the ovary (25 kDa). The band-406 407 size variances in the mature C-terminal band may be ascribed to differences in Oglycosylation among organs [31, 32]. Western blotting also revealed multiple, not single, 408 409 bands of AMHR2, which has been reported previously. This may be explained by AMHR2 presenting as a dimer, full-length monomer, and cleaved monomers, and by 410 AMHR2 having O-glycosylation [30, 35]. We observed that full-length and cleaved 411 412monomers in the POA appeared as doublets, whereas those in the ovary appeared as single 413bands. Therefore, this study suggests that bovine AMHR2 is glycosylated and that the difference in the number of full-length monomers between the POA and ovary samplesmight be attributed to differences in glycosylation.

AMHR2 positive non-GnRH cells were observed in the POA, ARC, and ME. We 416 417 could not find any related published data with which to compare our findings. Therefore, further studies are required to characterize this type of neuron, specifically, whether 418 AMHR2 is expressed in kisspeptin, neurokinin B, dynorphin neurons of the ARC [2]. 419 420AMH signals were observed in non-GnRH cells in the eME. The localization of AMH in the eME has not been previously examined in any species to our knowledge. 421422Approximately 20% of AMHR2-positive cells are non-gonadotrophs in the bovine anterior pituitary [12], and such cells may be lactotrophs [39]. Further studies are required 423to evaluate the relationship between AMH in the sME and non-gonadotroph anterior 424425pituitary cells.

In conclusion, AMH and AMHR2 are detected in the majority of GnRH neurons in POA, ARC, and ME of heifer brains. These data support the need for further study as to how AMH and AMHR2 act within the hypothalamus to influence GnRH and gonadotropin secretion.

430

431 Credit authorship contribution statement

433	Writing - original draft, Visualization.
434	H. Kadokawa: Conceptualization, Supervision, Methodology, Formal analysis,
435	Investigation, Writing - original draft, Funding acquisition.
436	
437	Acknowledgements
438	O. Kereilwe was supported by MEXT (Ministry of Education, Culture, Sports,
439	Science, and Technology) with the provision of a scholarship.
440	This research was partly supported by a Grant-in Aid for Scientific Research (JSPS
441	Kakenhi Grant Number 18H02329) from the Japan Society for the Promotion of Science
442	(Tokyo, Japan) to H. Kadokawa.
443	Conflicts of interest: The authors declare no conflicts of interest.
444	Ethical considerations: The study was approved by the Committee on Animal
445	Experiments of Yamaguchi University, and complied with relevant legislation.
446	

O. Kereilwe: Conceptualization, Methodology, Formal analysis, Investigation,

447

References

450	[1] Herbison AE. Control of puberty onset and fertility by gonadotropin-releasing
451	hormone neurons. Nat Rev Endocrinol 2016;12:452-66.
452	[2] Nestor CC, Bedenbaugh MN, Hileman SM, Coolen LM, Lehman MN, Goodman RL.
453	Regulation of GnRH pulsatility in ewes. Reproduction 2018;156:R83-R99.
454	[3] Clarke IJ, Cummins JT, Karsch FJ, Seeburg PH, Nikolics K. GnRH-associated
455	peptide (GAP) is cosecreted with GnRH into the hypophyseal portal blood of
456	ovariectomized sheep. Biochem Biophys Res Commun 1987;143:665-71.
457	[4] Jansen HT, Hileman SM, Lubbers LS, Kuehl DE, Jackson GL, Lehman MN.
458	Identification and distribution of neuroendocrine gonadotropin-releasing hormone
459	neurons in the ewe. Biol Reprod 1997;56:655-62.
460	[5] Kadokawa H, Pandey K, Nahar A, Nakamura U, Rudolf FO. Gonadotropin-releasing
461	hormone (GnRH) receptors of cattle aggregate on the surface of gonadotrophs and
462	are increased by elevated GnRH concentrations. Anim Reprod Sci 2014;150:84-95.
463	[6] Bhide P, Homburg R. Anti-Müllerian hormone and polycystic ovary syndrome. Best
464	Pract Res Clin Obstet Gynaecol 2016;37:38-45.
465	[7] Hernandez-Medrano JH, Campbell BK, Webb R. Nutritional influences on
466	folliculogenesis. Reprod Domest Anim Suppl 2012;4:274-82.

