平成 30 年度博士論文

ペルフルオロアルキル鎖を有する新規な 低分子ゲル化剤の設計,物性評価及び 電気化学デバイスへの応用 (Molecular design and characterization of novel low-molecular-mass gelators with perfluoroalkyl unit and their application for electrochemical devices)

> 平成 30 年 9 月 理工学研究科 物質工学系専攻 大橋 亜沙美

第一章 緒言(研究の背景と目的)	
1-1 有機フッ素化合物	6
1-1-1 ペルフルオロアルキル基を有する化合物	7
1-1-2 疎水相互作用	8
1-2 無機フッ素化合物	9
1-3 超分子	9
1-3-1 ゲル	10
1-3-2 高分子ゲルと低分子ゲル	11
1-3-3 低分子ゲル化剤	12
1-3-4 液晶ゲル	14
1-3-5 ペルフルオロアルキル基を有するゲル化剤	14
1-4 電気化学デバイス	15
1-4-1 リチウムイオン電池	15
1-4-2 電気化学デバイス用材料とフッ素化合物	20
1-4-3 リチウムイオン電池用電解液	21
1-4-4 ゲル電解質	22
1-5 クロスカップリング反応	24
1-6 本研究の目的と論文構成	24
1-6-1 本研究の目的	24
1-6-2 本論文の構成	24
References	26

第二章 2-アルコキシ-6-[4-(2-ペルフルオロヘキシル)エチルチオフェニル]ナフタレンの 合成と物理化学的性質

2-1 緒言	31
2-2 実験	31
2-2-1 合成	31
2-2-2 測定・評価法	33
2-3 結果と考察	34
2-3-1 液晶性	34
2-3-2 ゲル化能	37
2-4 まとめ	39
References	39

目次

第三章 ペルフルオロアルキル部位およびスルホニルフェニル部位を有する新規低分子ゲ ル化剤の合成と物性

3-1 緒言	40
3-2 実験	40
3-2-1 合成	40
3-2-2 測定・評価法	46
3-3 結果と考察	47
3-3-1 ゲル化能	47
3-3-2 ゲルの形態	51
3-3-3 ゲルのレオロジー解析	52
3-3-4 ゲル化剤の配向	53
3-4 まとめ	56
References	57

第四章 ペルフルオロアルキル部位およびスルホニルフェニル部位を有する新規低分子ゲ ル化剤を用いた非水電解質およびリチウムイオン電池

4-1 緒言	58
4-2 実験	58
4-2-1 合成・調製	58
4-2-2 測定・評価法	59
4-3 結果と考察	62
4-3-1 電解液に対するゲル化能	62
4-3-2 電解液の性能評価	63
4-3-3 電解液の安全性評価(燃焼試験)	67
4-3-4 電解液の安全性評価(保液性)	67
4-3-5 リチウムイオン電池の充放電特性の評価	69
4-3-6 電池安全性の評価-過充電電池のリチウムデンドライト析出観察	73
4-3-7 電池安全性の評価-過充電時の電池発火・破裂挙動の観察	75
4-4 まとめ	80
References	81

第五章 ペルフルオロアルキル部位およびスルホニルビフェニル部位を有する新規低分子 ゲル化剤の合成と物性

5-1 緒言	82
5-2 実験	82
5-2-1 合成	82

5-2-2 測定・評価法	90
5-3 結果と考察	93
5-3-1 ゲル化能	93
5-3-2 ゲルの形態	97
5-3-3 ゲルの構造解析	99
5-3-4 ゲルの形成挙動	102
5-3-5 ゲルのレオロジー解析	108
5-4 まとめ	109
References	110

第六章 ペルフルオロアルキル部位およびスルホニルビフェニル部位を有する新規低分子 ゲル化剤を用いた非水電解質およびリチウムイオン電池

6-1 緒言	111
6-2 実験	111
6-2-1 合成・調製	111
6-2-2 測定・評価法	112
6-3 結果と考察	116
6-3-1 電解液に対するゲル化能	116
6-3-2 電解液の性能	117
6-3-3 リチウムイオン電池の充放電特性の評価	119
6-3-4 リチウムイオン電池の電気化学特性	122
6-3-5 リチウムイオン電池安全性の評価-外力に対する電解液の保液性	123
6-3-6 リチウムイオン電池安全性の評価-加熱に対する電解液の保液性	125
6-3-7 リチウムイオン電池安全性の評価-過充電電池のリチウムデンドライト桥	日観察
	125
6-3-8 リチウムイオン電池安全性の評価-過充電電池の短絡試験	129
6-3-9 リチウムイオン電池安全性の評価ー過充電負極と電解液との反応挙動	131
6-3-10 リチウムイオン電池安全性の評価-過充電正極の安全性への寄与	133
6-3-11 リチウムイオン電池安全性の評価-過充電電池の発火・破裂試験	134
6-4 まとめ	136
References	137

第七章 ペルフルオロアルキル部位およびスルホニルビフェニル部位を有する新規低分子 ゲル化剤の合成

7-1	緒言	138
7-2	基本合成スキームの検討	138

7-3 量産製法の検討	140
7-3-1 フルオロアルキル化工程	140
7-3-2 オキソン酸化工程	141
7-3-3 鈴木カップリング反応工程	144
7-3-4 全工程のタイムチャート	146

第八章 結言

8-1	本論文で得られた結果	148
8-2	本論文のまとめ	149
8-3	今後への提言	149

		~	۰.
⇒H-	h	- A	1
±±\		L	r:
HZ 1			-
12/14		•	

152

第一章 緒言(研究の背景と目的)

1-1 有機フッ素化合物 1)

フッ素はハロゲン原子のひとつであり、電気陰性度はあらゆる原子の中で最も大きい。さ らに、原子半径 (ファンデルワールス半径) は水素の次に小さい。すなわち、C-F 結合エ ネルギーは大きく、C-F 結合距離は短い。それは、フッ素の価電子軌道は水素の軌道よりも 5 eV も低いため、有機分子の C-H の水素をフッ素に置換した C-F の分子軌道は水素に比 べて低く、安定したものとなることによる。これは、有機フッ素化合物の電子は、非フッ素 化合物に比べてより強く原子核による安定化を受けていることを示し、この軌道上の電子 は揺らぎにくく、電子分極は小さくなる。そのため、有機フッ素化合物の電子分極により発 生する分子間力は小さくなる。一方、有機フッ素化合物の R-F の分子軌道のエネルギー準 位はフッ素の価電子軌道に近く、フッ素の価電子軌道に電子が流れていること、すなわちフ ッ素原子の強い電子吸引性とそれによる電荷分布への影響を意味する。

また,有機フッ素化合物は剛直で柔軟性が乏しいという特徴がある。そのため,フッ素を 用いると,熱的,化学的,電気化学的安定性が高く,特異な表面活性を有する化合物を形成 できる。そして,形成したフッ素化合物は,耐薬品性,耐熱性,耐候性,非粘着性,撥水撥 油性,低摩擦性,電気絶縁性などを示し,また,屈折率や誘電率が低い性質も示すことがで きる。例えば,撥水撥油性は,有機分子中にフッ素原子が導入されると極性分子との相互作 用が低下するために疎水性が著しくなり,逆に親油性が高くなることで生じる。これらの特 性に基づき,フッ素化合物は高分子材料(例えば超耐候性塗料,超耐久性フィルムなど), エネルギー材料(二次電池,燃料電池材料など),光学材料(光ファイバー,レンズなど), 半導体冷却材料,医薬医療(高脂血症治療薬,陽電子断層撮影法など),農薬などの様々な 分野で応用されている。

Figure 1-1. Orbital energy diagram of organofluorine compound.

1-1-1 ペルフルオロアルキル基を有する化合物 1)

アルキル基の水素原子がすべてフッ素原子に置換されたものをペルフルオロアルキル基 という。フッ素は水素原子より大きく、原子間距離が近くなるため、ペルフルオロアルキル 基を有する化合物(ペルフルオロ化合物)は、フッ素原子同士の反発が生じ、剛直な構造を とりやすい。剛直な構造は、結晶等の配向性の高い構造を形成しやすい。また、フッ素原子 の電気陰性度の大きさとファンデルワールス力の小ささに基づき、低電子分極となること の影響を受けやすい。ペルフルオロ化合物の電子分極の小ささを示す物性として屈折率が ある。一般的な有機溶媒の屈折率が 1.4~1.6 前後であるのに対して、ペルフルオロ化合物 の屈折率は 1.3 前後である。また、ペルフルオロ化合物の沸点は低い。沸点は分子量と水素 結合から見積もられるがそれよりもかなり低くなる。分子量の大きな分子は分子間力の起 源である揺らぐことのできる電子を多く持つため、一般的には分子量に応じて沸点は高く なる。一方、ペルフルオロ化合物では電子の数は増えても軌道の原子核による安定化により、 電子は揺らぎにくくなり、分子量からの予想値よりも低くなる。そして、ペルフルオロ化合 物の沸点と屈折率とは相関する。

ペルフルオロ化合物は水や有機溶媒と相互作用しにくく、それらに溶解しにくいという 特徴も有する。液体同士の場合には内部エネルギーの大きさや種類が近いと相溶しやすく、 相溶性を示すパラメータとしてヒルデブランドのδ値²⁰が知られている。この値は水が50、 一般的な有機溶媒が20前後であるのに対してペルフルオロアルカンでは12前後であり際 立って低い。そのため、ペルフルオロ化合物は水相からも有機層からも追い出され、相分離 し、フルオラス相を形成する。「フルオラス」という言葉の定義は2002年になされている ³⁾。このようなフルオラス相は、単に水相や有機層から追い出されて形成されるのではなく、 積極的な「フルオロ親和力」が働いているようにも見える4。フルオロ親和力の疑似的な凝 集作用を疎水相互作用5と呼ぶこともある。ペルフルオロ化合物は水相にも有機層にも難溶 であるが水相への溶解度がより低い。そのため、水相と有機相が共存する環境下では相対的 には有機相への溶解度が向上したように見えることがある。

以上より、ペルフルオロ化合物は、難溶解性で、配向性が高い凝集構造を形成しやすい特徴を有する。近年は、ペルフルオロアルキル鎖は特有なねじれ構造を形成し、隣接するペルフルオロアルキル基と効率的に凝集できる凝集モデルも提案されており、フッ素特有の様々な性質を総合して理解する理論も構築されつつある。

ペルフルオロ化合物は C-F 結合の安定性から,熱・紫外線・酸化雰囲気での安定性が高 くなると共に,フッ素原子あるいは C-F 結合の分極率の小ささから,誘電率や体積抵抗率 も小さく,絶縁性に優れる。熱的・化学的安定性はペルフルオロ化合物の大きな特長であり, それを応用した代表例がポリテトラフルオロエチレンである。

そのほか、対応するアルキル基と比較し、表面張力が著しく低い、生物学的に不活性なものが多い、といった特徴がある。アルキル基の表面張力は多くの場合 20 dyn/cm 以上であるがペルフルオロアルキル基の表面張力は 10 数 dyn/cm である。固体においてもフルオロ

カーボン表面の臨界表面張力は低い。たとえばポリエチレンが31 dyn/cm であるのに対し, ポリテトラフルオロエチレンは8 dyn/cm である。さらに,ペルフルオロアルキル化合物は 天然には全く存在しないこと,また高酸化状態にあることから,一般に生物に対して不活性 であることも特徴である。

Figure 1-2. Molecular structure of perfluoroalkyl chain.

なお、ペルフルオロ化合物としては工業的には、ペルフルオロオクタン酸 (PFOA) やペ ルフルオロオクタンスルホン酸 (PFOS) が知られている。また、ペルフルオロアルキル基 を構造内に含むフッ素テロマーも用いられている。ただし、長鎖のペルフルオロ化合物は安 定性が非常に高いので、環境中で分解されにくく、高い蓄積性がある点、直線性が高いペル フルオロ化合物は、生体に取り込まれやすい点が問題となっている。従って、米国環境保護 庁が 2006 年に PFOS や PFOA に関する削減プログラムを発表し⁶、世界の主要フッ素化 学メーカーはそれに参加している。

ユニークで様々な応用が期待できるペルフルオロ化合物であるが,環境への負荷を十分 に理解した上でその特徴をいかした使用をすることが肝要である。

1-1-2 疎水相互作用 5)

一般に木和したイオンやエタノールなどの極性分子は水に溶けやすい。このような水と 親和しやすい性質を親水性という。これに対し、メタンやエタンのような無極性分子は水に はほとんど溶けない。このように水と親和しにくい性質を疎水性という。疎水性分子や疎水 性基を有する分子を水中にいれると、多くの場合、単に溶けないというだけではなく、疎水 性分子や疎水性基が互いに接した状態をとり、水分子との接触面積をできるだけ減らそう とする。その結果、疎水性分子種が互いに寄り集まり、分子間に結合力が作用しているよう にみえる。このように、水中で水に親和しない疎水性分子や疎水性基が集合する変化の原因 (駆動力)を疎水相互作用という。この作用は疎水性分子同士が結果として集まっているだ けであるが、あたかも積極的な相互作用が生じているようにも見える。溶媒として水ではな く、有機溶媒を用いる場合には親溶媒性/疎溶媒性などと呼ぶこともあるが、疎水性分子や 疎水性基は疎溶媒性分子や疎溶媒基であることも多いため、対象が有機溶媒であっても、疎 水相互作用と呼ぶことも多い。前述のペルフルオロアルキル基は疎水性であって疎溶媒性 でもあるため、有機溶媒に対しても「疎水相互作用を示す」と言われる。この相互作用がフ ルオラス親和力となる。 なお,同一分子中にペルフルオロアルキル基と,親水性基を有する分子を設計すると,そ の疎水/親水の程度に基づきミセルを形成することができる。

1-2 無機フッ素化合物 ¹⁾

無機フッ素化合物はイオン性結晶から分子性化合物まで種々の化学結合を持つものがあ る。フッ素原子を含む化合物は電気陰性度の高さとイオンの強い分極能から様々な特性を 示す。例えば強い酸化性,強い分子性,強い溶媒和性,イオン伝導性を示す。強い酸化性は 高い酸化還元電位に対応するものであり,電気化学デバイスには好適である。強い分子性に より,BF4, PF6イオンが安定に存在できること,LiFの溶媒和性の高さはリチウムイオン 電池電解質として無機フッ素化合物を用いることの優位性を示す。

1-3 超分子 7)

化学結合で複数の原子が集積したものを分子と呼ぶのに比して、分子間相互作用で複数 の分子が集積した高秩序の集合体を超分子、または超分子ポリマーと呼ぶ。超分子は分子間 が非共有結合性の相互作用によって結びつけられ、組織化された構造を有する。一般的な高 分子は共有結合で形成されているため、その点が異なる。非共有結合の緩い相互作用で形成 される超分子構造は外力(例えば、熱、圧力、光、電気など)によって、構造形成と崩壊を 可逆的に繰り返すことができる。非共有結合性の相互作用は水素結合に代表され、そのほか にも例えば、ファンデルワールス相互作用、静電相互作用、π - πスタッキング、双極子相 互作用、配位結合などがある。前述のペルフルオロアルキル鎖に由来する疎水相互作用もこ れに含まれる。代表的な分子間相互作用を表 1-1 に示す。分子間相互作用の強さはその相互 作用によって得られる自由エネルギー変化で判断することができる。引力的な相互作用は いずれもエンタルピー寄与による発熱的な相互作用であり、相互作用が強いということは エンタルピー変化が負に大きいことを意味する。一方、斥力的な相互作用はエントロピー変 化に由来するものである。

超分子の物理・化学的な性質は個々の分子に由来する性質のみならず,分子集合系全体で 独自の新しい性質も有する。

引力的な相互作用	共有結合 配位結合
	水素結合 CH/π相互作用
	電荷移動相互作用
	静電相互作用
	双極子による相互作用 イオン-双極子相互作用 双極子-双極子相互作用 双極子-誘起双極子相互作用 分散力
斥力的な相互作用	疎水相互作用

Table 1-1. Intermolecular interactions for supramolecular structure formation.

超分子としては例えば、ホスト・ゲスト複合体®がある。ある特定の場(空孔)を持つ分 子(ホスト)に非共有結合で別の分子(ゲスト)が適合して結合し,ホスト - ゲストが一体 となった塊(複合体)が生じる。そこには、ホストが特定のゲストのみを取り込む分子認識 がはたらいている。ホスト・ゲスト複合体の代表例は、天然には酵素と基質、人工系ではク ラウンエーテルと金属イオンなどがある。クラウンエーテルはアルカリ金属イオンを強く 認識し, 配位する。様々な環サイズを持つクラウンエーテルによって, アルカリ金属種の区 別も可能である。さらには、エーテル基の酸素の代わりに様々なヘテロ原子を導入すること でイオン認識能を変化させることもできる。種々のホスト - ゲストの組み合わせから, 種々 の分子カプセル、分子モーター等の分子システムが提案されている。また、超分子の別の例 として、 ロタキサンがある。 ロタキサンとは大環状コンポーネントに直鎖状のコンポーネン トが通った状態で, 直鎖状コンポーネントの両末端に嵩高い置換基を配置し, 直鎖状コンポ ーネントが大環状コンポーネントから抜けられなくなった状態のインターロック分子のこ とであり、これは各コンポーネント間に相互作用を働かせた超分子構造を持つ。その他、各 種の超分子ポリマー⁹⁾, 金への配位を用いた超分子などの例がある ¹⁰。さらには液晶性を示 す超分子ポリマーでは、超分子の会合の程度で液晶相温度範囲や光学的性質を制御してい る11)。後述する「ゲル化剤」が形成するネットワークも超分子ポリマーのひとつである。

超分子は,温度や圧力,溶媒種などによって,可逆的に状態変化を誘起することができる ため,自己修復材料などへの応用も検討されている。

1-3-1 ゲル 12)

コロイド分散系の分散粒子間に強い結合力が働き,重力程度の外力によっては破壊され ない網状組織をつくってゼリー状に固化した状態を「ゲル」という。溶媒に対して不溶で三 次元網目構造を有する。これに対して液状のコロイド分散系をゾルという。ゼラチンや寒天 のつくるゲルが代表的であるが,豆腐,こんにゃくなどの食品,生物体材料や土壌のある部 分もゲルである。分散質であるゲル化剤が分散媒中で超分子構造(繊維状ネットワーク)を 形成し、それらの超分子構造中に分散媒が取り込まれることで、系全体として固化(ゲル化) する。ゲルの学術的定義は、(1)2成分以上の成分で構成されるコヒーレントなコロイド分 散系であり、(2)柔軟物か固体の特徴としての力学挙動を示し、(3)分散質、分散媒の両方 とも全試料系に連続的広がっている状態である、と言われる。

ゲルの代表的な分類は以下の通りである。

①ゲル化剤による分類

・高分子ゲル(ポリマーゲル):ゲル化剤が高分子であるもの

・低分子ゲル: ゲル化剤が低分子化合物であるもの

②分散媒による分類

・ヒドロゲル: 分散媒成分として水をもつもの

・オルガノゲル(オイルゲル):分散媒成分として有機溶媒をもつもの

・キセロゲル:分散媒が空気であるもの

③ゲル化の機構による分類

・化学ゲル: 鎖状の高分子が共有結合で架橋されて形成されたゲル
 形成したゲルはゾルに戻ることはなく、ゾル-ゲルの相転移は
 不可逆性である。

・物理ゲル:ゲル化剤が非共有結合性の相互作用で架橋されて形成されたゲル ゲル化剤は鎖状の高分子であっても、低分子化合物であってもよい。 ゾルーゲルの相転移は可逆性である。

一般的に,高分子ゲルはヒドロゲルであり化学ゲルであることが多く,低分子ゲルはオル ガノゲルで物理ゲルであることが多い。

単一のゲル化剤が会合して形成するゲルもあれば,複数種のゲル化剤化合物が反応する ことで形成するゲルもある。また,ホストーゲスト構造によってゲル化する例もある。

1-3-2 高分子ゲル 12)13)と低分子ゲル 14)

高分子ゲルは,架橋された高分子(又はオリゴマー)が三次元の網目構造となり,内部に 水などの流体を保持したもののことを言う。例えば,ゼリーやこんにゃくなどの食品,紙お むつなどの高吸水性樹脂,コンタクトレンズなどが高分子ゲルであり,これらはヒドロゲル でもある。また,後述する電気化学デバイス用途でも高分子ゲルが用いられており,これら にはオルガノゲルも用いられる。高分子ゲルの機能は,高分子の分子構造と架橋後のゲルの 構造で決定する。高分子同士の架橋は共有結合であることが多く,化学ゲルが形成されやす いが,高分子同士の架橋が非共有性の相互作用であれば,物理ゲルが形成できる。高分子(又 はオリゴマー)は分子量分布や屈曲性鎖の効果により結晶性が低いため,長期に放置しても 結晶化せずにゲルとして安定に存在することができる。

低分子ゲルは、低分子のゲル化剤が非共有結合性の相互作用で繊維状の超分子構造を形

成することでゲルとなる。低分子ゲルは油処理,化粧品,医療・医薬,塗料・インキ,電子 デバイス,液晶等で用いられている。

通常,低分子化合物を溶媒に加熱溶解させた後に冷やすと結晶が析出する(再結晶)か, 一様な溶液の状態を保持するかのいずれかである。しかし,稀に放冷過程で溶液からゲルが 形成する場合があり,このような挙動を示す物質が低分子ゲルである。形成したゲルを加熱 すると元の均一な溶液に戻る。結晶化は分子が三次元的に秩序構造を形成することで起こ るのに対し,ゲル化は二次元的な配列で繊維状の構造体が形成し,それが三次元的に広がる ことで引き起こされる。結晶化とゲル化の共通する特徴は,水素結合,ファンデルワールス 力,π-π相互作用などの非共有的な相互作用が駆動力になっている点である。

Figure 1-3. Relationship between gelation and crystallization.

1-3-3 低分子ゲル化剤 14)

低分子ゲルは一般的に以下の特性を示す。

(1)加熱時に容易に溶け, 放冷時に瞬時にゲル化する。このような熱的な相転移は可逆的 に起こる。

- (2) 50gL⁻¹以下の比較的少量の添加でゲル化する。
- (3) 形成されたゲルは熱可逆的なゾル-ゲル相転移を示す。
- (4) ゲル化の原動力は非共有結合的な相互作用である。
- 上記の「低分子ゲル」の性能を満たすための低分子ゲル化剤として
- (①) 非共有結合性の相互作用による巨大繊維状構造の形成
- (②) 非共有結合性の相互作用による繊維状構造間の結合・三次元化
- (③) 準安定状態であるゲルを安定化させ結晶化を妨げる要因の保持
- を満たす必要がある。

非共有結合性の相互作用は、上述の「超分子」の項で述べたとおりであるが、ゲル化に用いられる相互作用は「水素結合」と「芳香環のスタッキング作用」が主に用いられる。分子 構造としては環構造と長鎖のアルキル基を持つものが多い。環にヘテロ原子や水酸基等の 水素結合部位を導入し,環の水素結合力とスタッキング作用をゲル化の推進力にするもの もあるが,長鎖アルキル基の一部に水素結合性部位を導入し,環のスタッキング作用とアル キル基の水素結合力をゲル化の推進力にしている例が多く見られる。

具体的にはアミノ酸誘導体やコレステロール誘導体などがよく知られている。 以下に代表的な低分子ゲル化剤を示す。

Figure 1-4. Typical examples of low-molecular-mass gelators.

なお,低分子化合物は結晶化が熱力学的に安定な現象であり,準安定状態であるゲルの形 成は通常は起こらない。従ってゲル化剤の分子設計は難しく,ゲル化剤の分子設計は偶然に 依りがちである。しかし偶然であっても,新規なゲル化剤が発見されれば,その主要部位が ゲル化に寄与すると考えることができ,さらに新たなゲル化剤の発見に繋げることができ る。

また、ゲル化に際してはゲル化剤同士の相互作用とともに、ゲル化剤と溶媒との相互作用 も重要である。ゲル化剤とゲル化溶媒との関係性について、溶媒の各種物性などとの相関が 報告されている。従来は溶媒の誘電率や双極子モーメント、水ーオクタノール分配係数、 Kamlet-Traft パラメータなどを用いて評価されていたが¹⁵⁾、最近は Hansen 溶解度パラメ ータ¹⁶⁾を用いて、低分子ゲル化剤に基づくゲル化現象を考察している例もある。今後の系 統だった解釈が待たれる。

さらには、ゲル化機構の詳細な検討やゲル化の速度論的解析も行われており ¹⁷,低分子 ゲルは低分子化合物が複数の階層的秩序構造を形成し、その構造は非常に短時間に形成す ることがわかってきている。

このような低分子ゲル化剤は、単に溶媒を効率的にゲル化できるゲル化剤の開発等の観 点のみならず、ゲルの機能化という観点からの応用研究もおこなわれるようになっている。 例えば、熱以外の物理刺激で相転移を起こすゲル、各種センサー、バイオマテリアル、光・ 電子材料等への展開検討などである。また,低分子ゲル化剤を用いたヒドロゲル ¹⁸⁾や両親 媒性ゲル¹⁹⁾も見出されており,応用の幅はますます広がっている。

1-3-4 液晶ゲル 20)

液晶は流動性と異方性とを兼備し,液晶相とは結晶相と等方性液体相との中間の性質を 示す中間相のことである。液晶分子は直線性に優れる棒状構造または平面性に優れる盤状 構造であり,いずれも剛直な部位と柔軟性のある末端基を有する。液晶相は分子配向から, ネマチック相,スメクチック相,コレステリック相,ディスコチック相などが知られており, 層構造を有するスメクチック相は、層の形状からその中がさらに細かく分類されている。

近年,液晶相を示す分子の中にもゲル化能を示す分子が存在することが見出されており, このような分子は液晶ゲルを形成する。液晶ゲルを形成するゲル化剤は液晶相としてコレ ステリック相又はディスコチック相を示すものが多い。そして,例は少ないもののネマチッ ク相やスメクチック相などを示すゲル化剤も見出されつつある。例えば,ゲル化能を有する 化合物に基づくスメクチック液晶は一般的なスメクチック液晶と比較して秩序性が高くな る,などの特徴がある。液晶性を示す材料とゲル化能を示す材料の分子構造は似ている傾向 にあるため,既存の液晶分子の中にゲル化能を示す分子がまだ多く存していることが予想 できる。分子設計が難しいと言われている低分子ゲル化剤であるが,液晶性とゲル化能の関 係を明らかにできれば,液晶の分子設計をゲル化剤の分子設計に応用することが期待でき る。

1-3-5 ペルフルオロアルキル基を有するゲル化剤 21)

ペルフルオロアルキル基には疎水相互作用に基づく凝集性,配向性があることを先に述 べた。そのためペルフルオロ化合物は低分子ゲル化剤の骨格構造の候補となり得る。実際に ペルフルオロ化合物でゲル化能を有するものが見出されつつある。これらはペルフルオロ アルキル基の有する凝集力を使ったり、それと他の相互作用とを併用したりしてゲル化能 を発現させている。以下にペルフルオロ化合物のゲル化剤の例を示す。しかし、研究例も研 究グループもまだ多くはない。なお、ペルフルオロ化合物がゲル化能を示すためには、ある 一定以上の長さのペルフルオロアルキル基が必要である。

Figure 1-5. Examples of gelators having perfluoroalkyl moieties.

1-4 電気化学デバイス

電子やイオンのやりとりにより電気エネルギーと化学エネルギーを変換するデバイスを 電気化学デバイスという。 蓄電や発電用途として広く用いられており, 分散型エネルギー社 会が進むにつれ、各種デバイスの重要性は増している。電気化学デバイスには蓄電池、キャ パシタ, 燃料電池, 太陽電池などがあり, さらには圧電素子や熱電変換素子なども電気化学 デバイスの例である。蓄電デバイスである蓄電池(二次電池)としては、リチウムイオン電 池、鉛蓄電池、ニッケル水素電池などがあり、キャパシタ(コンデンサ)としては電気二重 層キャパシタやリチウムイオンキャパシタなどがある。キャパシタは電池に比べて急速充 放電が可能であることが特徴である。特に、リチウムイオンキャパシタは電気二重層キャパ シタとリチウムイオン二次電池の特徴を兼備するデバイスとして開発され、興味を持たれ ている 22)。二次電池のひとつである,鉛蓄電池は自動車に必ず使用されるため,従来から 将来にわたって重要な電池である。近年のアイドリングストップシステムを搭載した自動 車の普及に伴い, 鉛蓄電池の使われ方が近年変化しており, 鉛蓄電池への要請も変化してい る 23)。他の二次電池としては、ニッケルーカドミウム電池を経由してニッケル水素電池が 提案され、ハイブリッド自動車用電池として普及した。現在、二次電池の代表例となってい るリチウムイオン電池については後述する。蓄電デバイスは電気自動車などの環境対応車 の普及に伴い、市場の爆発的な拡大と要求性能の向上が見込まれており、 ポストリチウムイ オン電池となる革新電池、先進電池やキャパシタの検討も積極的に行われているようにな っている 24)。発電デバイスである燃料電池は、方式によって水素型、炭化水素型、アルコ ール型などがある。家庭用定置用や燃料電池自動車用に提案されている。

1-4-1 リチウムイオン電池 25)

使い切り型の一次電池に対してリチウムイオン電池は充放電可能な二次電池に分類される。従来の二次電池は水系であったが,リチウムイオン電池は非水系である。水に比べて分

解電圧が高い有機溶媒を使用することで電池性能の向上を達成している。一方,可燃性の非 水溶媒を用いるためにそれに基づく課題もある。既存の一次電池と二次電池の位置づけを 図に示す。リチウムイオン電池が開発されるまでは「非水系の二次電池」は存在しなかった。 リチウムイオン電池の開発経緯は Ref. 26 が詳しい。

	Aqueos electrolyte battery	Nonaqueos electrolyte battery (high voltage, capacity)	
Primary battery (disposable)	Mn dry cell, Alkaline dry cell	Metallic lithium battery	
Secondary battery (rechargeable)	Lead-acid battery, Nickel-cadmium battery, Nickel-metal hydride battery	Lithium-ion battery	

Table 1-1. Types of primary and secondary batteries²⁶⁾.

リチウムイオン電池は他の二次電池と比較して小型,軽量,高電圧,メモリー効果なしという特徴がある。それは、小型,軽量化は体積エネルギー密度及び重量エネルギー密度が他の二次電池に比較して大きいことに基づく。そのことを表 1-2 及び図 1-6 で他の代表的な二次電池と比較した。リチウムイオン電池よりもさらにエネルギー密度が高い二次電池としてリチウム金属電池がある。これは負極に金属リチウムを用いたものであるが、安全上の観点から、二次電池として現在は実用化できていない 270。金属リチウムを負極に用いた各種二次電池は次世代電池として研究されており、2030 年頃の商用化が見込まれている 280。

電池の種類	サイズ	重量 (g)	容量 (Ah)	公称電圧 (V)	体積エネルギー 密度 (Wh/L)	重量エネルギー 密度 (Wh/kg)
リチウムイオン	18650 φ18.3mm×65mm	44	2.4	3.7	520	201
ニッケルカドミウム	Dサイズ φ34mm×60mm	152	5.0	1.2	110	39
ニッケル水素	Dサイズ φ34mm×60mm	178	9.0	1.2	195	61
鉛	182×127×202mm	9500	32	12	82	40

Table 1-2. Properties of the various secondary batteries²⁹⁾.

Figure 1-6. Comparison of the various battery technologies in terms of volumetric and gravimetric energy density³⁰⁾.

また、従来、リチウムイオン電池は携帯電話やノートパソコン等の民生用途で用いられて いたが、最近ではスマートフォンやタブレット端末、電気自動車等へ用途が広がっている。 リチウムイオン電池が搭載されている電子機器や工業機器は多いが、それらはリチウムイ オン電池の存在によって発展してきたと言っても過言ではない。そして、最近は電気自動車 等の自動車にもリチウムイオン電池に用いられるようになっており、その更なる発展が期 待されている。これまで「電気自動車の時代が来る」と言われながら一方で懐疑的な見解も あったが、愈々その懐疑を払拭できつつある。図1-7に富士経済が示すリチウムイオン電池 の市場予測を示す。民生用の市場規模も伸びてはいるものの、自動車用途の伸びが著しいこ とがわかる。特に、「EV バス」が走るようになった中国での伸びが著しい。自動車用途の拡 大は、中国のみならず、欧州での環境規制強化に代表される環境意識が世界的に高まってい ることによると考える。小型民生用途も伸びてはいるが今後伸びていく主流は自動車用途 であることがわかる。電池部材についても、主要4部材とその他部材のいずれも伸びてい くことがわかる。従って、リチウムイオン電池及びリチウムイオン電池部材の開発に当たっ ては自動車用途を見据えることが肝要である。なお、正極の割合が高いのは正極にはレアメ タルが用いられていることによる。

◆リチウムイオン二次電池世界市場

◆リチウムイオン二次電池材料世界市場

Figure 1-7. Market forecast of Li ion battery.

リチウムイオン電池の形態は主に図 1-8 の 4 種で設計されている。従来の民生用途では 円筒缶構造の電池が使われることが多かった。例えばノートパソコン用の電池では円筒缶 構造の電池がほとんどである。ところが新規用途では円筒型構造の電池に加えて角型構造 やパウチ型の電池も使用されるようになっている。角型電池やパウチ型電池では多数重ね たときに、円筒缶電池と比べてデッドスペースが少なくなること、放熱バランスがよいこと から広がるようになっている。加えて、パウチ型の電池は外装の簡易さから軽量化に寄与す る一方で安全性に懸念が残る課題がある。これらの事情から各社様々な思想で電池を設計 している。例えば電気自動車で先行するメーカーで比較すると、米国テスラモーターズは円 筒型電池を使用している ³¹⁾が、日産自動車はパウチ型の電池 ³²⁾を用いている。また、トヨ タ自動車は角型電池を視野に入れている旨が発表 ³³⁾された。各社の思想に基づき、当面は 各種形態の電池が共存すると思われる。

電気自動車用途では航続距離を伸ばすために,従来以上に高容量の電池が要請されるこ ととなる。また,広範な温度条件で使用できることや圧力や遠心力などの外力への耐性も従 来以上に求められる。電池を高容量化するほど安全性のリスクが高まるため,高容量化の要 請とあわせて一段と安全化の向上が必要となる。リチウムイオン電池は一度熱暴走が開始 すると途中で止めることができない。従って,熱暴走の機構³⁴⁾の正確な理解とそれを防止 する多重安全構造の構築が必須である。

以上より, リチウムイオン電池は商用化されてから 20 年以上が経過しているが, まだま だ改良の余地があると言える。

Figure 1-8. Shape and components of various Li ion battery³⁰⁾. (a) Cylindrical, (b) Coin, (c) Prismatic, (d) Flat.

リチウムイオン電池は「リチウムを吸蔵・脱離し得る正極活物質と負極活物質を用いたト ポ化学反応に基づく非水系二次電池」であり、充放電には化学的反応を伴わないことが特徴 である。構成は正極、負極、電解液、セパレータを主要4部材とする。正極は集電体の金属 箔(アルミニウム箔等)に正極活物質を塗工している。正極活物質にはリチウム含有金属酸 化物が主に使用され、金属はコバルト、ニッケル、マンガンのいずれか、又はそれらの複合 が用いられることが多い。高容量化のためにはよりリチウム含有量が多い構造が有利であ る。そのため、リチウム過剰型と呼ばれる固溶体型の正極活物質、ニッケルとマンガンを含 有するスピネル構造の正極活物質が候補材として提案されている³⁵⁾。別の形態としてリチ ウム含有のリン酸系化合物が使用されることもある。負極は集電体の金属箔(銅箔等)に負

極活物質を塗工している。負極活物質はカーボン材料が主に使用される。中でも黒鉛が使用 されることが多い。粒径や結晶形などの性質が異なる複数のカーボン材料の混合材料が用 いられることもある。高容量化のためにはよりリチウムの受け入れ性が高い材料が有利で あり、最近はカーボンに代えて、又は併用してシリコン材料が検討されている 36。別の形 態としてチタン酸リチウムなどの金属化合物が用いられることもある。正極及び負極活物 質を集電体に塗工する際には必要に応じて導電助剤を混合し、バインダーを含む電極剤溶 液を調製して塗工する。高容量化のためには単位体積・単位重量当たり活物質量を多くする 必要があり、電極材の組成、塗工膜厚、密度などの最適化が行われる。電解液はリチウムイ オン源となるリチウム塩とそれを溶解・移動できる溶媒を含む。詳細は後述する。セパレー タは正極と負極とを電気的に遮断しつつ, イオン伝導性を有し, さらに電解液中で安定性が 高い材料として, ポリオレフィン製微多孔膜が用いられることが多い。 ポリオレフィンとし てはポリエチレンやポリプロピレンが使用される。 また, 高容量化のために薄膜化も進めら れている。ポリオレフィン微多孔膜はその製法から湿式膜と乾式膜に分類され、両者では微 多孔構造が異なる。安全性と耐酸化性の向上のために,ポリオレフィン膜の表面にセラミッ ク塗工をすることも多い 37。他にも機能性の有機物をポリオレフィン微多孔膜の上に塗布 したセパレータが使用されたり、ポリオレフィン製の微多孔膜以外として、耐熱性の高分子 (例えば芳香族ポリアミド)を用いたり,各種高分子の不織布を用いたり,セルロース(紙) を用いたりする例がある。ポリオレフィンをセパレータに用いれば、その熱特性によって電 池にシャットダウン機構を付与できるため、安全性に寄与する。

リチウムイオン電池はこれらの材料の最適な摺合せによって達成している。

1-4-2 電気化学デバイス用材料とフッ素化合物

フッ素化合物は電気化学的安定性やイオン伝導性等の性能から電気化学デバイス用の材料として様々に使用されている。例えばリチウムー次電池では電解質(塩)や電極材として、 燃料電池では固体高分子電解質膜として使用されている。固体高分子型燃料電池は低温作動性,高出力,取扱い容易性を特徴とし,含フッ素イオン交換膜が電解質膜として使用されている³⁸⁾。これらは電気化学デバイスを駆動するためのキーマテリアルである。また,太陽電池の保護膜やバックシート,原子力発電のウラン燃料製造,キャパシタなどにもフッ素材料が使用されている。

その中でもリチウムイオン電池では電池の様々な部材でフッ素材料が用いられている。 例えば、電解質(塩)、電解液溶媒、電解液添加剤(SEI(Solid electrolyte interface)形成 剤、難燃剤)、電極のバインダーに用いられ、後述の高分子ゲル化剤にも用いられている。 電解質にはルイス酸性のフッ素化合物(BF₃, PF₅ など)とフッ化リチウムとの錯形成で得 られるリチウム錯体フッ化物(LiBF₄, LiPF₆など)又は、トリフルオロメタンスルホン酸 リチウム塩(LiOSO₂CF₃)やそのイミド塩(LiN(SO₂CF₃)₂)などの有機リチウム塩が用い られるが、いずれもフッ素化合物である。電解液溶媒や添加剤として例えば含フッ素エーテ ルや含フッ素リン酸エステルなどの有機フッ素化合物が用いられる。有機化合物のフッ素 置換は耐酸化性を向上させる一方で還元電位の上昇を起こす。そのためフッ素化合物は耐 酸化性の電解液³⁹⁾や良好な SEI 形成剤⁴⁰⁾として機能する。また,難燃剤としても使用され る。電極バインダーや高分子のゲル化剤としては PVdF および PVdF を含む共重合体が頻 用されている。さらには正極材料へフッ素を導入することで正極の耐酸化性を向上させる 試みもなされている。それはバルクへのフッ素導入⁴¹⁾,活物質表面のフッ素修飾⁴²⁾の両者 からの検討がされている。このようにリチウムイオン電池とフッ素化合物は親和性が高い。 リチウムイオン電池は長期にわたり多数回の充放電を繰り返して使用されるものであるか ら,その間の安定性が求められ,その構成材料として新規な材料を採用する場合には安定性 の確認のハードルが高く,実績のある骨格,官能基等を有している材料が安心であると判断 される傾向にある。従って,リチウムイオン電池に適用される新規材料を開発するに当たり, フッ素化合物はそのユニークな特性と共に,電池材料としての実績の点からも着目すべき 材料である。

1-4-3 リチウムイオン電池用電解液 43)

前述のとおり、電解液は、リチウムイオンを溶解、移動できる材料である。言い換えると 有機溶媒にリチウムイオンを溶解したイオン伝導体である。電解液に対する要求特性は① 電気伝導性が高いこと、②電極に対する化学的・電気化学的安定性が高いこと、③使用可能 温度領域が広いこと,④安全性が高いこと,である。また,価格の安さも必要である。リチ ウムイオン電池の開発当初は、負極に対する電気化学的安定性を達成することが課題であ った。しかし最近は電池を高エネルギー密度にするために、電池を高電圧で駆動する要請が 強く,その場合に電解液の正極に対する電気化学的安定性が課題になることも多い。電解液 は非プロトン性溶媒であるカーボネート溶媒にリチウム塩と機能性添加剤を溶解した構成 が一般的である。 主に用いられるカーボネート溶媒は環状カーボネートとして, エチレンカ ーボネート,プロピレンカーボネート,鎖状カーボネートとして,ジメチルカーボネート, ジエチルカーボネート, エチルメチルカーボネートがある。 誘電率と粘度のバランスのため, 環状カーボネートと鎖状カーボネートとの混合溶媒が好適に用いられる。そのほか、各種エ ーテル系溶媒が併用されることもある。例えば、γ-ブチロラクトンは沸点が高いため、高 温使用の電池で使用される。電解質であるリチウム塩は無機塩である LiPF6 が用いられる ことがほとんどであるが、高温安定性の点から LiBF4 が用いられたり、分子安定性等の観 点から有機のリチウム塩が用いられたりすることもある。有機のリチウム塩としては例え ば, リチウムビス (トリフルオロメタンスルホニル) イミド (LiTFSI), リチウムビス (ペ ンタフルオロエタンスルホニル)イミド(LiBETI)などが検討されている。機能性添加剤 44)として, 電極に対する電解液安定性を高めるためにビニレンカーボネート(VC)45)とフ ルオロエチレンカーボネート (FEC) 40が頻用されている。また, エチレンサルファイト (ES) や1,3-プロパンスルトン (PS) などの含 SO 化合物 4⁶が用いられることもある。こ

れらは主に負極に作用し、電解液との良好な界面を形成するために用いられる添加剤であ る。一方、正極に作用する添加剤としては、チウムビス(オキサレートボレート)(LiBOB) やその類似化合物、1,3-プロペンスルトン (PRS)などがその例として知られている⁴⁷⁾。そ のほかにも低温での性能を向上させるための添加剤(プロピオン酸エステル等)、過充電防 止、燃焼抑制等の安全性向上のための添加剤なども用いられることがある。過充電防止剤に は含ビフェニル化合物⁴⁸⁾が多く用いられ、難燃剤としては含フッ素化合物や含アミド化合 物が多く用いられる⁴⁹⁾。電解液を固化するための高分子(ゲル化剤)も機能性添加剤のひ とつである。

そして、リチウムイオン電池の電解液は有機溶媒であり、異常時に燃焼するリスクがある ため、安全性の確保は非常に重要な課題である。そのため、電池には幾重もの安全性機構を 備えている。例えば PTC 素子や外部保護回路が各電池には備えられている。外部保護回路 は、過充電時の充電の停止、過放電時の放電の停止、外部短絡などの大電流放電の停止の機 能を有している。電解液溶媒として、燃焼性の低いフッ素溶媒 50)やイオン液体 51)を使用す る検討も安全性向上の一環として行われている。

1-4-4 ゲル電解質

電気化学デバイス用の電解液には,通常の液体の電解液と共に,電解液を固体化させた電 解液も使用されている。 リチウムイオン電池では電解液の固体化により, ①セパレータが不 要又は薄膜化できる, ②不燃, 難燃など安全性が向上する, ③電極との一体化により信頼性 が向上する,④電極間距離を短くできる(小型化,高エネルギー密度化),ことが期待でき る。さらには流動性の液体を有しないことで電池形状の自由度やデバイス内での電池配置 の自由度が増す効果もある。固体化された電解液には(1)無機固体電解質 52),(2)高分子固体 電解質 53, (3)ゲル電解質 54があり, (1)と(2)は溶媒を含まない固体電解質である。その中で も(1)は不燃性の無機物から構成されるため安全性の高さは抜群であり、酸化物や硫化物の 電解質が主に検討されている。従来の無機固体電解質は液体の電解液と比較して桁違いに イオン伝導が低い課題があったが,固体電解質は最近精力的に検討されており,液体の電解 液と遜色のないイオン伝導性を示す電解質も複数見出されている 55)。そして, 無機固体電 解質は有機物よりも酸化還元に強いため, 高電圧駆動の電池用にも期待されている。 実用化 に向けては電解質と電極との界面接着性の向上が必要であるものの、次世代の電池として 現在有望視されている。(2)はイオン伝導性の低さが課題である。特に,ガラス転移温度(Tg) 以下では急激に運動性が低下するため,高分子の Tg以上で駆動する必要がある。イオン性 塩を溶解し、イオン伝導性を示す高分子として、ポリアルキレンオキシド系などが提案され ているが、常温で液体の電解液に相当するイオン伝導性は達成できていない。過去には精力 的に検討されていたが,最近は(1)が実現性を帯びてきたことから,(1)にその座は奪われつ つあるようにも見られる。(3)は高いイオン伝導性を保持できるゲル電解質として開発され、 事業化されている。 ゲル電解質で用いる高分子はポリアルキレンオキシド以外に, ポリアク

リロニトリルやポリメチルメタクリレート,ポリビニルピロリドン,ポリフッ化ビニリデン, ポリ(フッ化ビニリデンーへキサフルオロプロピレン)などが提案されてきた。その中で, ポリ(フッ化ビニリデンーへキサフルオロプロピレン)(PVdF-HFP)を用いたリチウムイ オン電池用のゲル電解質は Bellcore が最初に発表し,事業化した⁵⁶⁾。共重合比や分子量を 最適化しながら現在最も広く使われている高分子であり,市販の電池にも多く搭載されて いる。所謂「ポリマー電池」と言うときには PVdF-HFPを用いたゲル電解質が使用されて いる電池を示すことが多い。PVdF-HFP は結晶相とアモルファス相を含有するが,結晶相 が多いほど機械的強度が高くなり,ゲル化しにくくなる。一方,アモルファス相が多いほど 機械的強度は低下するが,ゲル化しやすくなる。また,ゲル中に含有する有機溶媒量が多く なるとイオン伝導性は向上するが,機械的強度は低下する。このような特性を有する PVdF-HFP を用いた電解質は、イオン伝導性の低下が少ないこと、(1)や(2)と比較すると劣るもの の,液体の電解液に比べれば安全性が優れることから好適に使用されている。

また,最近では高いキャリア密度と大きな移動度を両立させるため,高分子とイオン液体 とからなるイオンゲルも高分子ゲル電解質として提案されている。

Figure 1-8. Classification of Solidified Li ion battery electrolyte.