467	[8] Seifer DB, Merhi Z. Is AMH a regulator of follicular atresia? Assi	st Reprod Genet
468	2014:31:1403-07.	

- 469 [9] Monniaux D, Drouilhet L, Rico C, Estienne A, Jarrier P, Touzé JL, Sapa J, Phocas F,
- 470 Dupont J, Dalbiès-Tran R, Fabre S. Regulation of anti-Müllerian hormone
 471 production in domestic animals. Reprod Fertil Dev 2012;25:1-16.
- 472 [10] Meczekalski B, Czyzyk A, Kunicki M, Podfigurna-Stopa A, Plociennik L, Jakiel G,
- 473 Maciejewska-Jeske M, Lukaszuk K. Fertility in women of late reproductive age: the
- 474 role of serum anti-Müllerian hormone (AMH) levels in its assessment. J Endocrinol
 475 Invest 2016;39:1259-65.
- 476 [11] Mossa F, Jimenez-Krassel F, Scheetz D, Weber-Nielsen M, Evans ACO, Ireland JJ.
- 477 Anti-Müllerian Hormone (AMH) and fertility management in agricultural species.
- 478 Reproduction 2017;154:R1-R11.
- 479 [12] Kereilwe O, Pandey K, Borromeo V, Kadokawa H. Anti-Müllerian hormone receptor
- type 2 is expressed in gonadotrophs of postpubertal heifers to control gonadotrophin
 secretion. Reprod Fertil Dev 2018;30:1192-203.
- 482 [13] Bédécarrats GY, O'Neill FH, Norwitz ER, Kaiser UB, Teixeira J. Regulation of
- 483 gonadotropin gene expression by Müllerian inhibiting substance. Proc Natl Acad Sci
- 484 USA 2003;100:9348-53.

485	[14] Garrel G, Racine C, L'Hôte D, Denoyelle C, Guigon CJ, di Clemente, N., and Cohen-
486	Tannoudji, J. Anti-Müllerian hormone: a new actor of sexual dimorphism in pituitary
487	gonadotrope activity before puberty. Sci Rep 2016;6:23790.
488	[15] Poonlaphdecha S, Pepey E, Huang SH, Canonne M, Soler L, Mortaji S, Morand S,
489	Pfennig F, Mélard C, Baroiller JF, D'Cotta H. Elevated amh gene expression in the
490	brain of male tilapia (Oreochromis niloticus) during testis differentiation. Sex Dev
491	2011;5:33-47.
492	[16] Cimino I, Casoni F, Liu X, Messina A, Parkash J, Jamin SP, Catteau-Jonard S,
493	Collier F, Baroncini M, Dewailly D, Pigny P, Prescott M, Campbell R, Herbison AE,
494	Prevot V, Giacobini P. Novel role for anti-Müllerian hormone in the regulation of
495	GnRH neuron excitability and hormone secretion. Nat Commun 2016;7:10055.
496	[17] Agriculture, Forestry and Fisheries Research Council Secretariat. Nutrition
497	requirement. In: Ministry of Agriculture, Forestry and Fisheries, eds. Japanese
498	Feeding Standard for Beef Cattle. Tokyo, Japan: Central Association of Livestock
499	Industry; 2008:31–48.
500	[18] Miyamoto Y, Skarzynski DJ, Okuda K. Is tumor necrosis factor alpha a trigger for
501	the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle?
502	Biol Reprod 2000;62:1109-15.

503 [19] Tanco VM, Whitlock BK, Jones MA, Wilborn RR, Brandebourg TD, Foradori CD.

- 504 Distribution and regulation of gonadotropin-releasing hormone, kisspeptin, RF-505 amide related peptide-3, and dynorphin in the bovine hypothalamus. PeerJ 506 2016;4:e1833.
- [20] Kereilwe O, Kadokawa H. Bovine gonadotrophs express anti-Müllerian hormone
 (AMH): comparison of AMH mRNA and protein expression levels between old
 Holsteins and young and old Japanese Black females. Reprod Fertil Dev
 2019;31:810-9.
- [21] Koizumi M, Kadokawa H. Positive correlations of age and parity with plasma antiMüllerian hormone concentrations in Japanese Black cows. J Reprod Dev
 2017;63:205-9.
- 514[22] Hassaneen A, Naniwa Y, Suetomi Y, Matsuyama S, Kimura K, Ieda N, Inoue N, Uenoyama Y, Tsukamura H, KI, F, S. 515Maeda Matsuda Ohkura 516Immunohistochemical characterization of the arcuate kisspeptin/neurokinin B/dynorphin (KNDy) and preoptic kisspeptin neuronal populations in the 517hypothalamus during the estrous cycle in heifers. J Reprod Dev 2016;62:471-7. 518519[23] Okamura H. Brain atlas of cattle (in Japanese) In: A foundational research for
- 520 elucidation and estimation of agriculture, Forestry and Fisheries Research Council.

5212002:41-72.

522	[24] Leshin LS, Rund LA, Crim JW, Kiser TE. Immunocytochemical localization of
523	luteinizing hormone-releasing hormone and proopiomelanocortin neurons within
524	the preoptic area and hypothalamus of the bovine brain. Biol Reprod 1988;39:963-
525	75.
526	[25] Campbell BK, Clinton M, Webb R. The role of anti-Müllerian hormone (AMH)
527	during follicle development in a monovulatory species (sheep). Endocrinology
528	2012;153:4533-43.
529	[26] Poole DH, Ocón-Grove OM, Johnson AL. Anti-Müllerian hormone (AMH) receptor
530	type II expression and AMH activity in bovine granulosa cells. Theriogenology
531	2016;86:1353-60.
532	[27] Urbanski HF. Monoclonal antibodies to luteinizing hormone-releasing hormone:
533	production, characterization, and immunocytochemical application. Biol Reprod
534	1991;44:681-6.
535	[28] Naugle MM, Gore AC. GnRH neurons of young and aged female rhesus monkeys
536	co-express GPER but are unaffected by long-term hormone replacement.
537	Neuroendocrinology 2014;100:334-46.
538	[29] Naugle MM, Lozano SA, Guarraci FA, Lindsey LF, Kim JE, Morrison JH, Janssen

539	WG, Yin W, Gore AC. Age and Long-Term Hormone Treatment Effects on the
540	Ultrastructural Morphology of the Median Eminence of Female Rhesus Macaques.
541	Neuroendocrinology 2016;103:650-64.
542	[30] Faure E, Gouédard L, Imbeaud S, Cate R, Picard JY, Josso N, di Clemente N. Mutant
543	isoforms of the anti-Müllerian hormone type II receptor are not expressed at the cell
544	membrane. J Biol Chem 1996;271:30571-5.
545	[31] Medzihradszky KF, Kaasik K, Chalkley RJ. Tissue-specific glycosylation at the
546	glycopeptide level. Mol Cell Proteomics 2015;14:2103-10.
547	[32] Skaar KS, Nobrega RH, Magaraki A, Olsen LC, Schulz RW, Male R. Proteolytically
548	activated, recombinant anti Mullerian hormone inhibits androgen secretion,
549	proliferation, and differentiation of spermatogonia in adult zebrafish testis organ
550	cultures. Endocrinology 2011;152:3527-40.
551	[33] Pierre A, Racine C, Rey RA, Fanchin R, Taieb J, Cohen-Tannoudji J, Carmillo P,
552	Pepinsky RB, Cate RL, di Clemente N. Most cleaved anti-Müllerian hormone binds
553	its receptor in human follicular fluid but little is competent in serum. J Clin