そして、(3)では低分子ゲル化剤を用いたゲル電解質も検討されている 50。しかし、すべ て研究段階に留まっており、実用化されている例はまだない。低分子ゲル化剤は有機溶媒の ゲル化を得意としているため、リチウムイオン電池用電解液のゲル化剤として潜在的には 有望であるが、低分子ゲル化剤は高分子と比較して複雑な分子構造を有しており、安価で簡 易に合成できないものが多いこと、水素結合性基を有する化合物が多く、それが電気化学的 安定性低下の原因になり、長期の充放電安定性に対する不安が払拭できていないことが主 な課題である。なお、低分子ゲル化剤を用いた電解液では、イオン液体を低分子ゲル化剤で ゲル化する検討が先行している 58%。イオン液体は導電性が高く、電気化学的に比較的安定 であり、難燃性と不揮発性を有することから、各種電気化学デバイス用途への展開可能性が ある。従来は、一般的な有機溶媒に対してゲル化能が認められたゲル化剤をイオン液体用途 へ展開するというアプローチが取られていたが、最近はイオン液体に特化したゲル化剤の 開発も進められている。

また,電気化学デバイス用電解液という観点では,色素増感太陽電池用電解液でも,低分子ゲル化剤を用いたゲル電解質の検討が行われている⁵⁹。

1-5 クロスカップリング反応 60)

有機合成で、炭素-炭素結合を形成する反応をカップリング反応と言う。その中でも異種の2 つの原料から炭素-炭素結合を形成する反応をクロスカップリング反応と言う。炭素カチオンを形成する化合物と炭素アニオンを形成する化合物とを反応させることで sp³炭素同士の結合を形成する反応は古くから広く知られていたが、sp²炭素同士の結合は sp³炭素同士の結合に比べて形成しにくく、その形成反応は困難である時代が続いていた。

1972年にパラジウムやニッケルを触媒に用いることで芳香族炭素同士の結合が形成できることが見つけられ⁶¹⁾,「熊田-玉尾カップリング」と名付けられた。その後,熊田-玉尾カップリングで用いられていたマグネシウムを亜鉛に変えた「根岸カップリング」,スズを使う「Stille(または右田-小杉-Stille)カップリング」,銅を使ってアセチレンを結合させる「薗頭カップリング」などが提案された。そして,他のクロスカップリング反応で用いていた,有機金属化合物を有機ホウ素化合物に変えた「鈴木カップリング(または鈴木-宮浦カップリング)」⁶²⁾が提案されるにいたった。

有機ホウ素化合物は有機金属化合物よりもカップリング相手を選ばないという利点があ り、多くの場合には保護などを必要としない。また、水や空気等に対する安定性が高く、工 業的に扱いやすい。そのため鈴木カップリングは、ビアリール構造の形成として現在最も汎 用の合成法である。鈴木カップリングが見出されたことで、天然物の全合成、液晶材料や各 種エレクトロニクス材料の合成、医薬品の合成等、芳香族部位を有する化合物の合成が飛躍 的に進んだ。

1-6 本研究の目的と論文構成

1-6-1 本論文の目的

本研究では「フッ素を用いた電気化学デバイス用の新規機能材を提案する」ことを目的と している。そして具体的には、ペルフルオロアルキル基と芳香環を有する新規な低分子ゲル 化剤を達成することを第一の目的とした。ゲル化の推進力としてペルフルオロアルキル基 の疎水相互作用に基づく凝集力を用いれば、水素結合に頼らないゲル化が達成できる。水素 結合を有しないゲル化剤は長期の化学的安定性、電気化学的安定性に優れるゲル化剤にな ると期待できる。それによって、応用範囲の広いゲル化剤になると考えた。そして、そのゲ ル化剤を用いて実際に電気化学デバイスへの応用可能性を提案することを第二の目的とし た。具体的にはリチウムイオン電池用電解液をゲル化したゲル電解質を作製し、電気化学的 特性と電池安全性を評価し、その適用性を提案することを目指した。

1-6-2 本論文の構成

第一章 緒言

まず、本研究の背景である、フッ素化合物、ゲル化剤/ゲル、電気化学デバイス(リチウムイオン電池)についての前提や現状を整理した。ペルフルオロ化合物のユニークな特性、

低分子ゲル化剤の現状,リチウムイオン電池用電解液への要求を示すことで,本研究の意義 を明確にし,本研究の目的を示した。

第二章 2-アルコキシ-6-[4-(2-ペルフルオロヘキシル)エチルチオフェニル]ナフタレンの合成と物理化学的性質

ペルフルオロアルキル基を有する新規ゲル化剤を提案し、ペルフルオロアルキル基がゲル化能に対して効果を示すことを実証した。ペルフルオロアルキル基の相互作用を使用することで非水素結合性のゲル化剤を達成すると共に、液晶性も示した。ゲル化能と液晶性との関係を考察した。

第三章 ペルフルオロアルキル部位およびスルホニルフェニル部位を有する新規低分子 ゲル化剤の合成と物性

ペルフルオロアルキル基を有する新規なゲル化剤としてスルホニルフェニル基を有する ゲル化剤を提案した。ペルフルオロアルキル基及びアルキル基の炭素数とゲル化能の関係 を調べ,ゲル化できる溶媒種の傾向を検討した。そして,ゲル化能と形成したゲルの形態と の関係を調べた。また,形成する繊維状構造体の内部形態の解析を試みた。

第四章 ペルフルオロアルキル部位およびスルホニルフェニル部位を有する新規低分子ゲ ル化剤を用いた非水電解質およびリチウムイオン電池

第三章で提案したゲル化剤を用いてリチウムイオン二次電池電解液用のゲル電解質を実際に作製し、その電池性能と安全性を評価した。電解液の性能としてイオン伝導性に対応する拡散性能の評価、燃焼抑制と漏液抑制能を評価した。電池の性能として各種充放電試験と 過充電試験を行った。過充電試験では過充電時のデンドライト形状から短絡抑制能を評価し、また、実際に発火・破裂挙動を追跡した。

第五章 ペルフルオロアルキル部位およびスルホニルビフェニル部位を有する新規低分子 ゲル化剤の合成と物性

第三章で得られた結果を元に、さらにゲル化能が高いゲル化剤を設計するため、分子骨格 をフェニルからビフェニルにしたゲル化剤を設計した。第三章と同様に分子構造とゲル化 能の関係等を調べた後、ゲルの構造解析や形成機構の解明を目指した。それぞれ、各分子の 配列から超分子のマクロ構造までの階層構造に対応して解析した。さらに、ゲル化剤が繊維 状構造を形成する動的挙動の追跡を行った。

第六章 ペルフルオロアルキル部位およびスルホニルビフェニル部位を有する新規低分子 ゲル化剤を用いた非水電解質およびリチウムイオン電池

第五章で提案したゲル化剤を用いてリチウムイオン二次電池電解液用のゲル電解質を作

製し,その電池性能と安全性を評価した。電池性能は第四章と同様の評価に加え,SEI 形成 剤としての可能性をも評価した。電池安全性としては加圧,加熱に対する漏液抑制能の評価, 過充電時のリチウムデンドライト形状の観察と,短絡抑制や反応性低下の挙動を実際に測 定した。また,第四章同様の過充電による発火・破裂試験も実施した。

第七章 ペルフルオロアルキル部位およびスルホニルビフェニル部位を有する新規低分子 ゲル化剤の合成

ゲル化剤として有用な,第五章で設計した化合物の量産製法の検討を行った。第五章の製 造条件では量産に適合しない工程を実験室の検討で改善した後に,量産試作を行い,その適 合性を判断し,残課題を示した。

第八章 結言

本論文で明らかにしたことをまとめ、本研究の意義を総括した。そして、今後取り組むべ き課題を整理した。

References

 石川 延男, *有機合成化学協会誌*, 42, 770-774 (1984). 独立行政法人 日本学術振興会 フッ素化学第 155 委員会 「フッ素化学入門 2010 基礎と応用の最前線」三共出版 (2010).

2) J.-L. M. Abboudm, R. Notario, Pure Appl. Chem., 71, 645-718 (1999).

3) J. A. Gladysz, D.P. Curran, *Tetrahedron*, 58, 3823-3825 (2002).

 J. Kvivala, T. Briza, O. Paleta, K. Auerova, J. Cermak, *Tetrahedron*, 58, 3847-3854
 (2002). M. Duan, H. Okamoto, V. F. Petrov, S. Takenaka, *Bull. Chem. Soc. Jpn.*, 72 1637-1642 (1999).

5) T. V. Chalikian, *J. Phys. Chem. B*, 105, 12566-12578 (2001). A. Y. B. -Naim "Hydrophobic Interactions" Springer Science & Business Media (2012).

6) http://www.epa.gov/oppt/pfoa/pubs/stewardship/index.html.

7) C. O. Dietrich-Buchecker, J. P. Sauvage, *Bioorganic Chemistry Frontiers.*, 2, 195 (1991). D. S. Lawrence, T. Jiang & M. Levett, *Chem. Rev.*, 95, 2229-2260 (1995). L. Brunsveld, B. J. B. Folmer, E. W. Meijer, & R. P. Sijbesma, *Chem. Rev.*, 101, 4071-4097 (2001). J. -M. Lehn, *Polymer international*, 51, 825-839 (2002). 日本化学会 「化学の要点 シリーズ 超分子化学」共立出版 (2017).

8) http://square.umin.ac.jp/aoki530t/prorogu_daigaku/cyoubunshi1.htm.

9) 橋爪 章仁 原田 明, ネットワークポリマー 30,273 (2009).

10) M. -C. Daniel & D. Astruc, Chem. Rev., 104, 293-346 (2004).

11) A. Ciferri, Liq. Cryst., 26, 489-494 (1999). C. T. Imrie, Trends Polym. Sci., 3, 22-29

(1995). T. Odijk, Curr. Opin. Colloid Interface Sci., 1, 337-340 (1996). P. Van der Schoot,
J. Phys. II., 5, 243-248 (1995). A. Ciferri, Liq. Cryst., 26, 489-494 (1999).

12) 長田 義仁, 梶原 莞爾, 「ゲルハンドブック」エヌ・ティー・エス (2003). 高分子学会, 「高分子基礎科学 One Point 高分子ゲル」 共立出版 (2017).

13) 増田 善彦, 高分子, 48, 416-419 (1999). 吉田 亮著 高分子学会編集「高分子ゲル」共 立出版 (2004).

14) P. Terech, R. G. Weiss, *Chem. Rev.*, 97, 3133-3159 (1997). 杉安 和憲,藤田 典史,新海 征治, *有機合成化学協会誌*, 63, 359-369 (2005). S. S. Babu, V. K. Praveen, A. Ajayaghosh *Chem.Rev.*, 114, 1973-2129 (2014). K. Hanabusa, M. Suzuki, *Bull. Chem. Soc. Jpn.*, 89, 174-182 (2016). 鈴木 正浩,「低分子ゲルの開発と応用」シーエムシー出版 (2016).
15) P. Curcio, F. Allix, G. Pickaert, B. J. -Grégoire, *Chem. Eur., J.*, 17 13603-13612 (2011).
16) Y. Lan, M. G. Corradini, X. Liu, T. E. May, F. Borondics, R. G. Weiss, M. A. Rogers, *Langmuir*, 30, 14128-14142 (2014). Y. Lan, M. G. Corradini, R. G. Weiss, S. R. Raghavan, M. A. Rogers, *Chem. Soc. Rev.*, 44, 6035-6058 (2015).

17) E. Dickinson, J. Chem. Soc., Faraday T rans., 93, 111-114 (1997). X. Huang, S. R. Raghavan, P. Terech, R. G. Weiss, J. Am. Chem. Soc., 128, 15341-15352 (2006).

18) L. A. Estroff, A. D. Hamilton, Chem. Rev., 104, 1201-1217 (2004).

19) M. Suzuki, M, Nanbu, M, Yumoto, H. Shirai, K. Hanabusa, New J. Chem., 29, 14391444 (2005). D. Koda, T. Maruyama, N. Minakuchi, K. Nakashima, M. Goto, Chem.
Commun., 46, 979-981 (2010).

20) Y. Morita, K. Kawabe, F. Zhang, H. Okamoto, S. Takenaka, H. Kita, *Chem. Lett.*, 34, 1650-1651 (2005). K. Kubo, H. Takahashi, H. Takeuchi, *J. Oleo. Sci.*, 55, 545-549 (2006).
P. Zhang, H. Wang, H. Liu, M. Li, *Langmuir*, 26, 10183-10190 (2010).

M. George, S. L. Snyder, P. Terech, C. J. Glinka, R. G. Weiss, *J. Am. Chem. Soc.*, 125, 10275-10283 (2003). T. Yajima, E. Tabuchi, E. Nogami, A. Yamagishi, H. Sato, *RSCAdv.*, 5, 80542-80547 (2015). T. Yoshida, T Hirakawa, T. Nakamura, Y. Yamada, H. Tatsuno, M. Hirai, Y. Morita, H. Okamoto, *Bull. Chem. Soc. Jpn.*, 88, 1447-1452 (2015). B. Cao, Y. Kaneshige, Y. Matsue, Y. Morita, H. Okamoto, *New J. Chem.*, 40, 4884-4887 (2016).

22) A. Yoshino, T. Tsubata, M. Shimoyamada, H. Satake, Y. Okano, S. Mori, S. Yata, J. *Electrochem. Soc.*, 151, 12, A2180-A2182 (2004). 宮川 里咲, 羽藤 之規, 稲川 昌子, 井上 光司, 関 大介, *NEC 技報*, 63, 70-74 (2010). 長谷部 章雄, *炭素*, 256, 33-40 (2013).

23) 高田 利通, 門馬 大輔, 古川 淳, FB テクニカルニュース, 62, 15-18 (2006). 高田 利通, 古川 淳, FB テクニカルニュース, 64, 43-48 (2008). 和田 秀俊, 細川 正明, 大前 孝夫, GS Yuasa Technical Report, 9, 16 (2012). 石川 雅健, 小林 俊貴, 稲垣 賢, 洲脇 弘典, 坪井 祐一, 岩口 善人, 大前 孝夫, GS Yuasa Technical Report, 10, 29 (2013). 原田 岬, 杉江 一宏, Panasonic Technical Journal, 56, 56-58 (2010). 和田 圭一, 大越 哲郎, 大津 公二,

佐々木 一哉, 箕浦 敏, 小暮 耕二, 新神戸テクニカルレポート, 20, 17-21 (2010). 大津 公 二, 瀬和 格, 大越 哲郎, 箕浦 敏, 高橋 悟, 戸塚 正寿, 新神戸テクニカルレポート, 22, 15-28 (2012).

24) http://www.nedo.go.jp/content/100559230.pdf.

http://www.nedo.go.jp/content/100863584.pdf.

http://www8.cao.go.jp/cstp/tyousakai/juyoukadai/energy/17kai/siryo1-1-1.pdf.

25) 芳尾 真幸,小沢 昭弥,「リチウムイオン二次電池 第二版 材料と応用」,日刊工業新聞 社 (2007). B. Scrosati, J. Garche, *J. Power Sources.*, 195, 2419–2430 (2010). V. Etacheri, R. Marom, R. Elazari, G, Salitra, D. Aurbach, *Energy Environ. Sci.*, 4, 3243-3262 (2011).
26) 吉野 彰,「リチウムイオン電池物語・日本の技術が世界でブレイク」シーエムシー出版

(2004). A. Yoshino, Angew. Chem. Int. Ed., 51, 5798-5800 (2012).

27) M. Dollé, L. Sannier, B. Beaudoin, M. Trentin & J.-M. Tarascon, Electrochem. *Solid-State Lett.*, 5, A286-A289 (2002).

28) 独立行政法人 新エネルギー・産業技術総合開発機構 NEDO 二次電池技術開発ロード マップ 2013 (Battery RM2013) (2015).

29) http://www.baysun.net/ionbattery_story/lithium03.html#story3.

30) J. -M. Tarascon & M. Armand, Nature, 414, 359-367 (2001).

31) https://jp.reuters.com/article/l3n0lv08j-panasonic-tesla-idJPTYEA1P01420140226.

G. Berdichevsky, K. Kelty, JB Straubel & E. Toomre, "The Tesla Roadster Battery System"., Tesla Motors (2006 (Updated 2007)).

32) 日本特許第 4158440 号公報, 日本特許第 4661020 号公報.

33) http://news.panasonic.com/jp/press/data/2017/12/jn171213-2/jn171213-2.html.

34) P.G. Balakrishnan, R. Ramesh, T. P. Kumar, J. Power Sources, 155, 401-414 (2006).

Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, J. Power Sources, 208, 210-224 (2012).

H. U. E.-Hernandez, R. M. Gustafson, M. Papadaki, S. Sachdeva, M. S. Mannan, J. Electrochem. Soc., 163, A2691-A2701 (2016). X. F., M. Ouyang, X. Liu, L. Lu, Y. Xia, X. He, Energy Storage Materials, 10, 246-267 (2018).

35) Z. Lu, J. R. Dahn, J. Electrochem. Soc., 149, A 815-A822 (2002). K. Kang, Y. S. Meng,
J. Bréger, C. P. Grey, G. Ceder, Science, 17, 311, 977-980 (2006). M. Kundurac, J. F. A.Shara, G. G. Amatucci, Chem. Mater., 18, 3585-3592 (2006). Manthiram, K.
Chemelewskia, E. -S. Lee, Energy Environ. Sci., 7, 1339-1350 (2014).

36) I. S. Kim, P. N. Kumta, *J. Power Sources.*, 136, 145-149 (2004). U. Kasavajjula, C. Wang, A. J. Appleby, *J. Power Sources*, 163, 1003-1039 (2007). H. Wu, Y. Cui, *Nano Today.*, 7, 414-429 (2012).

37) J.-A. Choi, S. H. Kim, D. -W. Kim, J. Power Sources, 195, 6192-6196 (2010). X. Huang,
 J. Solid State Electrochemistry, 15, 649-662 (2011).

38) B. Smitha, S. Sridhar, A.A. Khan, J. Membrane Science, 259, 10-26 (2005). Y. Wang,
K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, Applied Energy, 88, 981-1007 (2011).

39) G. Nagasubramanian, C. J. Orendorff, J. Power Sources, 196, 8604-8609 (2001). L.

Hu, Z. Zhang, K. Amine, *Electrochem. Commun.*, 35, 76-79 (2013). Z. Zhang, L. Hu, H.

Wu, W. Weng, M. Koh, P. C. Redfern, L. A. Curtiss, K. Amine, *Energy Environ. Sci.*, 6, 1806-1810 (2013).

40) R. McMillan, H. Slegr, Z.X Shu, W. Wang, J. Power Sources, 81-82, 20-26 (1999).

41) K. Kubo, M. Fujisawa, S. Yamada, S. Arai, M. Kanda, J. Power Sources, 68, 553-557
(1997). S. Yonezawa, T. Okayama, H. Thuda, M. Takashima, J. Fluorine Chem., 87, 141143 (1998). S. Okada, S. Sawa, M. Egashira, J. Yamaki, M. Tabichi, H. Kageyama, T. Konishi, A. Yoshino, J. Power sources, 97-98, 430-432 (2001).

42) Y. -K. Sum, S. -W. Cho, S. -T. Myung, K. Amine, J. Prakash, *Electrochimica Acta.*, 53, 1013-1019 (2007). B.- C. Park, H.- B. Kim, S. -T. Myung, K. Amine, I. Belharouak, S. -M. Lee, Y. -K. Sum, *J. Power Sources*, 178, 826-831 (2008).

43) Kang Xu, *Chem. Rev.*, 104, 4303-4417 (2004). Y. Sasaki, *Electrochemistry*, 76, 2-15 (2008).

44) S. S. Zhang, J. Power Sources, 162, 1379-1394 (2006).

45) D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, *Electrochimica Acta.*, 47, 1423-1439 (2002). H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, *J. Electrochem. Soc.*, 151, A1659-A1669 (2004). J. C. Burns, R. Petibon, K. J. Nelson, N. N. Sinha, A. Kassam, B. M. Way, J. R. Dahn, *J. Electrochem. Soc.*, 160, A1668-A1674 (2013).

46) G. H. Wrodnigg, J. O. Besenhard, M. Winter, *J. Electrochem. Soc.*, 146, 470-472 (1999).

47) G. V. Zhuang, K. Xu, T. R. Jow, P. N. Ross Jr., *Electrochem. Solid-State Lett.*, 7, A224-A227 (2004). N. -S. Choi, K. H. Yew, H. Kim, S, -S. Kim, W. -U. Choi, *J. Power Sources*, 172, 404-409 (2007).

48) L. Xiao, X. Ai, Y. Cao, H. Yang, *Electrochimica Acta.*, 49, 4189-4196 (2004). H. Lee, J.
H. Lee, S. Ahn, H. - J. Kim, J. -J. Cho, *Electrochem. Solid-State Lett.*, 9, A307-A310 (2006). M. Q. Xu, L. D. Xing, W. S. Li, X. X. Zuo, D. Shu, G.L. Li, *J. Power Sources*, 184, 427-431 (2008).

49) C. J. Orendorff, G. Nagasubramanian, T. N. Lambert, K. R. Fenton, C. A. Apblett, C.R. Shaddix, M. Geier, E. P. Roth, SANDIA REPORT "Advanced Inactive Materials for Improved Lithium-Ion Battery Safety", Sandia National Laboratories (2012).

50) G. Nagasubramanian, C. J. Orendorff, J. Power Sources, 196, 8604-8609 (2011).

51) H. Matsumoto, H. Sakaebe, K. Tatsumi, J. Power Sources, 160, 1308-1313, (2006). S.

Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe,
N. Terada., J. Phys. Chem. B, 110, 10228-10230 (2006). A. Lewandowski, A. S´. - Mocek,
J. Power Sources, 194, 601-609 (2009).

52) P. Knauth, Solid State Ionics, 180, 911-916 (2009).

53) W. H. Meyer, *Adv. Mater.*, 10, 439-448 (1998). 金村 聖志, *機能材料*, 30, 6-11 (2010). 新谷 武士, *機能材料*, 30, 12-18 (2010).

54) J. Y. Song, Y. Y. Wang, C. C. Wan, *J. Power Sources.*, 77, 183-197 (1999). A. M. Stephan, *Euro. Polym. J.*, 42, 21-42 (2006). 松本幸三, 遠藤 剛, 勝田 耕平, 李 軫, 山田 欣司, *JSR TECHNICAL REVIEW* 120 1-6 (2013). 中島 薫, *機能材料*, 30, 27-32 (2010).

55) N. Kayama, K. Homma, Y. Yamanaka, M. Hirayama, R. Kanno, M, Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, *Nat. Mater.*, 10, 682-686 (2011).
Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, *Enrgy Environ. Sci.*, 7, 627-631 (2014). A. Hayashi, A. Sakuda, M, Tatsumisago, *Front. Energy Res.*, 4, 25 (2016).

56) A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, U. S. Patent., 5296318 (1994). A. S. Gozdz,

C. N. Schmutz, J. M. Tarascon, P. C. Warren, U. S. Patent., 5418091 (1995). A. S. Gozdz,

J. M. Tarascon, P. C. Warren, U. S. Patent, 5460904 (1995). J.-M. Tarascon, A.S. Gozdz,
C. Schmutz, F. Shokoohi, P. C. Warren, Solid State Ionics, 86-88 49-54 (1996).

57) K. Hanabusa, K. Hiratsuka, M. Kimura, H. Shirai, Chem. Mater., 11, 649-655 (1999).

K. Hanabusa, D. Inoue, M. Suzuki, M. Kimura, H. Shirai, Poly. J., 31 1159-1164 (1999).

58) M. A. Susan, T. Kaneko, A. Noda, M. Watanabe, J. Am. Chem. Soc., 127, 4976-4983 (2005).

59) F. Placin, J.-P. Desvergne, J. -C. Lassegues *Chem. Mater.*, 13, 117-121 (2001). W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, *Chem. Commun.*,374-375 (2002).
60) N. Miyaura, A. Suzuki *Chem. Rev.*, 95, 2457-2483 (1995).

61) K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc., 94, 4374-4376 (1972). K.

Tamao, Y. Kiso, K. Sumitani, M. Kumada, *J. Am. Chem. Soc.*, 94, 9268-9269 (1972).

62) N. Miyaura, K. Yamada, A. Suzuki, *Tetrahedron Lett.*, 20, 3437-3440 (1979). A. Suzuki, *J. Organomet. Chem.*, 576, 147-168 (1999).

第二章 2·アルコキシ-6-[4-(2·ペルフルオロヘキシル)エチルチオフェニル]ナフタレンの 合成と物理化学的性質

2-1 緒言

ゲル化剤へのペルフルオロアルキル基の導入は,自己組織化を高めるための方法として 有用であり、ペルフルオロアルキル基を有する液晶性化合物は多く知られていること¹⁾、ペ ルフルオロアルキル基を有する有機ゲル化剤もいくつか提案,調製されていること²⁾を第一 章で述べた。ペルフルオロアルキル基はアルキル基とは異なるゲル化能を有する。また、4-[2-(ペルフルオロアルキル)アルコキシ]基を有する化合物は液晶性(スメクチック液晶)を 示すことは以前から報告されているが³⁾、ゲル化能にも寄与することも近年わかってきた⁴⁾。 それらの結果に基づき、本章ではアルキル基と芳香環とをスルフィドで接続した化合物を 設計した(図 2-1)。この化合物を合成し、液晶性とゲル化能を評価した。

2-2 実験

2-2-1 合成

スキーム 2-1 に従って化合物 1-n を合成した。合成手順は以下の通りである。化合物 1-n および合成中間体は IR, ¹H NMR スペクトル,高分解質量スペクトル (HRMS) に よって同定した。以下に合成結果を示す。

Scheme 2-1. Synthetic scheme for Compounds 1-n.

○4-[2-(ペルフルオロヘキシル) エチルスルファニル]ブロモベンゼン (A)の合成 ヨウ化-2-(ペルフルオロヘキシル) エチル (30.02 g, 63.33 mmol), 4-ブロモベンゼンチ オール (11.96 g, 63.29 mmol), 炭酸カリウム (13.29 g, 96.16 mmol), アセトン 100 mL を 300 mL のフラスコに加え, 該混合物を1日間還流させた。その後反応混合物を室温に冷却 した。次に, 飽和塩化ナトリウム水溶液 100 mL を反応混合物に加えた後, 酢酸エチル 100 mL で 3 回抽出した。有機層を合わせ、硫酸マグネシウムで乾燥後、硫酸マグネシウムを濾 過し、濾液をロータリーエバポレータで減圧濃縮した。得られた生成物をエタノールで再結 晶して 4- [2- (ペルフルオロヘキシル) エチルスルファニル]ブロモベンゼン (A) (32.41 g, 60.76 mmol)を無色粉末として収率 96 %で得た。mp. 43~44 °C, IR (KBr disc): ν = 1248-1140 cm⁻¹, ¹H NMR (500 MHz, CDCl₃): δ = 2.33-2.43 (2H, m), 3.09-3.12 (2H, m), 7.23 (2H, d, *J* = 8.5 Hz), 7.46 (2H, d, *J* = 8.5 Hz) ppm, HRMS (ESI): m/z calcd. for C₁₄H₇BrF₁₃S, [M–H]- 532.9244; found 532.9285.