- 554 Endocrinol Metab 2016;101:4618-27.
- 555 [34] Mamsen LS, Petersen TS, Jeppesen JV, Møllgard K, Grøndahl ML, Larsen A, Ernst
- 556 E, Oxvig C, Kumar A, Kalra B, Andersen CY. Proteolytic processing of anti-

- Mullerian hormone differs between human fetal testes and adult ovaries. Mol Hum
 Reprod 2015;21:571–82.
- [35] Di Clemente N, Jamin SP, Lugovskoy A, Carmillo P, Ehrenfels C, Picard JY, Cate
- RL. Processing of anti-Müllerian hormone regulates receptor activation by a
 mechanism distinct from TGF-β. Mol Endocrinol 2010;24:2193–206.
- 562 [36] Hirschhorn T, di Clemente N, Amsalem AR, Pepinsky RB, Picard JY, Smorodinsky
- 563 NI, Cate RL, Ehrlich M. Constitutive negative regulation in the processing of the 564 anti-Müllerian hormone receptor II. J Cell Sci 2015;128:1352-64.
- 565 [37] Rosas-Arellano A, Villalobos-González JB, Palma-Tirado L, Beltrán FA, Cárabez-
- 566 Trejo A, Missirlis F, Castro MA. A simple solution for antibody signal enhancement
- in immunofluorescence and triple immunogold assays. Histochem Cell Biol2016;146:421-30.
- [38] Campbell RE, Gaidamaka G, Han SK, Herbison AE. Dendro-dendritic bundling and
 shared synapses between gonadotropin-releasing hormone neurons. Proc Natl Acad
- 571 Sci U S A 2009;106:10835-40.
- 572 [39] Georgopoulos NA, Karagiannidou E, Koika V, Roupas ND, Armeni A, Marioli D,
- 573 Papadakis E, Welt CK, Panidis D. Increased frequency of the anti-mullerian-
- 574 inhibiting hormone receptor 2 (AMHR2) 482 A>G polymorphism in women with

- polycystic ovary syndrome: relationship to luteinizing hormone levels. J Clin
 Endocrinol Metab 2013;98:E1866-70.
- 577 _____

Table 1. Details concerning the primers used for PCR to detect mRNA of anti-Müllerian

579	hormone (A)	(IH) and anti-M	lüllerian hormone	receptor ty	pe 2 ((AMHR2)).
-----	-------------	-----------------	-------------------	-------------	--------	---------	----

Primer		5'-3'	Position		Product
					size
					(bp)
			Nucleotide	Exon	
AMH	up	GCTCATCCCCGAGACATACC	1486-1505	5	328
	down	TTCCCGTGTTTAATGGGGCA	1794-1813	5	
AMHR2	up	AGATTTGCGACCTGACAGCAG	1272-1292	9-10	320
	down	CTTCCAGGCAGCAAAGTGAG	1572-1591	11	

Table 2. Mean \pm SEM of the number of examined GnRH-positive, AMHR2-positive, or583AMH-positive cell bodies (round or polygonal shape, diameter is more than 8 μ m) and584fibers (axon shown as continuous line of immunopositive signal, or varicosity shown as585dotted line) in the preoptic area.

	POA cell body Mean SEM		POA	fiber
			Mean	SEM
GnRH+	27.0	0.5	31.0	0.5
AMHR2+	30.6	0.4	30.6	0.5
AMH+	30.0	1.1	31.6	0.8

589 **Table 3.**

590 (A) Mean \pm SEM of the percentage of GnRH cells that co-localize AMHR2 or AMH, the

591	percentage of AMHR2	or AMH cells that	co-localize GnRH in th	e POA.
-----	---------------------	-------------------	------------------------	--------

592 (B)

	POA cell body	
	Mean	SEM
GnRH cells co-localize AMHR2	87.5	1.4
GnRH cells co-localize AMH	78.7	1.8
GnRH cells co-localize both AMHR2 and AMH	78.7	1.8
AMHR2 cells co-localize GnRH	77.1	0.3
AMH cells co-localize GnRH	70.9	1.9

593

594 (B) Mean ± SEM of the percentage of GnRH fibers that co-localize AMHR2 or AMH,

the percentage of AMHR2 or AMH fibers that co-localize GnRH in the POA.

596

	POA fibers	
	Mean	SEM
GnRH fibers co-localize AMHR2	82.8	3.0
GnRH fibers co-localize AMH	76.9	2.8
GnRH fibers co-localize both AMHR2 and AMH	76.9	2.8
AMHR2 fibers co-localize GnRH	83.6	0.3
AMH fibers co-localize GnRH	75.5	2.4

Table 4. Mean ± SEM of the number of examined GnRH-positive, AMHR2-positive, or
AMH-positive fibers in the arcuate nucleus (ARC) or internal (iME) or external zone of
median eminence (eME).

	ARC		iN	IE	eME	
	Mean	SEM	Mean	SEM	Mean	SEM
GnRH+	21.6	0.7	22.8	0.4	56.4	0.9
AMHR2+	21.6	0.8	24.4	0.8	54.0	1.9
AMH+	20.2	0.7	22.4	1.2	53.4	1.4

Table 5. Mean ± SEM of the percentage of GnRH fibers that co-localize AMHR2 or AMH,
the percentage of AMHR2 or AMH fibers that co-localize GnRH in the ARC, iME, or
eME.

	ARC		iME		eME	
	Mean	SEM	Mean	SEM	Mean	SEM
GnRH fibers co-localize AMHR2	84.2	1.9	83.3	1.7	86.2	3.5
GnRH fibers co-localize AMH	76.7	1.8	74.6	0.8	84.7	3.3
GnRH fibers co-localize both AMHR2 and AMH	76.7	1.8	74.6	0.8	84.7	3.3
AMHR2 fibers co-localize GnRH	84.3	2.1	78.3	3.7	89.9	1.7
AMH fibers co-localize GnRH	82.1	2.1	76.6	3.5	89.4	2.4

610 Figure Legends

Fig. 1. Detection of anti-Müllerian hormone (AMH) mRNA (A) and AMH receptor type 2 (AMHR2) mRNA (B) by RT-PCR. Electrophoresis of PCR-amplified DNA products using primers for bovine AMH or AMHR2 and cDNA derived from the ovary, tissues containing the preoptic area (POA tissue), or arcuate nucleus and median eminence tissues (ARC&ME tissue) of post-pubertal heifers. The lanes labeled as AMH or AMHR2 demonstrate that the sizes of the obtained DNA products met expectations: 328 or 320 bp, respectively. The Marker lane indicates the DNA marker.

621

622 Fig. 2. Results of western blotting using extracts from the ovary, POA, or ARC&ME

623 tissue of post-pubertal heifers and anti-AMH antibody (A), anti-AMHR2 antibody (B),

or anti- β -actin antibody (A' and B'). Bovine AMH bands were defined based on size as

625 either precursors or mature C-terminal proteins. Bovine AMHR2 bands were defined

based on size as either full-length or cleaved monomers.

627

Fig. 3. Immunocytochemical distribution of GnRH, AMH and AMHR2 in coronal sections containing POA (A, B, C), or ARC and ME (D, E, F) drawn on the corresponding region of the bovine brain atlas [23]. The crosses, lines, and triangles indicate cell body, and longitudinal and cross-section of fibers, respectively. The green ones indicate GnRHpositive, AMH-positive and AMHR2-positive (triple positive). The red ones indicate GnRH-positive AMH-negative and AMHR2-negative. The purple ones indicate lack of colocalization of AMH and GnRH.

arcuate nucleus; AVPV, anteroventral periventricular nucleus; DMH, dorsomedial
hypothalamic nucleus; ME, median eminence; MPOA, medial preoptic area; OVLT,
vascular organ of the lamina terminals; Pe, periventricular hypothalamic nucleus; PVN,
paraventricular hypothalamic nucleus; POA, preoptic area; SCH, suprachiasmatic
nucleus; VMH, ventromedial hypothalamic nucleus.