○2·メトキシ-6-[4-(2-ペルフルオロヘキシル)エチルスルファニル]フェニルナフタレン (化 合物 1-1)の合成

4·[2·(ペルフルオロヘキシル) エチルスルファニル]ブロモベンゼン (化合物 A) (13.38 g, 25.00 mmol), 6·メトキシ·2·ナフチルボロン酸 (5.00 g, 24.75 mmol), 炭酸ナトリウム (5.30 g, 50.00 mmol), 酢酸パラジウム (0.05 g, 0.9 mol%), トリス(2·メチルフェニル)ホスフィン (0.15 g, 2 mol%), 1,4·ジオキサン 40 mL, 水 40 mL を 200 mL のフラスコに入れ, 窒素雰 囲気下で 12 時間還流させた。その後反応混合物を室温に冷却した。次に飽和塩化ナトリウ ム水溶液 100 mL を反応混合物に加えた後, クロロホルム 100 mL で 3 回抽出した。有機 相を合わせ, 硫酸マグネシウムで乾燥後, 硫酸マグネシウムを濾過し, 濾液をロータリーエ バポレータで減圧濃縮した。得られた生成物をシリカゲルカラムクロマトグラフィー (溶出 液: クロロホルム) で精製し, および再結晶化 (エタノール:トルエン = 8:2) により化 合物 1·1 (14.55 g, 23.76 mmol)を無色結晶として収率 95 %で得た。IR (KBr disc): ν = 1236–1188 cm⁻¹, ¹H NMR (500 MHz, CDCl₃): δ = 2.40–2.50 (2H, m), 3.12–3.15 (2H, m), 3.95 (3H, s), 7.17 (1H, d, 2.4 Hz), 7.18 (1H, dd, *J* = 10.9, 2.4 Hz), 7.47 (2H, d, *J* = 8.5 Hz), 7.68 (2H, d, *J* = 8.5 Hz), 7.69 (1H, dd, *J* = 10.9, 2.4 Hz), 7.79 (1H, d, *J* = 9.8 Hz), 7.81 (1H, d, *J* = 9.8 Hz), 7.97 (1H, d, *J* = 2.4 Hz) ppm, HRMS (ESI): m/z calcd. for C₂₅H₁₆OF₁₃S, [M–H]– 611.0714; found 611.0712.

○2·エトキシ-6-[4·(2·ペルフルオロヘキシル)エチルスルファニル]フェニルナフタレン (化 合物 1-2)の合成

4-[2-(2-ペルフルオロヘキシル)エチルスルファニル]ブロモベンゼン(化合物 A)(1.24 g, 2.31 mmol), 6-エトキシ-2-ナフチルボロン酸(0.50 g, 2.31 mmol), 炭酸ナトリウム 0.49 g, 4.63 mmol), 酢酸パラジウム(0.01 g, 2 mol%), トリス(2-メチルフェニル)ホスフィン(0.03 g, 4 mol%), 1,4-ジオキサン 40 mL, 水 40 mL を 200 mL のフラスコに入れ, それらの混 合物を窒素雰囲気下で12 時間還流した。その後反応混合物を室温に冷却した。次に飽和塩 化ナトリウム水溶液 100 mLを反応混合物に加え,クロロホルム 100 mL で3回抽出した。 有機相を合わせ, 硫酸マグネシウムで乾燥後, 硫酸マグネシウムを濾過し, 濾液をロータリ ーエバポレータで減圧濃縮した。得られた生成物をシリカゲルカラムクロマトグラフィー (溶出液:クロロホルム)および再結晶化(エタノール:トルエン=8:2)により化合物 1-2 (1.26 g, 2.01 mmol)を無色粉末として収率 87%で得た。IR(KBr disc):v=2980,2936,

1238-1211 cm⁻¹, ¹H NMR (500 MHz, CDCl₃): δ = 1.50 (3H, t, *J* = 7.0 Hz), 2.40-2.50 (2H, m), 3.12-3.15 (2H, m), 4.17 (2H, q, *J* = 6.7 Hz), 7.17 (1H, d, 2.4 Hz), 7.18 (1H, dd, *J* = 10.9, 2.4 Hz), 7.47 (2H, d, *J* = 8.5 Hz), 7.68 (2H, d, *J* = 8.5 Hz), 7.69 (1H, dd, *J*=10.9, 2.4 Hz), 7.79 (1H, d, *J* = 9.8 Hz), 7.81 (1H, d, *J* = 9.8 Hz), 7.97 (1H, d, *J* = 2.4 Hz) ppm. $\bigcirc 2^{-} \sim \pm \hat{\nu} \nu \tau \pm \hat{\nu} \cdot 6^{-}[4 \cdot (2^{-} \sim \nu \tau) \nu \tau = n \pm \hat{\nu} \nu) \tau \pm \nu \tau \tau \nu \tau \tau = \nu \tau \tau \sigma \nu \nu \tau \tau \tau \sigma \tau \tau \sigma \nu$ \vee (化合物 1-6)の合成

4-[2-(2-ペルフルオロヘキシル)エチルスルファニル]ブロモベンゼン (化合物 A) (1.18 g. 2.20 mmol), 6-ヘキシルオキシ-2-ナフチルボロン酸 (0.90 g, 3.30 mmol), 炭酸ナトリウム (0.63 g, 5.94 mmol), 酢酸パラジウム (0.01 g, 2 mol %),トリス(2-メチルフェニル)ホスフ ィン (0.03 g, 4 mol%), 1,4-ジオキサン 40 mL,水 40 mLを 200 mL のフラスコに入れ, それらの混合物を窒素雰囲気下で 12 時間還流した。その後反応混合物を室温に冷却した。 次に飽和塩化ナトリウム水溶液 100 mL を反応混合物に加え, クロロホルム 100 mL で3 回抽出した。有機相を合わせ、硫酸マグネシウムで乾燥後、硫酸マグネシウムを濾過し、濾 液をロータリーエバポレータで減圧濃縮した。得られた生成物をシリカゲルカラムクロマ トグラフィー(溶出液:クロロホルム)および再結晶化(エタノール:トルエン=8:2)に より化合物 1-6 (0.24 g, 0.132 mmol) を無色粉末として収率 6 %で得た。IR (KBr disc): $v = 2932, 2860, 1238-1182 \text{ cm}^{-1}, {}^{1}\text{H} \text{ NMR} (500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 0.93 (3\text{H}, \text{t}, J = 6.7 \text{ Hz}),$ 1.38 (2H, quin, J = 3.7 Hz), 1.52 (2H, quin, J = 7.3 Hz), 1.86 (2H, quin, J = 7.6 Hz), 2.40–2.50 (2H, m), 3.12–3.15 (2H, m), 4.09 (2H, t, J = 6.7 Hz), 7.17 (1H, d, J = 2.4 Hz), 7.18 (1H, dd, J = 10.9, 2.4 Hz), 7.47 (2H, d, J = 8.5 Hz), 7.68 (2H, d, J = 8.5 Hz), 7.69 (1H, J = 10.9, 2.4 Hz), 7.6 (1H, J = 10.9, 2.4 Hz), 7.6dd, J=10.9, 2.4 Hz), 7.79 (1H, d, J=9.8 Hz), 7.81 (1H, d, J=9.8 Hz), 7.97 (1H, d, J=2.4 Hz) ppm, HRMS (ESI): m/z calcd. for C₃₀H₂₆OF₁₃S, [M – H]– 681.1497; found 681.1497.

2-2-2 測定・評価法

セイコーSSC-5200DSC を用いて転移温度および潜熱を測定した。インジウム (99.9 %) を較正標準物質 (mp = 156.6 ℃, 28.4 J/g) として使用した。DSC サーモグラムは 5 ℃/ 分の昇温又は降温プログラムで得た。液晶性はメトラー製のサーモコントロールを備えた ニコン POH 偏光顕微鏡システム (FP-900) を用いて評価した。ガラス表面間にホモジニア ス配向又はホメオトロピック配向を形成するために,ガラス板にポリイミド (Tore SP-810) 又は臭化セチルトリメチルアンモニウムをそれぞれ塗布した。¹H NMR スペクトルはテト ラメチルシランを内部標準として JEOL JNM-LA500 分光光度計を用いて測定した。IR ス ペクトルは Shimadzu Prestige-21 赤外分光計を用いて測定した。合成物の純度は HPLC により分析した。

ゲル化試験は次のように行った。秤量した化合物をマイクロチューブ(11 mm φ)中で有 機溶媒と混合し,固体が溶解するまで加熱した。得られた溶液を室温まで冷却し,次いでゲ ル化を目視で確認した。ガラス管を反転した時に液体がチューブの壁を流れ落ちる挙動が 見られなかったとき、「ゲルが形成した」と判断した。ゲルが形成されたとき、最低のゲル 化濃度(Minimum gelation concentration, MGC)を測定することによってゲル形成能を 定量的に評価した。MGC は室温でのゲル化に必要な化合物の濃度として測定した。走査型 電子顕微鏡(SEM)像はJEOLJSM-6510LA を用いて得た。サンプルは有機溶媒を真空乾 燥して調製したキセロゲルを用い、(JEOLJFC-1600)を用いて白金蒸着し、10kVの加速 電圧を用いて二次電子画像(SEI)を得た。

2-3 結果と考察

2-3-1 液晶性

化合物 1-n の液晶性は DSC 測定および偏光顕微鏡観察によって確認した。化合物 1-1 の DSC サーモグラムでは,昇温時のサンプルが溶融して液晶相への転移,液晶相中での 相転移,液晶相から等方相への相転移現象に対応する温度はそれぞれ 144 ℃,170 ℃お よび 192 ℃であり,吸熱性を示した。降温時は 189 ℃,166 ℃および 110 ℃で発熱の相 転移温度を示した。偏光顕微鏡で得られたテクスチャを図 2-2 に示す。偏光顕微鏡観察 は,ホモジニアス配向ガラス表面下では典型的なフォーカルコニックテクスチャが得ら れ,ホメオトロピック配向ガラス表面上では典型的なホメオトロピックテクスチャ (交差 偏光顕微鏡下の暗部)が見られた。冷却時,フォーカルコニックテクスチャの崩壊は 166 ℃で観察され,同時にホメオトロピックガラス表面下のホメオトロピックテクスチャ が観察された。両液晶相は分子の直交配列を有すると仮定することができる。従って,液 晶相はスメクチック A (SmA) および B (SmB) 相であると判断した。

化合物 1-6 については,等方性液体からの冷却過程において同様のフォーカルコニック テクスチャが観察され,図 2-3 (a) に示すように上部液晶相は SmA 相であると同定した。

化合物 **1-6** の低分子液晶相も図 **2-3**(**b**) に示すように壊れたフォーカルコニックテクス チャを示したが,液晶相はホメオトロピックガラス表面下にシュリーレンテクスチャーを 有していた。これはスメクチック **C**(**SmC**)相を示唆するものであった。

34

Figure 2-2. Polarized micrographs for Compound 1-1 (a) at 180 °C and (b) at 155 °C.

Figure 2-3. Polarized micrographs for Compound 1-6 (a) at 145 °C and (b) at 130 °C.

化合物 1-n の転移温度と潜熱は表 2-1 と表 2-2 の通りであり,化合物 1-1 の SmB-SmA および SmA-I 相転移の潜熱はそれぞれ,9.1 kJ mol⁻¹と 9.7 kJ mol⁻¹であった。化合物 1-2 でも傾向は同様であり,SmB-SmA および SmA-I の相転移の潜熱はそれぞれ 8.6 kJ mol ⁻¹および 11.2 kJ mol⁻¹であった。化合物 1-6 は SmA-I 転移の潜熱は,化合物 1-1 および 1-2 の場合と同様の 9.6 kJ mol⁻¹であると同定した。一方,他のスメクチック相-SmA 遷移の 潜熱は 0.1 kJ mol⁻¹と同定された。これは SmB-SmA 遷移と同定するには値が小さすぎる ため,他のスメクチック相は SmB ではないと考える。

他のスメクチック相-SmA 遷移の潜熱の値が小さいことは、他のスメクチック相が SmC 相であると同定するとその結果と矛盾がないと考える。
Compounds	C		SmB		SmC	SmA		I
1-1	•	144	•	170	-	•	192	•
1-2	•	153	•	171	-	•	203	•
1-6	•	140	3		(●134)	•	171	•

Table 2-1. Transition temperatures for Compounds 1-n ($^{\circ}$ C).

Table 2-2. Latent heats for Compounds 1-n (kJ/mol).

Compounds	m.p.	SmB- SmA	SmC- SmA	SmA-I
1-1	20.8	9.1	5.2	9.7
1-2	20.2	8.6	8.3	11.2
1-6	20.1		(0.1)	9.6

Parentheses indicate a monotropic transition (Both Table 2-1 and Table 2-2).

2-3-2 ゲル化能

続いて化合物 **1**-n のゲル化能の結果を示す。いくつかの有機溶媒中で物理ゲル(熱可逆的 ゲル)を形成した。そこで、それらの有機溶媒中での化合物 **1**-1 および化合物 **1-6** のゲル化 試験を行った。

表 2-3 は、有機溶媒中の化合物 1-1 および化合物 1-6 のゲル化試験の結果である。化合物 1-1 は、オクタン、トルエン、エタノール、1-オクタノール、アセトニトリル、プロピレン カーボネート (PC)、γ-ブチロラクトン (GBL) 中でゲル化し、それぞれの MGC は 0.6、 5.0、0.5、0.6、0.4、0.2、0.4 wt%であった。また、*N*,*N*ジメチルホルムアミド (DMF) 中 では沈殿した。一方、化合物 1-6 はトルエンに可溶であり、表 2-3 に示すように化合物 1-1 と類似の濃度で各種の溶媒中でゲルを形成した。従って化合物 1-n のゲル化能は、分子末端 のアルキル鎖長にほとんど依存しない結果であった。 図 2-4 は化合物 1-1 および化合物 1-6 を用いた PC ゲルの濃度に対するゾル-ゲル転移温度のプロットである。

PC ゲルのゾル・ゲル転移温度は、化合物 1・1 および化合物 1・6 の濃度に従って上昇した。 化合物 1・1 を 1 wt%添加したゲルの場合、ゾル - ゲル転移温度は約 60 ℃であった。 そし て、化合物 1・6 のゾル - ゲル転移温度は、化合物 1・1 のゾル・ゲル転移温度よりも高かった。 化合物 1・6 の方が添加量に対するゾル - ゲル相転移温度の変化が大きかった。これらの結 果は、末端アルキル鎖長はゾル・ゲル転移温度に重要な影響を与えることを示している。

	Gelators			
Solvents	1-1	1-6		
n-Octane	0.6	0.8		
Toluene	5.0	5.0		
Ethanol	0.5	0.8		
1-Octanol	0.6	1.0		
Acetonitrile	0.4	0.8		
DMF	Precipitated	0.5		
Propylene carbonate	0.2	0.4		
Butyrolactone	0.4	0.4		

Table 2-3. MGC for Compound 1-1 and Compound 1-6.

Figure 2-4. Plots for sol-gel transition temperatures of propylene carbonate gel against concentration of Compound 1-1 (circle) and Compound 1-6 (triangle).

最後に、ゲルの形態を走査型電子顕微鏡(SEM)で観察した。化合物 1-6 を 3 wt%添加 して形成した PC ゲルから調製されたキセロゲルの写真を図 2-5 に示す。ゲルは、µm オー ダーの直径を有する繊維状ネットワーク構造を形成していることがわかった。

Figure 2-5. SEM image for xerogel prepared from propylene carbonate gel (x5000).

2-4 まとめ

末端アルキル基が有する分子間相互作用は,液晶性およびゲル化能を示すための重要な 役割を果たすことがわかった。ペルフルオロヘキシルエチル基はゲル化能に不可欠である。

液晶性を示す構造がゲル化に影響があることが示唆されたことも興味深い。なお,この化 合物はスルフィドを有しており,長期の電気化学的安定性には不安が残る。スルフィドを有 しない新規なゲル化剤の設計が次の課題である。

References

1) M. Hird, Chem. Soc. Rev., 36, 2070-2095 (2007).

M. George, S. L. Snyder, P. Terech, C. J. Glinka, R. G. Weiss, *J. Am. Chem. Soc.*, 125, 10275-10283 (2003). T. Yajima, E. Tabuchi, E. Nogami, A. Yamagishi, H. Sato, *RSCAdv.*, 5, 80542-80547 (2015). T. Yoshida, T Hirakawa, T. Nakamura, Y. Yamada, H. Tatsuno, M. Hirai, Y. Morita, H. Okamoto, *Bull. Chem. Soc. Jpn.*, 88, 1447-1452 (2015).

M. Duan, H. Okamoto, V. F. Petrov, S. Takenaka, *Bul. Chem. Soc. Jpn.*, 72, 1637-1642 (1999).
 M. Duan, H. Okamoto, V. F. Petrov, S. Takenaka, *Bull. Chem. Soc. Jpn.*, 71, 2735-2739 (1998).
 M., Yano, T. Taketsugu, K. Hori, H. Okamoto, S. Takenaka, *Chem., Eur. J.*, 10, 3991-3999 (2004).

4) B. Cao, Y. Kaneshige, Y. Matsue, Y. Morita, H. Okamoto, *New J. Chem.*, 40, 4884-4887
(2016). B. Cao, S. Hayashida, Y. Morita, H. Okamoto, *Mol. Cryst. Liq. Cryst.*, 632, 49-56
(2016).

第三章 ペルフルオロアルキル部位およびスルホニルフェニル部位を有する新規低分子ゲ ル化剤の合成と物性

3-1 緒言

前章でペルフルオロアルキル鎖を有する新規なゲル化剤を提案した。過去の研究においてもペルフルオロアルキル基を有する化合物がゲル化剤として有用であることが示されている¹⁾²⁾。ペルフルオロアルキル基は化学的,電気化学的に安定性が高いため,それを有するゲル化剤を用いて形成したゲルは安定性の向上が期待できる。しかし現在提案されているペルフルオロアルキル基を有するゲル化剤には,反応性の官能基や活性水素,不対電子など,長期の安定性を阻害する部位を併せ持つものも多い。

そこで、本章では、反応性が低く、各種用途で有用なペルフルオロアルキル基を有するゲ ル化剤を設計した。それには簡易な構造で高いゲル化能を示すことを目指した。設計したゲ ル化剤を合成し、合成したゲル化剤を用いて形成したゲルの形態・構造解析を行った。そし て、分子構造、ゲルの構造、ゲル化能の関係を考察した。

3-2 実験

3-2-1 合成

本章では図 3-1 に示すゲル化剤を設計し、合成した。ペルフルオロアルキル基、アルキル 基及びフェニル基を有し、また、接続部をスルホンとした。前章の化合物の接続部はスルフ ィドであったが、より反応性が低い構造にするためにスルホンを選択した。なお、スルフィ ドよりもスルホンの方が溶媒に溶解しにくく、結晶化しやすい傾向にある。本章化合物に類 似する分子構造であり、ペルフルオロアルキル基及び芳香族部位を複数持つような化合物 では、スルフィドではゲル化してもスルホンではゲル化せずに結晶化する挙動が見られて いる²⁰。

Compounds 2 (m-n)

Figure 3-1. Molecular structure of low molecular-mass gelators in this chapter.

ゲル化剤の合成ルートはスキーム 3-1 の通りに設計し,実施した。芳香環に対してペルフ ルオロアルキル基を導入する反応は前章と同じであるが,前章とは条件の変更を検討した。 それは,還流に1日要することと,カラムクロマトグラフィーで精製しなければならない ことは負荷が大きく,多くの化合物を合成するには適さないと考えたためである。具体的に はアセトンよりも加熱時の安定性が高い溶媒として1,2-ジメトキシエタンと3-ペンタノン を使用し,反応時間を短縮化した。それによって不要な副反応が生じにくくなり,精製も簡 略化することができた。ペルフルオロアルキル基を導入する工程は比較的低温かつ短時間 で進行するため、留去しやすさの点から、1,2-ジメトキシエタンを溶媒として使用した。ア ルキル基を導入する工程は高温にする必要があったので、高温に適した溶媒である 3-ペン タノンを使用した。

各サンプルは両分子末端の炭素数で命名し, m(ペルフルオロアルキル炭素数) -n (ア ルキル炭素数) で表記する。

Scheme 3-1. Synthetic scheme for Compounds **2** (**m**-**n**), reagents and conditions; (i) $C_mF_{2m+1}C_2H_4I$, K_2CO_3 , 1,2-dimethoxyethane, 50 °C for 5 hours, (ii) $C_nH_{2n+1}Br$, K_2CO_3 , 3-pentanone, 120 °C for 5 hours, (iii) H_2O_2 , CH_3COOH , 70 °C for 2 hours.

合成原料は以下のメーカーの試薬を使用した。

- ・ヨウ化-2-(ペルフルオロデシル)エチル: Daikin Industries (現在は販売終了)
- ・ヨウ化-2-(ペルフルオロヘキシル)エチル,ヨウ化-2-(ペルフルオロブチル)エチル:

Daikin Industries

- ・4・メルカプトフェノール,1・ブロモアルカン:東京化成工業(株)
- ・1,2・ジメトキシエタン, 3・ペンタノン, 炭酸カリウム, 酢酸, 過酸化水素: 和光純薬工業
 (株)

得られた合成品(中間生成物を含む)は¹H NMR と¹⁹F NMR を用いて同定した。

以下に合成結果を記す。

○4-[2-(ペルフルオロデシル)エチルチオ]フェノールの合成

ヨウ化・2・(ペルフルオロデシル)エチル (21.23 g, 31.5 mmol), 4・メルカプトフェノール (3.78 g, 30 mmol), 炭酸カリウム (6.21 g, 45 mmol), 1,2・ジメトキシエタン (100 mL) を 200 mL のなすフラスコに入れ,その混合物を 50 ℃で 5 時間加熱撹拌した。その後室温ま で冷却し, 固体を濾過で除いた。得られた濾液をロータリーエバポレータで濃縮後, 真空 乾燥を行い, 4・[2・(ペルフルオロヘキシル)エチルチオ]フェノール (22.26 g, 33.11 mmol) を収率 100 % で淡茶色固体を得た。¹H NMR (400 MHz, CDCl₃): δ = 2.35 (2H, m), 3.01 (2H, m), 6.81 (2H, d, *J* = 8.0 Hz), 7.35 (2H, d, *J* = 8.0 Hz) ppm.

○4-[2-(ペルフルオロヘキシル)エチルチオ]フェノールの合成

ヨウ化-2-(ペルフルオロヘキシル)エチル (14.93 g, 31.5 mmol), 4-メルカプトフェノール (3.78 g, 30 mmol), 炭酸カリウム (6.21 g, 45 mmol), 1,2-ジメトキシエタン (100 mL) を

200 mL のフラスコに入れ,該混合物を 50 ℃で 5 時間加熱撹拌した。その後室温まで冷却 し,固体を濾過で除いた。得られた濾液をロータリーエバポレータで濃縮後,真空乾燥を 行い,4-[2-(ペルフルオロヘキシル)エチルチオ]フェノール (14.94 g, 31.63 mmol)を淡茶 色固体として収率 100 %で得た。¹H NMR (400 MHz, CDCl₃):δ = 2.34 (2H, m), 2.97 (2H, m), 6.79(2H, d, *J* = 8.0 Hz), 7.29 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃):δ = -126.97 (2F, m), -123.97 (2F, m), -123.56 (2F, m), -122.61 (2F, m), -114.56 (2F, m), -81.91 (3F, m) ppm

○4-[2-(ペルフルオロブチル)エチルチオ]フェノールの合成

ヨウ化・2・(ペルフルオロブチル)エチル (11.78 g, 31.5 mmol), 4・メルカプトフェノール (3.78 g, 30 mmol), 炭酸カリウム (6.21 g, 45 mmol), 1,2・ジメトキシエタン 100 mL を 200 mL のフラスコに入れ,該混合物を 50 ℃で 5 時間加熱撹拌した。その後室温まで冷却 し, 固体を濾過で除いた。得られた濾液をロータリーエバポレータで濃縮後, 真空乾燥を 行い, 4・[2・(ペルフルオロブチル)エチルチオ]フェノール (11.78 g, 31.64 mmol)を淡茶色固 体として収率 100 % で得た。 ¹H NMR (400 MHz, CDCl₃): δ = 2.32 (2H, m), 2.96 (2H, m), 6.17 (1H, s), 6.78 (2H, d, *J* = 8.0 Hz), 7.27 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.79 (2F, m), -124.91 (2F, m), -114.70 (2F, m), -82.05 (3F, m) ppm. ○4・[2・(ペルフルオロデシル)エチルチオ]へキシルオキシベンゼンの合成

4-[2-(ペルフルオロデシル)エチルチオ]フェノール (9.75 g, 14.5 mmol), 1-ブロモヘキサ ン(2.48 g, 15 mmol), 炭酸カリウム (3.11 g, 22.5 mmol), 3-ペンタノン 50 mL を 100 mL のフラスコに入れ,該混合物を 120 ℃で 5 時間加熱撹拌した。その後室温まで冷却し, 固 体を濾過で除いた。得られた濾液をロータリーエバポレータで濃縮後, 真空乾燥を行い, 4-[2-(ペルフルオロデシル)エチルチオ]ヘキシルオキシベンゼン (10.45 g, 13.81 mmol) を 白色固体として収率 95 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.92 (3H, m), 1.27-1.55 (16H, m), 1.78 (2H, m), 2.35 (2H, m), 2.98 (2H, m), 3.94 (2H, m), 6.86 (2H, d, *J* = 8.0 Hz), 7.37 (2H, d, *J* = 8.0 Hz) ppm.

○4-[2-(ペルフルオロヘキシル)エチルチオ]デシルオキシベンゼンの合成

4-[2-(ペルフルオロヘキシル)エチルチオ]フェノール (3.65 g, 7.73 mmol), 1-ブロモデカ ン (3.65 g, 16.5 mmol), 炭酸カリウム (1.56 g, 11.3 mmol), 3-ペンタノン 50 mL を 100 mL のフラスコに入れ,該混合物を 120 ℃で 5 時間加熱撹拌した。その後室温まで冷却 し, 固体を濾過で除いた。得られた濾液をロータリーエバポレータで濃縮後, 真空乾燥を 行い, 4-[2-(ペルフルオロヘキシル)エチルチオ]デシルオキシベンゼン (4.31 g, 7.03 mmol) を淡茶色固体として収率 91 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.88 (3H, m), 1.34-1.55 (14H, m), 1.79 (2H, m), 2.36 (2H, m), 3.00 (2H, m), 3.94 (2H, m), 6.88 (2H, d, *J* = 8.0 Hz), 7.35 (2H, d, *J* = 8.0 Hz) ppm

○4-[2-(ペルフルオロヘキシル)エチルチオ]オクチルオキシベンゼンの合成

4-[2-(ペルフルオロヘキシル)エチルチオ]フェノール (3.65 g, 7.73 mmol), 1-ブロモオク

タン (3.19 g, 16.5 mmol), 炭酸カリウム (1.56 g, 11.3 mmol), 3・ペンタノン (50 mL) を 100 mL のフラスコに入れ,該混合物を 120 ℃で 5 時間加熱撹拌した。その後室温まで冷 却し, 固体を濾過で除いた。得られた濾液をロータリーエバポレータで濃縮後,真空乾燥 を行い, 4-[2-(ペルフルオロヘキシル)エチルチオ]オクチルオキシベンゼン (4.12 g, 7.05 mmol)を淡茶色固体として収率 91 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.89 (3H, m), 1.29-1.55 (10H, m), 1.78 (2H, m), 2.35 (2H, m), 2.98 (2H, m), 3.94 (2H, m), 6.86 (2H, d, *J* = 8.0 Hz), 7.36 (2H, d, *J* = 8.0 Hz) ppm.

○4-[2-(ペルフルオロヘキシル)エチルチオ]ヘキシルオキシベンゼンの合成

4-[2-(ペルフルオロヘキシル)エチルチオ]フェノール (6.85 g, 14.5 mmol), 1-ブロモヘキ サン (2.48 g, 15 mmol), 炭酸カリウム (3.11 g, 22.5 mmol), 3-ペンタノン 50 mL を 100 mL のフラスコに入れ,該混合物を 120 ℃で 5 時間加熱撹拌した。その後室温まで冷却 し, 固体を濾過で除いた。得られた濾液をロータリーエバポレータで濃縮後, 真空乾燥を 行い, 4-[2-(ペルフルオロヘキシル)エチルチオ]ヘキシルオキシベンゼン (7.66 g, 13.77 mmol) を淡茶色固体として収率 95 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.91 (3H, m), 1.34-1.54 (6H, m), 1.78 (2H, m), 2.33 (2H, m), 2.97 (2H, m), 3.94 (2H, m), 6.85 (2H, d, *J*= 8.0 Hz), 7.36 (2H, d, *J*= 8.0 Hz) ppm.

○4-[2-(ペルフルオロブチル)エチルチオ]デシルオキシベンゼンの合成

4-[2-(ペルフルオロブチル)エチルチオ]フェノール (2.99 g, 7.6 mmol), 1-ブロモデカン (1.99 g, 9 mmol), 炭酸カリウム (1.56 g, 11.3 mmol), 3-ペンタノン 25 mL を 100 mL のフラスコに入れ,該混合物を 120 ℃で 5 時間加熱撹拌した。その後室温まで冷却し, 固 体を濾過で除いた。得られた濾液をロータリーエバポレータで濃縮後,真空乾燥を行い, 4-[2-(ペルフルオロブチル)エチルチオ]デシルオキシベンゼン (3.85 g, 7.51 mmol) を淡茶 色固体として収率 99 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.88 (3H, m), 1.28-1.56 (14H, m), 1.78 (2H, m), 2.35 (2H, m), 2.98 (2H, m), 3.94 (2H, m), 6.86 (2H, d, *J* = 8.0 Hz), 7.36 (2H, d, *J* = 8.0 Hz) ppm.

○4-[2-(ペルフルオロブチル)エチルチオ]ヘキシルオキシベンゼンの合成

4-[2-(ペルフルオロブチル)エチルチオ]フェノール (5.89 g, 10.3 mmol), 1-ブロモヘキサ ン (2.48 g, 15 mmol), 炭酸カリウム (3.11 g, 22.5 mmol), 3-ペンタノン 50 mL を 100 mL のフラスコに入れ,該混合物を 120 ℃で 5 時間加熱撹拌した。その後室温まで冷却し, 固 体を濾過で除いた。得られた濾液をロータリーエバポレータで濃縮後, 真空乾燥を行い, 4-[2-(ペルフルオロブチル)エチルチオ]ヘキシルオキシベンゼン (6.29 g, 13.78 mmol)を淡 茶色固体として収率 92 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.90 (3H, m), 1.34-1.45 (6H, m), 1.78 (2H, m), 2.33 (2H, m), 2.98 (2H, m), 3.94 (2H, m), 6.86 (2H, d, *J*= 8.0 Hz), 7.35 (2H, d, *J*= 8.0 Hz) ppm.

○4-[2-(ペルフルオロデシル)エチルスルホニル]ヘキシルオキシベンゼン(化合物 2 (10-6))の合成 4-[2-(ペルフルオロブチル)エチルチオ] ヘキシルオキシベンゼン (10.45 g, 13.8 mmol), 35 %過酸化水素水 (6 mL, 69.8 mmol), 酢酸 100 mL を 300 mL のフラスコに入れ, 70 ℃で 2 時間撹拌した。その後反応液に水を入れて固体を析出させた後に減圧濾過を行 った。濾過後に得られた固体を酢酸エチルに加熱溶解し,再結晶を行った。析出した固体 を減圧濾過,真空乾燥を行い,4-[2-(ペルフルオロデシル)エチルスルホニル] ヘキシルオキ シベンゼン (8.44 g, 10.7 mmol) を淡黄色固体として収率 78 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.91 (3H, m), 1.35-1.55 (6H, m), 1.82 (2H, m), 2.57(2H, m), 3.29 (2H, m), 4.04 (2H, m), 7.04 (2H, d, *J* = 8.0 Hz), 7.83 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.54 (2F, m), -123.57 (2F, m), -123.13 (2F, m), -122.16 (10F, m), -113.99 (2F, m), -81.20 (3F, m) ppm.

○4-[2-(ペルフルオロヘキシル)エチルスルホニル]デシルオキシベンゼン(化合物 2 (6-10))の合成

4-[2-(ペルフルオロヘキシル)エチルチオ]デシルオキシベンゼン (4.19 g, 6.8 mmol), 35 %過酸化水素水 (2.7 mL, 31.4 mmol), 酢酸 35 mL を 200 mL のフラスコに入れ, 70 ℃で 2 時間撹拌した。その後反応液に水を入れて固体を析出させた後に減圧濾過を行 った。濾過後に得られた固体を酢酸エチルに加熱溶解し, 再結晶を行った。析出した固体 を減圧濾過, 真空乾燥を行い, 4-[2-(ペルフルオロヘキシル)エチルスルホニル]デシルオキ シベンゼン (3.69 g, 5.72 mmol)を白色固体として収率 83 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.88 (3H, m), 1.27-1.55 (14H, m), 1.81 (2H, m), 2.57 (2H, m), 3.29 (2H, m), 4.04 (2H, m), 7.03 (2H, d, *J* = 8.0 Hz), 7.83 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.61 (2F, m), -123.63 (2F, m), -123.33 (2F, m), -122.36 (2F, m), -114.00 (2F, m), -81.24 (3F, m) ppm.

○4-[2-(ペルフルオロヘキシル)エチルスルホニル]ノニルオキシベンゼン(化合物 2 (6-9)) の合成

4-[2-(ペルフルオロヘキシル)エチルチオ]フェノール (3.65 g, 7.73 mmol), 1-ブロモノナ ン(3.72 g, 18 mmol), 炭酸カリウム (1.56 g, 11.3 mmol), 3-ペンタノン 50 mL を 200 mL のなすフラスコに入れ,その混合物を 120 ℃で 5 時間加熱撹拌した。その後室温まで冷却 し、固体を濾過で除いた。得られた濾液をロータリーエバポレータで濃縮し、真空乾燥を 行った。, 次に、35 %過酸化水素水 (2.7 mL, 31.4 mmol) と酢酸 50 mL をフラスコに入 れ、70 ℃で 2 時間撹拌した。その後反応液に水を入れて固体を析出させた後に減圧濾過 を行った。濾過後に得られた固体を水で 2 回洗浄した後に真空乾燥を行い、4-[2-(ペルフ ルオロヘキシル)エチルスルホニル]ノニルオキシベンゼン (3.03 g, 6.08 mmol)を自色固体 として収率 79 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.88 (3H, m), 1.29-1.56 (12H, m), 1.81 (2H, m), 2.57(2H, m), 3.29 (2H, m), 4.04 (2H, m), 7.04 (2H, d, *J* = 8.0 Hz), 7.83 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.62 (2F, m), -123.66 (2F, m), -123.37 (2F, m), -122.38 (2F, m), -114.04 (2F, m), -81.25 (3F, m) ppm. ○4-[2-(ペルフルオロヘキシル)エチルスルホニル]オクチルオキシベンゼン(化合物 2 (6-8))の合成

4-[2-(ペルフルオロヘキシル)エチルチオ]オクチルオキシベンゼン (4.12 g, 7.1 mmol), 35 %過酸化水素水 (2.7 mL, 31.4 mmol), 酢酸 35 mL を 200 mL のフラスコに入れ, 70 ℃で 2 時間撹拌した。その後反応液に水を入れて固体を析出させた後に減圧濾過を行 った。濾過後に得られた固体を酢酸エチルに加熱溶解し, 再結晶を行った。析出した固体 を減圧濾過, 真空乾燥を行い, 4-[2-(ペルフルオロヘキシル)エチルスルホニル]オクチルオ キシベンゼン (3.33 g, 5.4 mmol)を白色固体として収率 77 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.89 (3H, m), 1.29-1.55 (10H, m), 1.81 (2H, m), 2.57 (2H, m), 3.29 (2H, m), 4.04 (2H, m), 7.04 (2H, d, *J* = 8.0 Hz), 7.83 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.58 (2F, m), -123.64 (2F, m), -123.34 (2F, m), -122.36 (2F, m), -114.01 (2F, m), -81.26 (3F, m) ppm.

○4-[2-(ペルフルオロヘキシル)エチルスルホニル]-2-エチルヘキシルオキシベンゼン(化合物 2 (6-8brn))の合成

4-[2-(ペルフルオロヘキシル)エチルチオフェノール (3.65 g, 7.73 mmol), 2-エチルヘキ シルブロマイド (3.48 g, 18 mmol), 炭酸カリウム(1.56 g, 11.3 mmol), 3-ペンタノン 40 mL を 200 mL のフラスコに入れ,その混合物を 120 ℃で5 時間加熱撹拌した。その後室 温まで冷却し, 固体を濾過で除いた。得られた濾液をロータリーエバポレータで濃縮後, 真空乾燥を行った。その後, 35 %過酸化水素水 (2.7 mL, 31.4 mmol) と酢酸 50 mL をフ ラスコに入れ, 70 ℃で2 時間撹拌した。反応混合物に水を入れて固体を析出させた後に 減圧濾過を行った。濾過後に得られた固体を水で2 回洗浄した後にヘキサンで3 回洗浄 し, 真空乾燥を行い, 4-[2-(ペルフルオロヘキシル)エチルスルホニル]-2-エチルヘキシル オキシベンゼン (4.27 g, 6.92 mmol)を白色固体として収率 90 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.95 (6H, m), 1.34-1.65 (8H, m), 1.79 (1H, m), 2.60 (2H, m), 3.32 (2H, m), 3.95 (2H, m), 7.05 (2H, d, *J* = 8.0 Hz), 7.84 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.62 (2F, m), -123.63 (2F, m), -123.34 (2F, m), -122.36 (2F, m), -114.04 (2F, m), -81.25 (3F, m) ppm.

○4-[2-(ペルフルオロヘキシル)エチルスルホニル]ヘキシルオキシベンゼン(化合物 2 (6-6))の合成

4-[2-(ペルフルオロヘキシル)エチルチオ]ヘキシルオキシベンゼン (7.66 g, 13.8 mmol), 35 %過酸化水素水 (6 mL, 69.8 mmol), 酢酸 70 mL を 200 mL のフラスコに入れ, 70 ℃ で 2 時間撹拌した。その後反応液に水を入れて固体を析出させた後に減圧濾過を行った。 濾過後に得られた固体を酢酸エチルに加熱溶解し, 再結晶を行った。析出した固体を減圧 濾過後, 真空乾燥を行い, 4-[2-(ペルフルオロヘキシル)エチルスルホニル]ヘキシルオキシ ベンゼン (7.22 g, 12.2 mmol) を白色固体として収率 89 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.91 (3H, m), 1.34-1.56 (6H, m), 1.83 (2H, m), 2.57 (2H, m), 3.29 (2H, m), 4.04 (2H, m), 7.04 (2H, d, *J* = 8.0 Hz), 7.83 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl3): δ = -126.59 (2F, m), -123.61 (2F, m), -123.32 (2F, m), -122.35 (2F, m), -114.00 (2F, m), -81.26 (3F, m) ppm.

○4-[2-(ペルフルオロブチル)エチルスルホニル]デシルオキシベンゼン(化合物 2 (4-10)) の合成

4-[2-(ペルフルオロブチル)エチルチオ]デシルオキシベンゼン (3.85 g, 7.51 mmol), 35 % 過酸化水素水 (2.8 mL, 32.6 mmol), 酢酸 35 mL を 200 mL のフラスコに入れ, 70 ℃で 2 時間撹拌した。その後反応液に水を入れて固体を析出させた後に減圧濾過を行った。得 られた固体をヘキサン / 酢酸エチルの混合液体(10 vol /1 vol) に溶解し, シリカゲルカラ ムクロマトグラフィーで精製し(展開溶媒: ヘキサン/ 酢酸エチル 混合液体(10 vol /1 vol)). 4-[2-(ペルフルオロブチル)エチルスルホニル]デシルオキシベンゼン (3.59 g, 6.59 mmol)を 自色固体として収率 88 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.88 (3H, m), 1.28-1.59 (14H, m), 1.82 (2H, m), 2.59 (2H, m), 3.29 (2H, m), 4.04 (2H, m), 7.03 (2H, d, *J*= 8.0 Hz), 7.83 (2H, d, *J*= 8.0 Hz) ppm; 19F NMR (400 MHz, CDCl₃): δ = -126.50 (2F, m), -124.58 (2F, m), -114.26 (2F, m), -81.47 (3F, m) ppm.

○4-[2-(ペルフルオロブチル)エチルスルホニル]ヘキシルオキシベンゼン(化合物 2 (4-6)) の合成

4-[2-(ベルフルオロブチル])エチルチオ]へキシルオキシベンゼン (6.29 g, 13.8 mmol), 35 %過酸化水素水 (6 mL, 69.8 mmol), 酢酸 70 mL を 200 mL のフラスコに入れ, 70 ℃で 2 時間撹拌した。その後反応混合物に水を入れて固体を析出させた後に減圧濾過 を行った。得られた固体をヘキサン/ 酢酸エチルの混合液体(10 vol /1 vol) に溶解し,シリ カゲルカラムクロマトグラフィーで精製し (展開溶媒: ヘキサン / 酢酸エチルの混合液体 (10 vol /1 vol)), 4-[2-(ペルフルオロブチル)エチルスルホニル]へキシルオキシベンゼン (5.87 g, 12.0 mmol)を自色固体として収率 87 %で得た。¹H NMR (400 MHz, CDCl₃): δ = 0.91 (3H, m), 1.34-1.55 (6H, m), 1.81 (2H, m), 2.57(2H, m), 3.29 (2H, m), 4.04 (2H, m), 7.03 (2H, d, *J* = 8.0 Hz), 7.83 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.49 (2F, m), -124.59 (2F, m), -114.24 (2F, m), -81.48 (3F, m) ppm.

3-2-2 測定·評価法

ゲル化能は以下の通りに評価した。液体と秤量したゲル化剤とをガラス製バイアルスク リュー(NICHIDENRIKA-GLASS, 20 mL)中で混合し,液体が溶解するまで加熱し た。得られた液体を室温まで降温し,その降温過程を目視で観察した。降温した時に不動 で単相になれば,そのサンプルは「ゲル化能を有する」と評価した。ゲル化能を有さない サンプルは降温すると固液分離をしたり,液体の単相になったりした。降温後にガラス製 バイアルスクリューを反転させて,液体が染み出さないことを確認した。ゲルが形成され たとき,25 ℃でのゲル化に必要なゲル化剤の最小濃度である MGC を決定することによ り、ゲル形成能を定量的に評価した。ゲルの安定性は、MGC で形成したゲルとゲル化剤 を溶媒に対して 5 wt%添加して形成したゲルを 3 日間室温で静置し、 3 日後に目視で判断 した。ゲル・ゾル相転移温度(Tgel-sol)は、所定量の溶媒とゲル化剤との混合物を、全て のゲル化剤が溶解するまで加熱した後に測定した。加熱して得られた液体を 25 ℃に降温 し、混合物をゲルにした。その後、ゲルを 50 ℃に加熱し、5 分間静置した。5 分でゲルが ゾルに変わったとき、Tgel-sol は 50 ℃未満であると判断した。ゲルが 5 分後にゾルに変化 しなかったとき、ゲルを 55 ℃に加熱し、ゲルを 5 分間静置した。この操作を 5 ℃ごとに 繰り返し、ゾルへの温度ゲルが変化する点を見つけ、その温度を Tgel-sol と判定した。

溶媒へ溶解しているゲル化剤の濃度は ¹⁹F NMR の-122.5 ppm のピーク面積で測定し た。このピークはペルフルオロアルキル基の CF₂に帰属する。LiPF₆の正確な濃度のサン プルを基準として,LiPF₆のピーク面積(-74.8 ppm)とゲル化剤のピーク面積比から溶解 したゲル化剤濃度を評価した。 この測定には 400 MHz の ECA400 (JEOL)を使用し た。

ゲルの形態は走査型電子顕微鏡 (SEM) (日立製 S-4700) で観察した。プロピレンカー ボネートを溶媒として形成したゲルから溶媒を除去(凍結乾燥)した,キセロゲルの二次 電子像を加速電圧 2.0 kV, 作動距離 20 mm で観察した。装置内では冷却された金属ブロ ック上に,ゲルサンプルを載せたカーボン支持膜を有する銅グリッドを載せており,真空 チャンバーで減圧を維持した。

ゲルの粘弾性測定はレオメーター((株) ユービーエム製 Rheosol-G1000)に半径 40 mm のプレートをセットし, 0.01 Hz から 10.0 Hz まで掃引して測定した。

ゲル化剤の配向状態の考察のために上記で作成したキセロゲル及びゲル化剤粉末のX線 電子分光測定(XPS)を行った。装置はサーモエレクトロンのESCALAB250を用いた。 C, F, S, Oの相対元素濃度比からゲル化剤分子の配向状態を推察した。

さらに、ゲル化剤の配向状態を計算機シミュレーションから考察した。計算は分子動力 学(MD) シミュレーションを行った。使用ソフトウエアは構造モデリングに SciMaps3.1 を、MD シミュレーションに Lammps を用い、力場パラメータとして pcff を用いた。シ ミュレーション温度は 300 K とし、シミュレーションプロトコルは以下の通りとした。 「初期構造発生→分子力学計算でエネルギー緩和→定温定容(NVT)条件で 100ps の緩和 計算→定温低圧(1 bar, NP)条件で 5 ns 計算→NVT 条件で 3 ns 計算→データサンプリ ング」

3-3 結果と考察

3-3-1 ゲル化能

溶媒としてプロピレンカーボネートを用いたときの MGC と形成したゲルの安定性を評価した結果を表 3-1 に示す。溶媒に対して 5 wt%添加してもゲル化せずに液体のままであったものは「溶液」とした。mの値が大きい化合物ほど少量で溶媒をゲル化することができ

た。また, 化合物 2 (10-6) や化合物 2 (8-8) を用いると, 調製後 30 分以内でゲルを形成 できたが, 化合物 2 (6-n) や化合物 2 (4-n) を用いるとゲルが形成する場合であっても, ゲル化のためには調製後 1 時間以上必要であることが確認できた。m の値によってゲル化 能が異なることから,「ペルフルオロアルキル基に基づく疎水相互作用をゲル化の推進力と する」というコンセプトに基づくゲルが形成できたものと考えている。n の値もゲル化能に 寄与したが, m の方がより影響が大きかった。n については偶数と奇数の違いも検討した が, 偶奇効果を示唆するような結果はなかった。さらに, アルキル基を 2-エチルヘキシル基 にして分枝を導入した化合物 2 (6-8(brn))は,同じ炭素数で分枝を有さない化合物 2 (6-8) よりもゲル化能が低かった。そのため,分子が棒状であることもゲル化能には重要であり, 棒状形状だからゲルのネットワーク構造が形成しやすいことがわかった。これらのゲル化 剤は芳香環に対して,パラ位に 2 種のアルキル基を有する構造であり,液晶材料に似た構 造である。このゲル化剤は液晶性の化合物ではないが,液晶配向に似た機構でゲルのネット ワークを形成していると推察する。

また,MGCと形成したゲルの安定性は相関した。高いゲル化能を有する化合物に基づく ゲルほど長期にわたって安定したゲルとなる。

Compound 2 (m-n)	MGC (wt%)	Stability (MGC)	Stability (5 wt%)	
10-6	0.3	A	А	
8-8	1.0	N.D.	N.D.	
6-10	3.0	A	А	
6-9	3.0	A	А	
6-8	3.0	В	А	
6-8(brn)	Solution		18 5 7	
6-6	Solution	-	-	
4-10	5.0	В	В	
4-6	Solution	-		

Table 3-1. Gelation abilities of Compounds **2 (m-n)**.

A: Good stability, no change from initial state B: Inferior of stability, a little solid-liquid separation

MGC におけるゾルーゲル相転移温度を測定すると、化合物 2(10-6)では 70 ℃であ り、化合物 2(6-n)では 60 ℃であり、化合物 2(4-n)では 55 ℃であった。ゲル化能が 高いゲル化剤を用いたゲルほど、添加したゲル化剤が少ないにも関わらず、相転移温度が 高くなった。また、ゲル化能と保存安定性とは相関した。 特に、プロピレンカーボネー ト溶媒に 1 wt%の化合物 2(10-6)を加えて形成したゲルは室温で 1 ヶ月以上静置しても 固液分離をしたりゲル化剤が溶解したりする挙動は見られなかった。それは 室温より約 50 ℃以上高い相転移温度を有しているため,室温ではゲルの安定性が高くなると推測している。さらに,化合物2(10-6)でゲル化したゲルは,80 ℃と30 ℃との間で50 回以上のゾル - ゲル相転移を繰り返してもゲル化能が低下したり,液が変質(着色・増粘等)したりすることはなかった。従って,このゲル化剤は高温での劣化が少なく,温度耐性も有する。

表 3・2 に各種溶媒に対する MGC を示す。各ゲル化剤は非プロトン性極性溶媒に対して 高いゲル化能を示し、低極性溶媒に対してはゲル化能を示さなかった。これらに基づき、 溶媒の誘電率と各ゲル化剤の MGC との関係を図 3・2 に整理した。このプロットより、ゲ ル化剤のアルキル鎖長に関わらず、高誘電率の溶媒に対しゲル化能が高い傾向があること がわかる。水に対しては、温度を 100 ℃以上にしても溶解せず、ゲル化能の評価ができな かった。水は誘電率が高すぎであったのだろう。ゲル化剤と溶媒との相互作用を示すパラ メータは他にもあるが³、それらは水素結合性を因子に含むことが多い。本ゲル電解質は 水素結合性が低いため、水素結合性とは関係ない、誘電率で整理することが適切であると 考えた。

Salvant	MGC (wt%)					
Solvent	10-6	8-8	6-10	4-10		
Propylene carbonate	0.3	1.0	3.0	5.0		
γ-butyrolactone	1.0	1.6	3.5	5.0		
Acetonitrile	2.0	2.5	4.0	7.0		
N,N- Dimethylformamide	1.0	No data	No data	No data		
Ethanol	1.6	Precipitat ed	Solution	Solution		
Ethyl methyl carbonate	Solution	Solution	Solution	Solution		
Toluene	3.6	No data	No data	No data		
Cyclohexane	Solution	No data	No data	No data		

Table3-2. Gelation abilities of Compounds 2 (m-n) for various solvents.