Fig. 4. Triple-fluorescence photomicrographs of AMH, AMHR2, and GnRH in the POA (A, B, C, D) of post-pubertal heifers. Images were captured with laser confocal microscopy for AMH (light blue), AMHR2 (green), and GnRH (red). In the merged photos, CB, Axon, V indicate cell body, axon, and varicosity of neuron. The yellow arrows, CB, Axon, and V indicate the colocalization of AMH, AMHR2, and GnRH. Light blue ones indicate lack of colocalization of AMH and GnRH. Red ones indicate lack of colocalization of GnRH and AMH or AMHR2. Scale bars are 50 μm.

Fig. 5. Transparent projection of the z-stack images of triple-stained cell bodies and fibers

652 in the POA (A, B) of post-pubertal heifers. The images were captured using a laser

- 653 confocal microscope. AMH, AMHR2, and GnRH are depicted in blue, green, and red,
- respectively. Note that the color indicating DNA has been excluded because the large
- number of cell nuclei containing DNA would have masked the main objects.

Fig. 6. Triple-fluorescence photomicrographs of ARC (A, B, C, D) tissue obtained from
post-pubertal heifers. Images were captured with laser confocal microscopy for AMH
(light blue), AMHR2 (green), and GnRH (red). In the merged photos, the yellow arrows
CB, and Axon indicate the colocalization of AMH, AMHR2, and GnRH. Scale bars are
50 μm (A) or 20 μm (B, C, D).

Pituitary

1

Enlarged 1

Arc

un

(B)

663

664

666	Fig. 7. Triple-fluorescence photomicrographs of ME (A, B) tissue obtained from post-
667	pubertal heifers. Images were captured with laser confocal microscopy for AMH (light
668	blue), AMHR2 (green), and GnRH (red). The orange rectangle within the low
669	magnification image indicates the position of high magnification. In the merged photos,
670	the yellow arrows and V indicate the colocalization of AMH, AMHR2, and GnRH; the
671	red arrows and V indicate the lack of colocalization of GnRH and AMH or AMHR2. Scale
672	bars are 50 μm in the low-magnification photos of (A, B), and 20 μm in the high
673	magnification photos of (A,B). White arrows labeled as 3V, Arc, or Pituitary indicate the
674	direction of the third ventricle, arcuate nucleus, and pituitary, respectively.

Fig. 8. Triple-fluorescence photomicrographs of other parts of ME (A, B) tissue obtained from post-pubertal heifers. Images were captured with laser confocal microscopy for AMH (light blue), AMHR2 (green), and GnRH (red). The orange rectangle within the low magnification image indicates the position of high magnification. Vessel indicate the position of vessel. In the merged photos, the yellow arrows indicate the colocalization of

682	AMH, AMHR2, and GnRH; the light blue arrows indicate the lack of colocalization of
683	AMH and GnRH; the red arrows and V indicate the lack of colocalization of GnRH and
684	AMH or AMHR2. Scale bars are 100 μ m in the low-magnification photos of (A) and
685	high-magnification photos of (B), 20 μ m in the high magnification photos of (A), and 200
686	μ m in the low-magnification photos of (B). White arrows labeled as 3V, or Pituitary
687	indicate the direction of the third ventricle, and pituitary, respectively.

690	Fig. 9. Transparent projection of the z-stack images of triple-stained fibers (A) and
691	terminal (B) in the eME of post-pubertal heifers. The images were captured using a laser
692	confocal microscope. for AMH, AMHR2, and GnRH are depicted in blue, green, and red,
693	respectively. Note that the color indicative of DNA has been excluded because the large
694	number of cell nuclei containing DNA would have masked the main objects.