Figure 3-2. Relationship of MGC with dielectric constant of solvents.

図 3·3 は,所定量のゲル化剤を添加したときのプロピレンカーボネート中の溶解ゲル化 剤の濃度を示す。¹⁹F NMR を用いてそれらを評価した。全てのサンプルは 30 ℃ではゲル 状態であったが,溶解しているゲル化剤の濃度はゲル化剤によって異なった。溶解せずに 固体様の挙動を示すゲル化剤がゲルのネットワークを形成するのに寄与すると考えるの で,ゲル化剤の溶解量が少ないほどゲル化能が高いと判断できる。化合物 2 (10·6)の大 部分は溶媒に溶解しておらず,高いゲル化能と高い安定性を示す結果を支持している。そ してゲル化剤の添加量を増やしても溶解量が増えることはなかった。なお、すべてのサン プルは 70 ℃ではゾル状態になるが、この温度でもすべてのゲル化剤が溶媒に溶解してい るものではなく、多くは固体様として存在していた。そのため、ゾル状態になるのはゲル 化剤が溶解することによるものではないことがわかった。溶解ゲル化剤の量はゾル状でも サンプルによって異なっており、特に化合物 2 (10·6) は高温にしてもほとんどが溶解し てない。

Figure 3-3. Concentrations of dissolving gelator in propylene carbonate.

3-3-2 ゲルの形態

形成したゲルについて、ゲル化剤が形成している超分子構造を理解するため、その形態 観察を試みた。図 3-4 にキセロゲルの繊維状構造を観察した走査型電子顕微鏡(SEM)像 を示す。これらのゲルはプロピレンカーボネートに化合物 2(10-6)または化合物 2(6-10)を添加して形成したゲルを凍結乾燥して調製したものである。溶媒を含むゲルとキセ ロゲルとが全く同じ構造であることの確認はできていないが、キセロゲルは短時間で溶媒 を除去して調製したので、溶媒を含むゲルと類似の構造を維持しているものと推定してい る。

ここで,化合物2(10-6)に基づくゲルは薄く均一な繊維状構造体が成長していたが, 化合物2(6-10)に基づくゲルが形成する構造は太さおよび長さが不均一な繊維状や棒状 の構造であった。この差がゲル化能の相違の理由であると考える。均一な繊維状構造を形 成するものほどゲル化能が高いと言える。また,両サンプルとも螺旋構造と筍状構造が見 られた。この構造はペルフルオロ化合物がフッ素元素間の立体障害によって自発的に螺旋 を巻く性質があることと関係するのかもしれないがその詳細機構はわかっていない。な お,分子構造と螺旋の方向,ゲル化能との関係なども未確認であり,今後の課題である。

図 3-5 は、プロピレンカーボネートに対する種々の量の化合物 2(10-6) を添加して形成したキセロゲルの SEM 画像である。 ゲル化剤を 0.15%添加して作製したサンプルは ゾル状態であるが、これは不定型な構造が多く、一部分に繊維状構造が形成されていた。 この不定型な形態構造の一部がプロピレンカーボネートに溶解し、ゲル化に寄与していない成分であると考えている。そして、形成している繊維状構造が少ないため、ゲル化せずにゾル状であった。 一方、ゲル化剤を 1%添加したサンプルと 3%添加したサンプルでは不定型な構造が少なく、繊維状構造がネットワークを形成できていると考えている。また、繊維状構造の形態はゲル化剤の添加濃度に依存せずに同様の構造であるように見えた。

Figure 3-4. SEM images of xerogels. (a): 1 wt% Compound **2 (10-6)**, (b): 3 wt% Compound **3 (6-6)**.

Figure 3-5. SEM images of xerogels by Compound **2 (10-6)**; (a), (d): 0.15 wt%, (b), (e): 1 wt%, (c), (f): 3 wt%; (d), (e), (f): Magnifications of (a), (b), (c).

3-3-3 ゲルのレオロジー解析

ゲルの動的挙動を評価するために,化合物 2(10-6)をプロピレンカーボネートに添加し て形成したゲルのレオロジー解析を行った。図 3-6 に 25 ℃における貯蔵弾性率(G')と損 失弾性率(G')の周波数依存性を示す。測定範囲はプラトー領域であり,G'はG"よりも常 に高い値を示していた。このことは化合物 2(10-6)が棒状であることを示唆している。

Figure 3-6. Frequency dependence of the storage modules; \bigcirc : Storage modulus, \triangle : Loss modulus.

3-3-4 ゲル化剤の配向

化合物 2(10-6) に基づく繊維状構造で、どのようにゲル化剤分子が配列しているのか を確認するためにキセロゲルの XPS 測定で相対元素濃度を測定した。そして溶媒と混合 していないゲル化剤の「粉」と比較した。まず、ペルフルオロアルキル基が表面に析出し ている場合、アルキル基が表面に析出している場合、ランダムな場合(繊維の径方向に分 子が配列)の理論元素濃度を計算し(表 3-3),その後実測をした(表 3-4)。比較サンプル である「粉」の測定結果は、ランダム状態の計算結果とアルキル基が表面に析出し分子が 交互に配列している結果との中間の結果を示した。ゲル化剤の粉はゲルを形成していない ため、配向はしていないはずであるが、完全にランダムではなかったのはゲル化剤合成後 の精製条件の影響を受けているものと考える。精製(再結晶)時にアルキル基が表面に出 やすい結晶成長をしたのであろう。一方、キセロゲルの表面はランダム配列と比べてFの 濃度が高く、ペルフルオロアルキル基が表面に析出している場合と計算結果がよく一致し た。従って、このゲルは繊維構造の表面にペルフルオロアルキル基が多く存在するように 配向した会合になっていることがわかった。また、分子鎖の配向による計算結果差は少な かったために確証は持てないものの、分子が交互方向に配列しているよりは、同一方向に 配列しているものが多いと考えている。なお,XPS は表面分析であるため,繊維構造内部 まで同じような配列が維持されているかの確認はできていない。他の測定を併用すると詳 細がわかると思われる。

Table 3-3. Simulation results of relative atomic concentration of gelator surfaces (Compound **2 (10-6)**).

	Relati					
配向状態	[[C]		[0]	[0]	[F]/[S]
	CF	SO2+HC	נרן	[U]	[3]	
CF鎖が最表面,分子が同一方向に配向	22	10	E2 0	16	1.6	22.4
(CF-SO2-CH/CF-SO2-CH/CF-SO2-CH)	25	10	52.9	4.0	1.0	55.4
CF鎖が最表面,分子が交互方向に配向	21.4	22.1	E0 0	4.2	1 5	24 7
(CF-SO2-CH/CH-SO2-CF/CF-SO2-CH)	21.4	22.1	50.0	4.2	1.5	54.7
CH鎖が最表面, 分子が同一方向に配向	174	26.2	26	0.7	2.1	17 5
(CH-SO2-CF/CH-SO2-CF/CH-SO2-CF)	17.4	50.5	30	8.2	2.1	17.5
CH鎖が最表面, 分子が交互方向に配向	10.4	20 E	41.0	6.4	17	24
(CH-SO2-CF/CF-SO2-CH/CH-SO2-CF)	19.4	50.5	41.9	0.4	1./	24
 配向なし	20.4	28.6	42.9	6.1	2	21

CF: C₁₀F₂₁-, SO₂: -C₂H₄SO₂-, CH: -ph-OC₆H₁₃

Table 3-4. XPS analysis of relative atomic concentration of gelator surfaces.

	Rela					
	[C]		151	101	101	[F]/[S]
	CF	CHOS	נרן	[U]	ျပ	
Vorogol	42.8		E1 0		1.6	20.4
Xerogei	23.3	19.5	51.2	4.4	1.0	32.4
Powder of	47.8		110	E 7	1.0	24.6
gelator	20.7	27.1	44.0	J.7	1.0	24.0

この結果で、同一分子であっても結晶を形成する場合とゲル化する場合では構造体の表 面に現れる官能基や分子の配向の仕方が異なっていたことが示された。それぞれの場合で の安定な表面状態が異なっていることを示している。なお、この表面官能基の差は「ゲ ル」と「結晶」の形態の差によるものなのか、ゲルや結晶を形成する際に用いた溶媒との 親和性による差によるものなのかはわかっていない。溶媒種を変えてゲルや結晶を形成し たときにどうなるかの確認をすることで結論したい。

なお, XPS で測定したサンプルはキセロゲルであるため,含溶媒ゲルでも上記構造をと ることの妥当性を判断するため,分子動力学シミュレーションにて構造安定性の計算をし た。具体的には,化合物2(10-6)が二分子層を形成してプロピレンカーボネート中で存 在するときのトータルエネルギーから安定構造を求めた。化合物2(10-6)は5×5×2分 子層で配列し,プロピレンカーボネートは100分子として求めた。

図 3-7 に計算した分子の配向と計算結果のスナップショットを示す。ペルフルオロアル キル基がプロピレンカーボネートに接している構造,アルキル基がプロピレンカーボネー トに接している構造に対し,化合物 2 (10-6)分子が同一方向に配列する構造と交互に配 列する構造を初期状態として,その構造の安定性を計算したところ,いずれも安定に存在 できることがわかった。なお,エネルギーの値は(1),(2),(3)の順に安定であるように見え るが,これは前提条件を変えると結果が変わる程度の差であった。このことから,XPS で 得られた,「繊維状構造体の表面にはペルフルオロアルキル基が表面に析出している」形 態の確からしさを示した。

Time / [ps]

(A): Molecular arrangement of initial states,

(B): Snapshots after simulation, (C): Energy changings in simulation.

8500 700 Time / L

Fimo / [ps]

なお,化合物2(10-6)の孤立分子はスルホン部位で屈曲した構造をとり,分子長は約2.6 nm であることもあわせて計算で求めた。

Figure 3-8. Stable structure of isolated molecule by quantum-chemistry calculation.

そして,化合物2(6-6)でも同様に計算すると,どの並びでもシミュレーション時間内 に層構造が崩れてしまい,安定に存在できないことがわかった(図3-9)。このことは化合 物2(6-6)がゲル化能を示さなかったことと一致し,MD法でのシミュレーションがゲル 化能の考察に有効であることの裏付けとなった。

Figure 3-9. Snapshot of Compound 2 (6-6) arrangement after simulation.

なお,含フッ素ゲル化剤を含む溶液を塗工して乾燥すると超撥水表面が得られるという 報告がある⁴。この超撥水表面はフッ素鎖に基づくものであると考察できることから,含 フッ素ゲル化剤に基づくキセロゲルの表面は一般的にフッ素部位が優先的に現れる,と言 うことができると考える。そしてその結果に本章の結果は矛盾しない。また,本ゲル化剤 に基づくキセロゲルも超撥水表面の形成に使用することができるであろう。超撥水表面の 形成はアプリケーションの一つになるかもしれない。

3-4 まとめ

本章では新規な、ペルフルオロ基を有するゲル化剤を提案し、合成、評価を行い、これ らのゲル化剤が、様々な有機溶媒で高いゲル化能と安定性を示すことを見出した。また、 これらのゲル化剤は分子構造が簡易であるため、合成が簡単であることも有意である。

本章のゲル化剤はペルフルオロアルキル基,アルキル基共に長く,直線性の高い分子ほど高いゲル化能を示すことがわかった。また,形成したゲルは径が100 nm~数100 nmの繊維状構造の会合体であり,最表面にペルフルオロアルキル基が析出している構造であった。

また,これらのゲル化剤は活性水素や反応性官能基を持たず,化学的・電気化学的安定 性に不安が少ないものであるため,電気化学デバイスへの応用でも期待ができると考え る。そこで,実際にそれを検討することが次の課題である。 なお,最もゲル化能が高かったのは化合物2(10-6)であり,ペルフルオロアルキル基 の炭素数は10である。炭素数8以上のペルフルオロ化合物はPFOAやPFOSの規制対照 物質に近い性能を示したり,それらの原料物質になったりする恐れがあるため,現在では 流通がかなり少ない。本章のゲル化剤の合成原料も現在では入手が限られている。そのた め,ペルフルオロアルキル基の炭素数を減らしても,本章のゲル化剤と同程度のゲル化能 を示すゲル化剤を設計することも次の課題である。そのためにはゲル化の機構に関する考 察を深めることも必要である。

References

M. George, S. L. Snyder, P. Terech, C. J. Glinka, R. G. Weiss, *J. Am. Chem. Soc.*, 125, 10275-10283 (2003). T. Yajima, E. Tabuchi, E. Nogami, A. Yamagishi, H. Sato, *RSCAdv.*, 5, 80542-80547 (2015). B. Cao, Y. Kaneshige, Y. Matsue, Y. Morita, H. Okamoto, *New J. Chem.*, 40, 4884-4887 (2016). B. Cao, S. Hayashida, Y. Morita, H. Okamoto, *Mol. Cryst. Liq. Cryst.*, 632, 49-56 (2016).

2) T. Yoshida, T Hirakawa, T. Nakamura, Y. Yamada, H. Tatsuno, M. Hirai, Y. Morita,
H. Okamoto, *Bull. Chem. Soc. Jpn.*, 88, 1447-1452 (2015).

P. Curcio, F. Allix, G. Pickaert, B. J.-Gregoire, *Chem. Eur., J.*, 17, 13603-13612 (2011).
 Y. Lan, M. G. Corradini, X. Liu, T. E. May, F. Borondics, R. G. Weiss, M. A. Rogers, *Langmuir.*, 30, 14128-14142 (2014).
 Y. Lan, M. G. Corradini, R. G. Weiss. S. R. Raghavan, M. A. Rogers, *Chem. Soc. Rev.*, 44, 6035-6058 (2015).

M. Yamanaka, K. Sada, M Miyata, K. Hanabusa, K. Nakano, *Chem. Commun.*, 21, 2248-2250 (2006). A. Raghavanpillai, S. Reinartz, K. W. Hutchenson, *J. Fluorine Chem.*, 130, 410-417 (2009). A. Raghavanpillai, V. Franco, *Chem. Mater.*, 18, 2974-2981 (2006).

第四章 ペルフルオロアルキル部位およびスルホニルフェニル部位を有する新規低分子ゲ ル化剤を用いた非水電解質およびリチウムイオン電池

4-1 緒言

前章で、ペルフルオロアルキル基を有する新規なゲル化剤を提案し、それは高いゲル化 能を有すると共に熱的安定性に優れることを示した。また、そのゲル化剤は水素結合やイ オン性の官能基などの反応性が高い構造を有していないため、化学的・電気化学的な安定 性も優れると期待できる。フッ素化合物は電気化学デバイスと親和性が高いことも諸言で 述べたとおりである¹⁾。

近年,リチウムイオン電池は高容量化が進んでおり,安全性への要請は高まっている 2)。安全性を向上させるひとつの手法として,電解液のゲル化,固体化がある3)。そこで本 章では,前章で検討したゲル化剤をリチウムイオン電池電解液のゲル化剤として適用する 検討を行い,電池特性と安全性について考察した。

4-2 実験

4-2-1 合成・調製

本章では図 4-1 に示すゲル化剤を用いた。このゲル化剤は前章で合成したものである。 そして,前章同様に,ペルフルオロアルキル基の炭素数をm,アルキル基の炭素数をnと して m-n と呼ぶ。本章では高いゲル化能を示す化合物 2 (10-6)を主に用いた。ゲル化剤 の合成はスキーム 4-1 に従い,前章と同じように合成した。

環状カーボネートと鎖状カーボネートの混合溶媒にLiPF₆を溶解した電解液を対照電解 液とした。ゲル化剤と対照電解液とを混合し、加熱してゲル化剤を溶解した後、冷却する ことでゲル電解質を調製した。電解液溶媒と電解質は全てキシダ化学の電池グレードの製 品を用いた。

Compounds 2 (m-n)

Figure 4-1. Chemical structure of low-molecular-mass gelator in this chapter.

Scheme 4-1. Synthetic scheme of Compounds 2 (m-n) gelator.

4-2-2 測定·評価法

○ゲル化能の評価

様々な組成の対照電解液を調製し、調製した電解液に対して、所定量のゲル化剤を混合 し、加熱溶解した。その後、室温に降温してゲルを調製した。ゲル化能の評価は前章と同 様の方法で実施した。

○電解液の性能

電解質のイオン伝導性評価は、磁場勾配 NMR により、7Li とアニオン分子に基づく ¹⁹F の拡散係数を測定することで行った。また、¹H の拡散係数およびゲル化剤分子に基づく ¹⁹F の拡散係数も評価した。磁場勾配 NMR の測定は JEOL 製の ECA400(400 MHz)と 磁場勾配パルスが 13 T/m の GR プローブを用いた。7Li とアニオン分子に基づく ¹⁹F の拡 散係数は大きな値を示すほどイオン伝導性が高いと推測できる。

なお、イオン伝導性はACインピーダンス法で求めることが多いが NMR を用いても測定できる 4。ただし、ACインピーダンス法では、電気化学的に不活性な成分は検出せず、理想的な拡散挙動を検出するわけではないため、全ての成分を検出する NMR 法とは誤差が生じる。一般的には、塩の解離の割合を α とすると、拡散係数 D は D_{NMR} \Rightarrow D_{AC}× α の式が成り立つ。1 M 程度のリチウム塩を溶解した電解液では乖離度が 0.1~0.6 程度になることが多い⁵。

また,ACインピーダンスでイオン伝導性を評価する場合には,電極の選択も重要である。電極との"相性"で結果は異なることがある。しかも,本検討では,ゲル化剤と電極との相性も勘案しなければならず,因子が多くなってしまう。そのため,本検討では電極に依らない結果を得るために NMR 法を選択した。

なお,高分子ゲル電解質のイオン伝導性の指標として拡散係数を使用している例もあり ⁶,磁場勾配 NMR による拡散係数の測定はイオン伝導性の評価として有用な方法のひと つであると考える。

○電解液の安全性

電解液の安全性は電解液を支持体に含侵させ加圧したときの保液性と電解液の燃焼試験 で評価した。 保液性は、支持体としてポリプロピレン製の不織布(5 cm²×0.012 cm,空孔率 73%) を用い、それに電解液を含侵させ、4 kgf/cm²まで加圧した時の不織布の重量変化によって 求めた。円筒型のリチウムイオン電池の標準使用環境でかかる上限圧力が4 kgf/cm²程度 であることが多いことを参考に、本検討でも4 kgf/cm²まで加圧した。不織布を用いたの は、一般の微多孔膜セパレータよりも空隙が多いことで、実験結果差をわかりやすくする ためである。

加圧は油圧ポンプで行った。加圧後に周囲に染みだした電解液を拭き取り,重量測定を 行った。加圧法は図 4-2 の通りである。

Figure 4-2. Pressurization method of electrolyte retention.

燃焼試験は1mLの電解液を含侵させたガラス濾紙(13mm×125mm×2mm)を用い て図 4-3のように行った。サンプルの大きさは、高分子材料の燃焼試験の基準である「UL 水平試験」を参考にした。濾紙の一端を治具で固定し、逆端に炎を近づけ、炎が濾紙の全 体に広がるまでに要する時間を測定した。装置は東洋精機製作所のMCM-2を用いた。炎 が広がるまでの時間が長いほど延焼遅延となり、安全性が高いと判断する。

なお,炎をサンプルに近づけてもサンプルが着火しない場合,そのサンプルは「不燃」 であると言い,炎が濾紙の全体に広がらずに途中で消える場合,そのサンプルは「自己消 火性」を有すると言う。

Figure 4-3. Flame test method.

○電池作製

電池試験には定格容量が6 mAh のコインセルと定格容量が45 mAh の単層パウチセル, 定格容量が720 mAh の積層パウチセルを用いた。コインセルは2 cm²の円盤状の正極と負 極の間にポリエチレン製のセパレータを挟んだ構造のものを用いた。単層パウチセルは5.0 cm×3.0 cm の正極と 5.2 cm×3.2 cm の負極の間にポリエチレン製セパレータを挟む構造 で作成した。積層パウチセルは両面塗工の電極を用いた。8枚の正極(それぞれ 5.0 cm× 2.8 cm) と 9 枚の負極(それぞれ 5.2 cm×3.0 cm)を間にポリエチレン製のセパレータを 挟みながら交互に積層した。正極板は正極活物質のコバルト酸リチウムと PVdF バインダ ーと導電性のアセチレンブラックとの混合物をアルミニウム集電体に塗工して作成した。 負極板は負極活物質の人造黒鉛と PVdF バインダーとアセチレンブラックとの混合物を集 電体である銅箔に塗工して作成した。 両電極とも塗工後は十分に乾燥させ, その後所定の厚 みと電極密度になるようにプレスして完成させた。ポリエチレン製セパレータは旭化成の ハイポア ND420 を用いた。電極 - セパレータ積層体に対し、電極とセパレータの空孔を満 たすように電解液を注液し、セルをシールすることで試験用電池を完成させた。 ○充放電試験

充放電試験はアスカ電子の充放電機(ACD-01)を双葉化学の恒温槽(PLM-63S)に接続 して行った。電解液を注液し、封止した後の電池は 25 ℃でコンディショニングを行った。 パウチセルではコンディショニング後に一度電池を開封し,発生したガスを除去した後に 再封止して電池の完成とした。コンディショニングでは 0.2 C の CC-CV 充電を 4.2 V まで 行い(総充電時間:8 時間),10 分間の休止の後に 2.75 V まで 0.2 C の CC 放電を行った。 このときの充放電容量を初充放電容量とした。コンディショニングが終了した電池で様々 な試験を行った。

最初に、単層パウチセルと積層パウチセルを用いて AC インピーダンス法による内部抵 抗測定を実施した。測定周波数は 20000-0.1 Hz であり, 振幅は 10 mV である。続いて, コ インセルと単層パウチセルを用いて 25 ℃のレート試験を行った。コインセルでのレート試 験は1 C の CC-CV 条件で 4.2 V まで充電し, 10 分間の休止の後に様々なレートの CC 条 件(0.33 C, 0.5 C, 1 C, 2 C, 3 C) で 3.0 V まで放電することで行った。パウチセルでの レート試験は 0.2 C の CC-CV 条件で 4.2 V まで充電を行い, 10 分間の休止の後に様々なレ ート(0.2 C, 0.5 C, 1 C, 2 C, 3 C)の CC 条件で 2.75 C まで放電することで行った。各 放電の後は0.2Cで追加の放電を行い、完全に放電をしたことを確認したのちに次の充電を 行った。レート試験の後は単層パウチセルで AC インピーダンス測定を行い, 初期からの抵 抗上昇分を評価した。 低温レート試験はコインセルを用いて行った。 充電は 25 ℃の1С で 行い,放電は様々なレート(0.33 C, 0.5 C, 1 C)と温度(-20 ℃, -10 ℃, 0 ℃)で行っ た。その後, 25 ℃と 60 ℃の充電サイクル試験をコインセルで行った。4.2 V までの CC-CV 充電と 3.0 V までの CC 放電を充放電共に1C で繰り返した。 ○電池安全性

セルの安全性試験として過充電試験を実施した。単層パウチセルでは過充電時に負極表 面に析出する Li デンドライト形状を観察し,積層パウチセルでは過充電時の発火挙動を試 験した。Li デンドライトの形態は,コンディショニング後のセルを1Cの CC 条件で 4.5 V まで充電し、ドライ環境下でセルを解体し、負極表面と断面を光学顕微鏡で観察した。発火 挙動の試験では満充電後の積層パウチセルを 2.5 C と 3 C の CC-CV 条件でさらに充電する ことで実施した。セルが発火したり、爆発したり、充電が停止したりするなどの異常な状態 になったところで試験は終了した。過充電時の電圧、電流、温度、セルの厚みをモニターし た。

なお,45 mAh のセルでは過充電状態にしても発火せず,720 mAh のセルは過充電状態 では発火することを対照電解液で事前に確認してからゲル電解質の評価を進めた。

4-3 結果と考察

4-3-1 電解液に対するゲル化能

化合物 2 (10-6) をゲル化剤として用いたときの様々な電解液組成での最低ゲル化濃度 (MGC) を表 4-1 に示す。本ゲル化剤は高極性な溶媒を多く含む電解液で高いゲル化能を 示し、それは前章と同様の傾向であった。エチレンカーボネートとエチルメチルカーボネー トの体積比 1:2 の混合溶媒に LiPF6 を 1M 溶解した液は標準的な電解液組成であるので、 これを対照電解液として以降の評価に用いることとした。この電解液に対する MGC は 0.5%であった。

また,添加するゲル化剤の濃度が高いほど,ゲル-ゾル相転移温度も高くなることは低分 子ゲル化剤によるゲルの特徴である。そのため,ゲル化剤の濃度を変化させることにより, 所望の相転移温度を有するゲルを得ることができる。リチウムイオン電池は50 ℃以上の高 温に置かれることもあるので,相転移温度は60 ℃以上にする必要がある。一方,相転移 温度が非常に高い場合は,取り扱い性が悪いものとなる。従って,相転移温度は電解液溶媒 成分の沸点以下である,約100 ℃未満に設定することが好ましい。そこで化合物 2(10-6) を用いて,添加量に基づく相転移温度を評価した。

Figure 4-4. Gel electrolyte used in this chapter (1M-LiPF₆, EC/EMC =1/2).

62

Table 4-1. MGCs of Cor	ipound 2 (10-6) for	various e	lectrolytes
------------------------	----------------------------	-----------	-------------

	MGC (wt%)
1M-LiPF ₆	0.5
EC/EMC=1/2 (v/v)	0.0
1M-LiPF ₆	0.7
EC/EMC=3/7 (v/v)	0.7
1.5M-LiBF ₄	15
EC/EMC/yBL=1/1/2 (v/v/v)	1.5
1.5M-LiBETI	15
EC/EMC/yBL=1/1/2 (v/v/v)	1.0
1M-LiPF ₆	0.5
PC	0.0
1M-LiPF ₆	Dissolution
EMC	Dissolution

EC: Ethylene carbonate, EMC: Ethyl methyl carbonate, BL: γ -Butyrolactone, PC: Propylene carbonate.

Table 4-2. Phase transition temperatures of Compound 2 (10-6).

Concentration of Compound 2 (10-6) (wt%)	0.3	1.0	3.0	5.0
Sol-gel transition temperature (°C)	65.3	67.5	69.4	72.8

4-3-2 電解液の性能評価

表 4·3 に磁場勾配 NMR で測定した各種温度における電解質成分の拡散係数を示す。7Li の拡散係数が Li イオンの伝導性, ¹⁹F が対アニオンのイオン伝導性を反映する。ゲル化剤 の添加量が 0%である対照電解液と,ゲル化剤を 1 wt%含むゲル電解質での 7Li と ¹⁹F の拡 散係数は,広い温度範囲で同程度であった。しかし,ゲル化剤を 3 wt%添加したゲル電解質 ではわずかにそれらの拡散性が低下した。ゲル電解質は, -20 ℃と 30 ℃ではゲル状態であ り,70 ℃でゾル状態である。ゲル化しているにも関わらず,対照電解液とゲル電解質が類 似のイオン伝導性を示すことは特徴である。それは,ゲル化剤の添加量が,電解質のイオン の移動を阻害しないほどに少ないものであったためであると考える。なお,ゾル状ほど,対 照電解液とゲル電解質での性状が類似するため,ゲル化剤の添加量によらず,拡散係数がよ り近い値になると考えていたが,結果は逆であった。これは,高温になって電解液とゲル化 剤が一様になっていることで,液粘度が上昇の影響が大きくなったと考えている。

これに基づき,図 4-5 の通りにアレニウスプロットを求めるとほぼ直線性を示し,イオンの移動をゲル化剤が阻害しないことを裏付けた。

一般的に,高分子のゲル化剤を用いた高分子ゲル電解質では,低分子ゲル化剤を用いたゲル 電解質よりも多くのゲル化剤を電解液中に添加する必要があるため,対照電解液と同程 度のイオン伝導性を示すことは困難となる。さらに、高分子はガラス転移温度(Tg)を有し、 Tg 以下の低温域でのイオンの移動をより阻害する傾向がある。そのため、広い温度範囲で 拡散係数が低下しないという挙動は、低分子ゲル化剤に基づくゲル電解質が有する大きな 利点であると言える。また、¹Hの拡散係数から溶媒の拡散性も求めたが、溶媒の移動もゲ ル化によって特段阻害されてはいないことがわかった。

この結果は低分子ゲル化剤を用いたゲル電解質に特異的であることを確認するため高分 子ゲル電解質との比較を行った。高分子ゲル電解質のゲル化剤として、電池用グレードとし て市販の PVdF-HFP を用いてゲル電解質を調製した。ゲル化剤の添加量は対照電解液に対 する MGC である、15 wt%とした。この電解液での拡散係数を同じ方法で求めた。結果を 表 4-4 に示す。この時、高分子ゲル化剤に基づくゲル電解質ではイオンの拡散性が、明らか に対照電解液及び化合物 2(10-6)に基づくゲル電解質と比較して低下しており、低分子ゲル 化剤に基づくゲル電解質のような結果にはならなかった。従って、本系のゲル電解質の優位 性を示すことができた。特に高温域で差が大きかった。低温域では高分子のゲル化剤も低分 子のゲル化剤も固体様の構造体を形成し、その構造間を電解液成分は拡散できる。そのため、 両ゲル電解質での拡散係数差は、単純にゲル化剤の添加量の違いであると考える。一方高温 域では、ゲル化剤も溶融したり溶解したりして液体と一様になるが、この時に高分子のゲル 化剤と低分子ゲル化剤とでは、添加量の違いのみではなく、分子量に基づく増粘効果の差も 見られる。従って、両ゲル電解質の拡散係数差が高温域でより大きくなっているものと考え る。電池の実用性能としては低温領域に着目しがちであるが、電解質の基本性能としては高 温領域にも着目すべきであることがわかった。

Temperature	Concentration	Nuclear species					
	of Compound 2 (10-6)	⁷ Li (Li ⁺)	¹⁹ F (PF ₆ ⁻)	¹⁹ F (Gelator)	¹ H (EC)	¹ H (EMC)	
20°C	0	4.83E-11	7.57E-11	—	1.04E-10	1.30E-10	
-20 C	1	4.16E-11	6.10E-11	3.99E-11	8.91E-11	1.12E-10	
	0	1.98E-10	3.12E-10	—	4.38E-10	4.99E-10	
20°C	0.2	1.78E-10	3.08E-10	1.69E-10	4.19E-10	4.83E-10	
30 0	1	1.79E-10	3.02E-10	1.39E-10	4.04E-10	4.93E-10	
	3	1.73E-10	2.71E-10	1.09E-10	3.54E-10	4.13E-10	
	0	7.89E-10	9.77E-10	—	1.25E-09	1.60E-09	
70°C	0.2	1.02E-09	1.23E-09	8.07E-10	1.51E-09	1.60E-09	
700	1	5.77E-10	7.81E-10	5.22E-10	1.14E-09	1.27E-09	
	3	3.61E-10	5.59E-10	2.91E-10	7.54E-10	8.67E-10	

Table 4-3. Diffusion coefficients of each electrolyte component.

		Nuclear spieces					
Electrolyte	Temperat ure	⁷ Li (Li ⁺)	¹⁹ F (PF ₆ ⁻)	¹ H (EC)	¹ H(MEC)	Li transport number	
Control	-20 ℃	4.83E-11	7.57E-11	1.04E-10	1.3E-10	0.39	
loctrolyto	30 ℃	1.98E-10	3.12E-10	4.38E-10	4.99E-10	0.39	
	70 °C	7.89E-10	9.77E-10	1.25E-09	1.6E-09	0.45	
Polymer	-20 ℃	2.45E-11	4.65E-11	6.70E-11	8.09E-11	0.34	
gel	30 ℃	1.34E-10	2.06E-10	2.99E-10	3.48E-10	0.39	
electrolyte	70 ℃	2.87E-10	3.83E-10	6.24E-10	7.20E-10	0.43	

Table 4-4. Diffusion coefficients of polymer gel electrolyte components.

Figure 4-5. Arrhenius plots based on diffusion coefficient of electrolyte components. (A): 7Li (B): ¹⁹F.

なお、一般的に有機電解液において、同じ電解液中では溶媒が常に最も速く拡散し、アニ オン、リチウムの順番になることが知られている。即ち、各成分の拡散係数をDとすると、 D_{solvent} > D_{anion} > D_{Li}の順になると言われており⁴、今回の評価でもその通りになった。 そして、リチウムよりもさらに低い値ながらゲル化剤も拡散していることがわかった。拡散 係数は粘度の逆数に比例することから、溶解しているゲル化剤は溶媒やイオンよりも粘度 が高いと推察できる。すなわち、よりイオン伝導性を高めるためには溶解しているゲル化剤 が少ない方が有利である。

さて,拡散係数から溶媒和構造を推定することもできる ⁷。D は以下の Stokes-Einstein の式で与えられる。

D=kT/c $\pi \eta r_s$

K: ボルツマン定数, η: 粘性率, rs: 拡散半径

上式より、拡散係数は粘性率と拡散半径の積に反比例する。ここで、溶液中のリチウムイ オンと溶媒は同じ粘性下にありながら異なる拡散係数を示し、 $D_{solvent} > D_{Li}$ の関係にある。 また、同じ粘性下にあるならば、拡散半径が小さいほど拡散係数は大きくなる必要がある。 すなわちとリチウムイオンの拡散半径は溶媒の拡散半径よりも大きく、それが溶媒和構造 を示唆している。上式において η も含めて定数項としてまとめると

$D_{solvent}/D_{Li} = r_{Li}/r_{solvent}$

となる。そこで、本章の電解液(ゲル化剤1wt%)について各温度のD_{solvent}とD_{Li}の値を 求めた。本系はエチレンカーボネートとエチルメチルカーボネートが体積比1:2の混合溶媒 であり、拡散係数に対する両溶媒の寄与度は混合比であると、仮定した。結果、-20 ℃では 対照電解液とゲル電解質で同じ値を示し、Li の溶媒和構造は全く同じであることが示唆さ れた。一方、30 ℃と70 ℃ではゲル電解質では1.1 倍程度の、わずかな違いが認められた。

高温ほど電解液とゲル化剤が一様に混合された状態になることから、電解液成分の拡散 半径に対するゲル化剤の影響が大きくなると推察できるが、この結果はそれを支持するも のであった。

Temperature	Concentration of Compound 2 (10-6)	$D_{solvent}/D_{Li}$
00 °0	0 %	2.51
-20 C	1 %	2.51
20 °O	0 %	2.42
30 C	1 %	2.59
70 °C	0 %	1.88
	1 %	2.13

Table 4-5. Diffusion diameters of solvent and Li.

4-3-3 電解液の安全性評価(燃焼試験)

ゲル化剤が溶媒を保持することでの燃焼抑制を期待して、燃焼試験を行った結果を表 4-6 に示す。これによると、ゲル電解質にすると燃焼遅延効果が見られ、また、形成する炎 の大きさも小さくなっていた。そのため、ゲル電解質を用いることで電池異常時の安全性 を向上させられる可能性がある。しかし、不燃にすることはできなかった。そこで、電解 液の引火点をセタ密閉式の試験で測定すると、ゲル電解質も対照電解液も 26.5 ℃で同じ であった。ゲル化では引火点を変化させることはできず、そのことと不燃にはできなかっ たことと対応すると考える。すなわち、低分子ゲル化剤と電解液との相互作用は電解液の 蒸気圧を変えるほど強固なものではないことがわかった。このことはゲル化によってイオ ン伝導性(拡散係数)が低下しない結果とも矛盾しないと言える。

続いて,難燃剤として汎用の⁸,トリス(2,2,2・トリフルオロエチル)ホスファイト (TFEP)をゲル化剤と併用する検討を行うと,燃焼遅延効果が向上する結果が得られ た。TFEP は電解液に対して 20%程度以上添加することで燃焼抑制効果として,自己消火 性を示すことが知られているが,ゲル電解質に適用するとその半分の量で自己消火性を示 した。なお,TFEP はそれから発生する F 含有のガスに基づく窒息効果が難燃化に寄与す るが,ゲル化剤と TFEP との相互作用により,TFEP の放出速度を適性化できたとも推定 できる。(TFEP は液体であり,化合物 2 (10・6)によってゲル化できる。)TFEP はカー ボネート溶媒よりも抵抗が高く,イオン伝導性が低いため,電池特性の観点からは添加量 が少ない方が好ましい。ゲル化剤と併用することで少ない TFEP 量で燃焼抑制効果を示す ことには意味がある。

	Control electrolyte	Control electrolyte with flame retardant	Gel electrolyte	Gel electrolyte with flame retardant
Concentration of Compound2 (10-6) (wt%)	_	_	1.0	1.0
Concentration of TFEP (wt%)	—	10.0	-	10.0
Flame spread time (s)	17.4	20.3	40.3	Self-extinguish

Table 4-6. Flame spread times of flame tests.

4-3-4 電解液の安全性評価(保液性)

電解液保液性の結果を表 4-7 に示す。電解液保液性は加圧前後の不織布の重量変化から 算出した。流動性が低いゲル電解質は対照電解液と比較して漏液しにくくなると仮定した。 ゲル電解質を含有した不織布を加圧したところ、1 kgf/cm² 程度の低圧印加ではほとんど漏 液が見られなかったが、それ以上に加圧すると徐々に漏液が見られた。一方、対照電解液で は1 kgf/cm² 未満の加圧から漏液が見られた。ここで、不織布は加圧によって空隙率が減少 し、保液可能な電解液量が減少する。そこで、4 kgf/cm² で不織布を加圧したときの空隙を 計算したものを表 4-8 に示す。そして、表 4-8 の値を用いて電解液の実質的な保液量を計算 した結果を表 4-9 に示した。これにより,対照電解液では漏液によって,液枯れが生じてい るのに対し,ゲル電解質は不織布のすべての空隙を満たしていることがわかった。これは電 池の安全性および信頼性に寄与する。ゲル電解質で,保液率が 100%を超えているのは不織 布最表面のゲル状の電解液の拭き取りを十分に行うことが難しかったことによる。また漏 液時は液体のみが絞り出されるのではなく,「ゲル状」で漏液した。従って,このゲル電解 質は加圧によってもゲル化剤と電解液が分離することはなく,ゲル化剤と電解液との親和 性は失われない。このように、ゲル状であれば、たとえ漏液しても、周辺環境への広がりが 抑制できるため、漏液しても対照電解液より安全性が高いと考える。今回の試験では、漏液 をわかりやすくするために不織布を用いたが、微孔を有するリチウムイオン電池セパレー タでも同様の現象が期待できる。

Table 4-7. Electrolyte retention comparison between before and after application of pressure (4 kgf/cm²).

	Control e	electrolyte	Gel electrolyte (Compound 2 (6-6) 3wt%)		
	g	ml	g	ml	
Impregnating electrolyte amount	0.0383	0.0460	0.0387	0.0464	
Leakage electrolyte amount	0.0231	0.0277	0.0102	0.0122	
Residual electrolyte amount	0.0152 0.0182		0.0285	0.0342	
Electrolyte retention (%)	39.69		73.64		

Table 4-8. Property of non-woven fabric for electrolyte retention test.

	Before	After
	pressurization	pressurization
Porosity (%)	73	59
Porosity retention (%)	100	80.8
Available impregnating	0.0264	0.0214
electrolyte amount (g)	0.0204	0.0214
Available impregnating	0.0219	0.0257
electrolyte amount (ml)	0.0318	0.0257

Table 4-9. Real electrolyte re	tention by pressurizatio	on after the revision	n based on the
non-woven porosity	у.		

	Control e	electrolyte	Gel electrolyte (Compound 2 (6-6) 3wt%)		
	g	ml	g	ml	
Real amount of electrolyte retention	0.0152	0.0182	0.0285	0.0342	
Real ratio of electolyte retntion by pressurization (%)	70.99		133.11		

4-3-5 リチウムイオン電池の評価

初充放電容量と充放電効率の結果を表 4-10 に示す。定格容量の異なるいずれのセルでも、 所定の充放電ができており、また、対照電解液とゲル電解質でほぼ差がない結果が得られた。 そのため、これらのセルは各種電池評価に使用して問題ないと判断した。固体様の電解液を 用いる場合には電極と電解液との界面の接着性が足りずに、抵抗が極端に増大したり、充放 電容量が低下したりすることがあるが、このゲル電解質ではそれが問題になることはなく、 スムーズに充放電ができる界面が形成できたと言える。

続いて、コインセルと単層のパウチセルを用いてレート試験を行った。放電レートに従っ て放電容量が低下する挙動は対照電解液とゲル電解質とで同様であった。次にコインセル での低温での放電レート試験を行った。この結果もゲル電解質と対照電解液でほぼ同じで あった。これらの結果は温度に寄らずイオン伝導性(7Li および 19F の拡散係数)がゲル電 解質と対照電解液でほぼ同じであったことに対応する。固体様の電解液でありながら低温 でも放電特性が低下しないのは低分子ゲル化剤を用いたときの特徴である。そして、ACイ ンピーダンス法で測定した内部抵抗の結果を表 4-11 に示す。単層のパウチセルではバルク 抵抗を示す 20000 Hz での抵抗値が 0.3 Ωで、これはゲル電解質と対照電解液ではほぼ同 じであった。拡散を含む反応抵抗(Rr, 0.1 Hz~20,000 Hz)については,高周波領域の円 弧はゲル電解質と対照電解液でほぼ同じであったが、低周波領域の円弧はゲル電解質でや や大きくなる傾向にあった。内部抵抗はいずれの電解液でもレート試験前後で大きく変化 することはなかった。これらにより、 ゲル化剤は単層のパウチセルでは大きな抵抗成分には ならないと考えた。一方, 積層のパウチセルを用いた場合は拡散を含む反応抵抗がゲル電解 質で高くなった。このことは電解液の, 電極やセパレータへの含侵が不十分であったことに 起因すると考えている。 ただし, ゲル電解質でレート試験の結果が悪化することはなかった ので、この抵抗増大は出力特性に影響を与えるほど大きなものではないと考えている。 それ でも、長期の信頼性の点を鑑み、ゲル電解質を十分に含侵させる注液条件を決定することは 次の課題である。

	С	ontrol electroly	te	Gel electrolyte (Compound 2 (10-6) 3wt%)			
	Charging capacity (mAh)	Discharging capacity (mAh)	Coulombic efficiency (%)	Charging capacity (mAh)	Discharging capacity (mAh)	Coulombic efficiency (%)	
Coin cell (6 mAh)	6.2	6.1	98.39	6.2	6.1	98.39	
Single layered pouch cell (45 mAh)	49.24	48.45	98.39	47.20	46.57	98.68	
Multi layered pouch cell (720 mAh)	729.04	721.25	98.93	726.40	713.55	98.23	

Та	ble	4-1	0.	First	charge-	disch	narge	propert	ties
----	-----	-----	----	-------	---------	-------	-------	---------	------

Figure 4-6. Discharge capacities at various discharge rates at 25 $^{\circ}$ C. Rated capacity (A): 6 mAh (Coin cell), (B): 45 mAh (Single layered pouch cell).

Figure 4-7. Discharge capacities at various discharge rates (low temperatures).

Control electrolyte				Compo (Compo	el electrolyt ound 2 (10-6	e) 3wt%)		
			Single layered cell		Multi layered cell	Single layered cell		NA14:
		Before rate test	After rate test	Before rate test		After rate test	layered cell	
Internal resistance (Ω)	20000 Hz	0.2868	0.3380	0.0234	0.3694	0.3874	0.0866	
	1000 Hz	0.3840	0.4225	0.0285	0.4868	0.5690	0.1161	
	0.1 Hz	0.9252	1.0210	0.0653	1.6405	1.6059	0.2723	
	Rr	0.6384	0.6831	0.0419	1.2711	1.2185	0.1858	

Table 4-11. AC impedance analysis before and after rate tests.

次にコインセルを用いて 25 ℃と 60 ℃の充放電サイクル試験を行った。放電容量及び放 電容量維持率はいずれの温度でも対照電解液とゲル電解質とで同程度であり、ゲル化によ る電池性能低下は見られなかった。これも添加しているゲル化剤が少ないためにリチウム イオン伝導性を妨げなかったことによると考えている。なお、微差ではあるものの、25 ℃ ではゲル化剤が少ないほど初期の放電容量が多いが、ゲル化剤が多いほど 100 サイクルの 放電容量維持率は優れる結果であった。この結果はゲル化剤が電極界面に作用しているこ とを示唆している。つまり、ゲル電解質では、ゲル化剤が電極へ作用する反応により、初期 の放電容量が微減するが、その後はゲル化剤が電極へ作用することで電解液の反応や分解 が抑えられるためにサイクル放電容量の低下が抑制できると判断できる。どちらの電極に どのように作用しているかを直接追跡することはできていないが、この充放電条件では正 極での電解液分解はほとんど無視できるので、負極での電解液分解が抑制できていたと考 えている。また、Tgel-solに近い温度である 60 ℃でもゲル電解質で顕著な性能低下が見られ なかった。このことは充放電サイクル中に少なくともゲル状を保つ温度領域ではゲル化剤 の分解や劣化がほとんど見られないことを示している。つまり、本章検討のコンセプトである、化学的・電気化学的安定性が達成できていることを裏付けている。また、100 サイクルの充放電サイクル試験後のセルを解体して観察したところ、ゾル化していたり、固液分離をしていたりする挙動は見られていなかったので、長期安定性もあることがわかった。

なお,リチウムイオン電池は,特に民生用途では一時的に高温に曝される使用状態があり 得る。従ってゾル状の温度に一定時間曝されたときの安定性は別途確認する必要があると 考えている。

Figure 4-8. Charge-discharge cycle performance (25 °C). (A): Discharge capacities,(B): Discharge capacity retentions by charge-discharge cycles.

Figure 4-9. Discharge capacity by charge-discharge cycles (60 $^{\circ}$ C).

4-3-6 リチウムイオン電池安全性の評価ー過充電電池のリチウムデンドライト析出観察

図 4-10 と 4-11 に過充電した単層パウチセルを解体したときの負極の光学顕微鏡観察写 真を示す。負極の表面観察から, 正極に対向している面ではリチウムが析出していることが わかる。それはリチウム含有量が多いほど炭素が高光沢になることから確認できる。このこ とは過充電環境下では想定される現象であり, 試験条件が正しかったことを示している。ま た, デンドライトがセパレータに到達している様子は見られず, 観察に適した条件で充電で きたことも確認できた。

ここで、ゲル電解質ではほとんどすべてのリチウム過剰炭素は丸みを帯びた形状である が、対照電解液でのリチウム過剰炭素は尖った形状となっている。そこで負極断面観察でリ チウム析出形状を詳細に観察した。対照電解液を用いたセルでは針状のデンドライトが観 察でき、表面は+/-5 µm 程度の不均一な凹凸が見られた。一方、ゲル電解質を用いるとリチ ウムの析出はほぼ平坦であり、不均一性は見られなかった。これはゲル電解質の固体様の性 質によってデンドライトの針状成長は抑制されたものと考える。また、光学顕微鏡写真で線 の長さから面積に換算すると両者ではリチウム析出部の面積が 10~100 倍異なることがわ かった。針状のデンドライトはセパレータを破り、セルが短絡する原因になり得、また、表 面積の大きなデンドライトは反応性が高く、電解液分解を促進するリスクも高まる。さらに は電流集中による電池信頼性の低下、長期特性の低下をもたらすことも想定される。そのた め析出したリチウムが平坦に成長するゲル電解質を用いたセルは安全性と信頼性が向上し たものになると言える。

Figure 4-10. Anode surfaces of overcharged cells by optical microscope. (A): Control electrolyte, (B): Gel electrolyte (Compound **2 (10-6)**: 3 wt%).

Figure 4-11. Anode cross-sections of overcharged cells by optical microscope. (A): Control electrolyte, (B): Gel electrolyte (Compound **2 (10-6)**: 3 wt%).

4-3-7 リチウムイオン電池安全性の評価ー過充電時の電池発火・破裂挙動の観察

続いて,積層パウチセルの過充電試験時の SOC に対する電圧,電流,温度,厚みの挙動 を図 4-12, 4-13 に示す。電解液に難燃剤を含有させると燃焼抑制効果が見られることが電 解液の燃焼試験で分かったので, ゲル化剤と難燃剤とを併用した試験も実施した(対照電解 液に対して化合物 2(10-6)を 3 wt%, TFEP を 10 wt%添加して調製)。3 C で充電したと き,SOC が約150%を超えると,充電に伴いセル温度上昇とセル厚みの変化(ガス発生) が見られた。さらに充電を続けると、これらのセルは破裂発火した。ここまでは対照電解液 を用いたセルとゲル電解質を用いたセルでの挙動は同じであった。その後セルが最高温度 に達して爆発した後, 対照電解液を使用したセルはしばらくの間, 不安定な電圧挙動を示し た。セルが爆発した後も電圧があるのは、短絡電流が生じていることが示唆される。これは デンドライトに由来する短絡であると考える。 一方, ゲル電解質を用いたセルでは電池爆発 後の電圧は 0 V に維持されており, 短絡が発生していないことを示している。これはゲル 電解質ではリチウムの析出が平滑であったことに由来していると考えられる。ゲル電解質 でも燃焼を制御することはできなかったが,炎の大きさは明らかに小さくなり,燃焼後でも セル形態を維持した(図4-14)。従って,燃焼をマイルドにすることができたと考えている。 さらに、TFEPを併用したゲル電解質は、セルの最高到達温度を下げる効果をも示した。(表 4-12) これらの効果は、電解質の燃焼試験の結果とも対応するものであり、電解液の燃焼遅 延効果が電池の安全性向上に寄与していると言える。

次に充電レート 2.5 C での過充電試験の結果を示す。セルの破裂・発火は、3 C 充電条件 時と同様にすべてのセルで見られた。2.5 C の過充電試験でも、ゲル電解質と難燃剤を含む ゲル電解質では、破裂発火後の不安定な電圧が見られず、炎の大きさが小さくなっており、 3 C での過充電時と同様の効果が見られた。さらに、対照電解液では着火時にセルの内部全 体が一挙に燃焼したが、ゲル電解質ではセル開口部から噴出したガスが燃焼する挙動が燃 焼時のビデオ観察により確認できた。そのため、ゲル電解質では燃焼時の炎が小さかったも のだとわかった。加えて、破裂に至る前のセルの厚みが増す段階では、ゲル電解質にすると 厚みの増加が約 6 ℃分遅くなることが確認できた。これは、ゲル電解質ではガス発生が遅 くなることを意味する。なお、充電レート 2 C で過充電すると、ゲル電解質を用いたセルだ けではなく、対照電解液を用いたセルでも破裂・発火しなかった。そのため、充電の速度に 関わらず、電解質のゲル化のみによるセルの完全な難燃化は難しいと考えた。それには 2 つ の理由があると考える。第一に、電解質の不燃化がゲル電解質では達成できておらず、燃焼 抑制効果が不十分であったことであり、第二に、電解質以外にもセルの中には電極のバイン ダーやセパレータ等の可燃物があり、それらの燃焼をとめることができなかったことであ る。

ゲル電解質や難燃剤を含むゲル電解質を用いると、過充電時の安全性を向上させること ができることが確認できた。しかし、燃焼を完全に抑制するには至っておらず、更なる安全 性の向上は今後の検討課題である。

		Control electrolyte	Gel electrolyte	Gel electrolyte with flame retardant
Temperature (°C)	3C charge	570.3	551.6	523.7
	2.5C charge	573.1	586.5	537.4

Table 4-12. Maximum achieving temperature of overcharging cells.

Figure 4-12. Thermal runaway behavior by overcharge test at 3 C.
(A): Control electrolyte, (B): Gel electrolyte (Compound 2 (10-6): 3 wt%),
(C): Gel electrolyte with flame retardant (TFEP: 10wt%).

Figure 4-13. Thermal runaway behavior by overcharge test at 2.5 C.
(A): Control electrolyte, (B): Gel electrolyte (Compound 2 (10-6): 3 wt%),
(C): Gel electrolyte with flame retardant (TFEP: 10 wt%).

Figure 4-14. Cell form after overcharge test at 3 C.

- (A): Control electrolyte, (B): Gel electrolyte (Compound 2 (10-6): 3 wt%),
- (C): Gel electrolyte with flame retardant (TFEP: 10 wt%)

Figure 4-15. Flame behavior in the overcharge test at 3 C.(A): Control electrolyte, (B): Gel electrolyte (Compound 2 (10-6): 3 wt%).

Figure 4-16. Cell form after overcharge test at 2.5 C.
(A): Control electrolyte, (B): Gel electrolyte (Compound 2 (10-6): 3 wt%),
(C): Gel electrolyte with flame retardant (TFEP: 10 wt%).

4-4 まとめ

本章では、前章で設計、合成した新規なペルフルオロアルキル基を有する低分子ゲル化剤 を用い、そのリチウムイオン電池への適合性を検討した結果を示した。電解液としては、イ オン伝導性を低下させることなく燃焼遅延効果を付加でき、電池としては充放電特性を低 下することなく、異常時の安全性を向上させることができた。イオン伝導性は高分子のゲル 化剤を用いて形成したゲル電解質に勝ることも確認した。イオン伝導性や電池性能を保持 できたのは少量の添加でゲル化ができる低分子ゲル化剤の特徴であり、また、本章のゲル化 剤が酸化還元に強い構造であったことに由来すると考える。また、電解液に極少量溶解して いるゲル化剤の拡散性は非常に小さく、溶解ゲル化剤が少ないほどリチウムイオン伝導性 には有利であろうことが示唆された。安全性については、ゲルの形状、ゲル化剤の分子構造、 ゲル化剤と電解液との相互作用などに基づき、漏液抑制や燃焼遅延効果を示すことができ た。また、難燃剤と併用するとさらに効果が高まった。難燃剤は抵抗増大を引き起こすため、 多量に使用すると電池性能の点では不利である。本章のゲル電解質を用いれば難燃剤の量 を減らせる点でも効果がある。ただし、本章のゲル電解質では難燃化や不燃化までにはいた らず、もう一段の安全性向上が次の課題である。

References

 日本学術振興会 フッ素化学第 155 委員会 「フッ素化学入門 2010 基礎と応用の最前 線」三共出版 (2010).

S. -T. Myung, B. -C. Park, J. Prakash, I. Belharouak, K. Amine, *Nature Materials*, 8, 320-324 (2009). M. Hu, X. Pang, Z. Zhou, *J. Power Sources*, 237, 229-242 (2013).

 J.Y. Song, Y.Y. Wang, C.C. Wan, J. Power Sources, 77, 183-197 (1999). A. M. Stepha, Euro. Polym. J., 42, 21-42 (2006). A. M. Stephan, K.S. Nahm, Polymer, 47, 5952-5964 (2006). P. Knauth, Solid State Ionics, 180, 911-916 (2009). J.W. Fergus, J. Power Sources, 195, 4554-4569 (2010).

4) K. Hayamizu, Y. Aihara, S. Arai, C. G. Martinez, *J. Phys. Chem. B.*, 103, 519-524 (1999).
Y. Aihara, K. Sugimoto, W. S. Price, K. Hayamizu, *J. Chem. Phys.*, 113, 1981-1991 (2000).
早水 紀久子, 相原 雄一, *Electrochemistry*, 75, 75-79 (2007).

http://diffusion-nmr.jp/wordpress/wp-content/uploads/2014/06/NMR_20140120.pdf

5) Y. Aihara, T. Bando, H. Nakagawa, H. Yoshida, K. Hayamizu, E. Akiba, W. S. Price, *J. Electrochem.Soc.*, 151, A119-A122 (2004). K. Hayamizu, Y. Aihara, S. Aria, C. Garcia-Martinez, *J. Phys. Chem. B.*, 103, 519-524 (1999).

6) K. Hayamizu, Y. Aihara, S. Arai, W. S. Price, Solid State Ionics, 107, 1-12 (1998).

K. Hayamizu, Y. Aihara, A. Arai, W. P. Price, *Electrochimica Acta.*, 45, 1313-1319 (2000).

7) https://www.j-resonance.com/corporate/images/application/nmr/nm131015.pdf

8) S.S Zhang, K Xu, T.R Jow, J. Power Sources, 113, 166-172 (2003). D.H. Doughty, E.P.

Roth, C.C. Crafts, G. Nagasubramanian, G. Henriksen, K. Amine, *J. Power Sources*, 146, 116-120 (2005). T. -H. Nam, E. -G. Shim, J. -G. Kim, H.-S. Kim, S. -I. Moon, *J. Power Sources*, 180, 561-567 (2008).

第五章 ペルフルオロアルキル部位およびスルホニルビフェニル部位を有する新規低分子 ゲル化剤の合成と物性

5-1 緒言

ペルフルオロアルキル基に基づく簡易な分子構造で強力なゲル化能を示すゲル化剤を第 三章で提案した。また、非水素結合性官能基からなるゲル化剤では、電池材料などの耐酸化 還元性を求められる用途でも使用ができるゲル化剤になり、ゲル化剤の応用範囲が広がる ことを前章で述べた。そこでさらにゲル化剤の分子設計を発展させ、より高いゲル化能を示 すペルフルオロアルキル基を有するゲル化剤が設計できればますます応用が広がると考え た。また、第三章で設計した高いゲル化能を示す化合物はペルフルオロアルキル基の炭素数 が10である。第三章のゲル化剤及びその原料化合物は直接の規制対象物質ではないが、長 鎖のペルフルオロアルキル基を有する化合物は規制対象物質の類似化合物であるとして入 手や使用が難しくなる傾向にある¹⁾。このような背景からも、新規なゲル化剤の設計は必須 である。

本章では、ペルフルオロアルキル基を有するゲル化剤の検討を発展させ、所望のゲル化能 を示すゲル化剤を設計するための指針を与えるべく、さらにゲル化能が高いゲル化剤を設 計、合成し、そのゲルの構造やゲル化の機構を検討した。

5-2 実験

5-2-1 合成

本章では図 5-1 の構造のゲル化剤を設計し,検討した。液晶材料のメソゲンとして一般 的なビフェニルはゲル化にも有効であるのではないかと考えてビフェニル体を設計した。 化合物 3 はスキーム 5-1 に従って合成した。各サンプルは両分子末端の炭素数で命名し, m(ペルフルオロアルキル炭素数)-n (アルキル炭素数)で表記する。化合物 2 は比較サンプ ルであり,第三章で合成したものを使用した。

Compounds 3 (m-n)

Compounds 2 (m-n)

Figure 5-1. Chemical formula of gelators in this chapter.

Scheme 5-1. Synthetic scheme of Compounds 3 (m-n).

化合物 2 の合成時は最後の工程で酸化を行ったが,化合物 3 の合成では早い工程で酸化 を行った。それは,ビフェニル化するとゲル化能を示しやすくなることを予測したためであ る。ゲル化能を示す化合物を用いた合成反応は条件に制約が生じる上,精製の負荷も大きく なるため,できるだけ後ろの工程までゲル化能を示す化合物が生成しないようにしたいと 考えた。そのため,ビフェニル化を最終工程にした。

なお、ペルフルオロアルキル化及びアルキル化、酸化のどの工程も化合物 2 の合成と同じ試薬や溶媒を用いており、ほぼ同じ反応時間で進行した。従って、化合物 2 と化合物 3 との合成の違いはビフェニル化のためのクロスカップリング反応の有無である。

合成原料には以下で購入したものを使用した。

- ・ヨウ化 2・ペルフルオロアルキルエチル, p・ブロモチオフェノール, 1・ブロモアルカン, 4・ (4,4,5,5・テトラメチル・1,3,2・ジオキサボロラン・2・イル)ヒドロキシベンゼン;東京化成工業(株)
- ・炭酸ナトリウム, 1,2-ジメトキシエタン, 3-ペンタノン, 過酸化水素水 酢酸, 炭酸カリウム, トリフェニルホスフィン。酢酸パラジウム, 1,4-ジオキサン: 和光純薬工業(株) 得られた合成品(中間生成物を含む)は¹H NMR と¹⁹F NMR を用いて同定した。ま

た,GCのピーク面積から合成物の純度を求めた。

以下に合成結果を記す。

○4-[2-(ペルフルオロヘキシル)エチルチオ]-4'-ブロモベンゼンの合成,

窒素雰囲気下,200 mLのフラスコに p·ブロモチオフェノール 11.34 g (60 mmol)を投入 し、そこに溶媒としてジメトキシエタン 70 mL を添加した。さらに、ヨウ化 2・(ペルフルオ ロヘキシル)エチル 29.86 g (63 mmol)と炭酸カリウム 12.42 g (90 mmol)とを投入して 50 ℃ に加温して 3 時間撹拌した。それを室温に戻した後、溶液中に残っている固体を吸引濾過 にて除去した。固体を除去した後の濾液を減圧下で濃縮した。濃縮により高粘度の油状物が 得られたので,その後,50 ℃で真空乾燥を行い,残存する溶媒と未反応物を留去した。その結果,32.82gの合成物が得られた。合成物の¹H NMR,¹⁹F NMR 測定にて4-[2-(ペルフルオロヘキシル)エチルチオ]-4'-ブロモベンゼンが生成していることを確認した。¹H NMR (400 MHz, CDCl3): δ =2.37 (2H, m), 3.11 (2H, m), 7.22 (2H, d, *J* = 8.0 Hz), 7.45 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.60 (2F, m), -123.54 (2F, m), -123.33 (2F, m), -122.35 (2F, m), -113.65 (2F, m), -81.26 (3F, m) ppm; GC: 97.8 %(8.76 分) ○4-[2-(ペルフルオロヘキシル)エチルスルホニル]-4'-ブロモベンゼンの合成

窒素雰囲気下,200 mL のフラスコに 4-[2-(ペルフルオロヘキシル)エチルチオ]-4・ブロモ ベンゼン 32.82 g の氷酢酸 100 mL 溶液に 35 %の過酸化水素水 26 mL (300 mmol)を加え て,70 ℃のオイルバスで 2 時間撹拌を行った。そこに水を加えた後,生じた白色固体を吸 引濾過により濾過し,その固体に水を加えて 2 回洗浄し,さらにヘキサンを加えて 1 回洗 浄した。更に減圧下,90 ℃で乾燥して白色固体を得た(26.34 g,収率 75 %)。合成物の ¹H NMR, ¹⁹F NMR 測定で 4-[2-(ペルフルオロヘキシル)エチルスルホニル]-4・ブロモベンゼン が生成していることを確認した。¹H NMR (400 MHz, CDCl3): δ =2.60 (2H, m), 3.33 (2H, m), 7.80 (4H, m) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.63 (2F, m), -123.58 (2F, m), -123.37 (2F, m), -113.66 (2F, m), -81.26 (3F, m) ppm, GC: 98.2 %(10.28 分) ○4-[2-(ペルフルオロブチル)エチルチオ]-4・ブロモベンゼンの合成,

窒素雰囲気下で 2L のフラスコに p·ブロモチオフェノール 100 g (529 mmol)を投入し, そこに溶媒としてジメトキシエタン 660 mL を添加した。さらに,ヨウ化 2·(ペルフルオロ ブチル)エチル 208 g (556 mmol)と炭酸カリウム 110 g (794 mmol)とを投入して 50 ℃に加 温して 3 時間撹拌した。室温に冷却後,反応混合物中に残っている固体を吸引濾過にて除 去した。濾液を減圧下で濃縮すると高粘度の油状物が得られ,さらに 50 ℃,真空下で残存 する溶媒と未反応物を留去した。その結果,221 g の合成物が得られた。合成物の ¹H NMR 測定等にて 4·[2·(ペルフルオロブチル)エチルチオ]·4'·ブロモベンゼンが生成していること を確認した。¹H NMR (400 MHz, CDCl₃): δ =2.37 (2H, m), 3.10 (2H, m), 7.22 (2H, d, *J* = 8.0 Hz), 7.45 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.52 (2F, m), -124.73 (2F, m), -114.90 (2F, m), -81.48 (3F, m) ppm; GC: 97.8 %(8.76 分)

○4-[2-(ペルフルオロヘキシル)ブチルスルホニル]-4'-ブロモベンゼンの合成

窒素雰囲気下, 2L のフラスコに 4-[2-(ペルフルオロブチル)エチルチオ]-4・ブロモベンゼ ン 221 g の氷酢酸 1000 mL 溶液に 35 %の過酸化水素水 230 mL (2650 mmol)を加えて, 70 ℃のオイルバスで 2 時間撹拌を行った。そこに水を加えた後,生じた白色固体を吸引濾 過により濾過し,その固体に水を加えて 2 回洗浄し,さらにヘキサンを加えて 1 回洗浄し た。更に減圧下,90 ℃で乾燥して白色固体を得た (158.26 g, 収率 78 %) 合成物の ¹H NMR 測定等にて 4-[2-(ペルフルオロヘキシル)ブチルスルホニル]4・ブロモベンゼンが生成して いることを確認した。¹H NMR (400 MHz, CDCl₃): δ=2.60(2H, m), 3.35 (2H, m), 7.82 (4H, m) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ=-126.55 (2F, m), -124.77 (2F, m), -114.86 (2F, m), -81.60 (3F, m) ppm; GC: 99.2 %(9.33 分)

○4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)エトキシベンゼンの合成

窒素雰囲気下,200 mL のフラスコに 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ヒドロキシベンゼン 4.4 g (20 mmol)及び 3-ペンタノン 70 mL を投入し,室温で撹拌 した後,そこにさらに 1-ブロモエタン 2.72 g (25 mmol)と炭酸カリウム 4.14 g (30 mmol) とを投入して 120 ℃のオイルバスで 11 時間還流した。それを室温に戻した後,残っている 固体を吸引濾過にて除去した。固体を除去した後の濾液を減圧下で濃縮すると茶色の油状 物が 6.87 g 得られたので,それを真空乾燥 (80 ℃)にして固体状の化合物が得られた。合 成物の ¹H NMR 測定にて 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)エトキ シベンゼンが生成していることを確認した。

○4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ブトキシベンゼンの合成

窒素雰囲気下,200 mL のなすフラスコに 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラ ン-2-イル)ヒドロキシベンゼン 4.4 g (20 mmol)及び 3-ペンタノン (70 mL)を投入し,室温 で撹拌した後,そこにさらに 1-ブロモブタン 3.42 g (25 mmol)と炭酸カリウム 4.14 g (30 mmol)とを投入して 120 \mathbb{C} のオイルバスで 11 時間還流した。それを室温に戻した後,残っ ている固体を吸引濾過にて除去した。固体を除去した後の濾液を減圧下で濃縮すると茶色 の油状物が 6.87g 得られ,さらに真空乾燥 (80 \mathbb{C})により固体状の化合物が得られた。合成 物の ¹H NMR 測定にて 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ブトキシ ベンゼンが生成していることを確認した。¹H NMR (400 MHz, CDCl₃): δ =0.97 (3H, m), 1.33 (12H, m), 1.48 (2H, m), 1.75 (2H, m), 3.98 (2H, m), 6.88 (2H, d, *J*= 8.0 Hz), 7.73 (2H, d, *J*= 8.0 Hz) ppm

○4-(4,4,5,5・テトラメチル・1,3,2・ジオキサボロラン・2・イル)へキシルオキシベンゼンの合成 窒素雰囲気下,200 mL のなすフラスコに 4-(4,4,5,5・テトラメチル・1,3,2・ジオキサボロラ ン・2・イル)ヒドロキシベンゼン 4.4 g(20 mmol)及び 3・ペンタノン 70 mL を投入し,室温で 撹拌した後,そこにさらに 1・ブロモヘキサン 4.13 g(25 mmol)と炭酸カリウム 4.14 g(30 mmol)とを投入して 120 ℃のオイルバスで 11 時間還流した。それを室温に戻した後,残っ ている固体を吸引濾過にて除去した。固体を除去した後の濾液を減圧下で濃縮すると茶色 の油状物が 6.87 g 得られたので,それを真空乾燥(80 ℃)にして固体状の化合物が得られた。 合成物の ¹H NMR 測定にて 4-(4,4,5,5・テトラメチル・1,3,2・ジオキサボロラン・2・イル)へキ シルオキシベンゼンが生成していることを確認した。¹H NMR (400 MHz, CDCl₃): δ =0.88 (3H, m), 1.32 (12H, m), 1.45 (6H, m), 1.76 (2H, m), 3.96 (2H, m), 6.87 (2H, d, *J*= 8.0 Hz), 7.73 (2H, d, *J*= 8.0 Hz)ppm; GC: 98.5 %(13.74 分)

 ○4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)オクチルオキシベンゼンの合成 窒素雰囲気下,200 mLのなすフラスコに 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラ ン-2-イル)ヒドロキシベンゼン 4.4g(20 mmol)及び 3-ペンタノン 70 mL を投入し,室温で 撹拌した後,そこにさらに 1-ブロモオクタン 4.82 g (25 mmol)と炭酸カリウム 4.14 g (30 mmol)を投入して 120 ℃のオイルバスで 11 時間還流した。それを室温に戻した後,残って いる固体を吸引濾過にて除去した。固体を除去した後の濾液を減圧下で濃縮すると茶色の 油状物が 6.87 g 得られたので,それを真空乾燥(80 ℃)にして固体状の化合物が得られた。 合成物の ¹H NMR 測定にて 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)オク チルオキシベンゼンが生成していることを確認した。¹H NMR (400 MHz, CDCl₃): δ = 0.88(3H, m), 1.30(12H, m), 1.43(10H, m), 1.79(2H, m), 3.98 (2H, m), 6.88 (2H, d, *J* = 8.0 Hz), 7.73 (2H, d, *J* = 8.0 Hz) ppm, GC: 98.6 %(15.71 分)

○4·(4,4,5,5・テトラメチル・1,3,2・ジオキサボロラン・2・イル)ドデシルオキシベンゼンの合成 窒素雰囲気下,200 mL のフラスコに 4·(4,4,5,5・テトラメチル・1,3,2・ジオキサボロラン・2・ イル)ヒドロキシベンゼン 4.4g (20 mmol)及び 3・ペンタノン 70 mL を投入し,室温で撹拌 した後,さらに 1・ドデカン 6.23 g (25 mmol)と炭酸カリウム 4.14 g (30 mmol)とを投入し て 120 ℃のオイルバスで 11 時間還流した。それを室温に戻した後,残っている固体を吸引 濾過にて除去した。固体を除去した後の濾液を減圧下で濃縮すると茶色の油状物が 6.87 g 得られたので,それを真空乾燥 (80 ℃)して固体状の化合物が得られた。合成物の ¹H NMR 測定にて 4·(4,4,5,5・テトラメチル・1,3,2・ジオキサボロラン・2・イルドデシルオキシベンゼ ンが生成していることを確認した。¹H NMR (400 MHz, CDCl₃): δ=0.88(3H, m), 1.30(12H, m), 1.43(18H, m), 1.77(2H, m), 3.97 (2H, m), 6.88 (2H, d, *J*= 8.0 Hz), 7.73 (2H, d, *J*= 8.0 Hz) ppm

○4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)テトラデシルオキシベンゼンの 合成

窒素雰囲気下,200 mL のフラスコに 4-(4,4,5,5・テトラメチル-1,3,2・ジオキサボロラン-2-イル)ヒドロキシベンゼン 4.4 g (20 mmol)及び 3・ペンタノン 70 mL を投入し,室温で撹拌 した後,そこにさらに 1・ブロモテトラデカン 6.93 g (25 mmol)と炭酸カリウム 4.14 g (30 mmol)とを投入して 120 ℃のオイルバスで 11 時間還流した。それを室温に戻した後,残っ ている固体を吸引濾過にて除去した。固体を除去した後の濾液を減圧下で濃縮すると茶色 の油状物が 6.87 g 得られたので,それを真空乾燥 (80 ℃) にして固体状の化合物が得られ た。合成物の ¹H NMR 測定にて 4-(4,4,5,5・テトラメチル-1,3,2・ジオキサボロラン-2・イル)テ トラデシルオキシベンゼンが生成していることを確認した。 ¹H NMR (400 MHz, CDCl₃): δ = 0.88(3H, m), 1.31(12H, m), 1.44(22H, m), 1.77(2H, m), 3.97 (2H, m), 6.89 (2H, d, *J*= 8.0 Hz), 7.73 (2H, d, *J*= 8.0 Hz) ppm

○化合物 3 (6-2)の合成

4-[2-(ペルフルオロヘキシル)エチルスルホニル]-4'-ブロモベンゼン 27.7 g (48.8 mmol), 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)エトキシベンゼン 12.2 g (49.3 mmol), 酢酸パラジウム 2.2 mg (0.0098 mmol), トリフェニルホスフィン 9.0m (0.034 mmol), 炭酸ナトリウム 52 g (488 mmol), 1,4-ジオキサン 450 mL 及び蒸留水 250 mL を 2 L のフ ラスコで混合し,反応系周囲の雰囲気を窒素ガスに置換した後,反応液を大気下,95 で 40 分間撹拌した。次いで, 放冷して得られた析出物を水で 2 回洗浄し, 更にヘキサンで 2 回洗った。その後, 溶媒留去を経て, 白色固体の状態で合成物を 27.0 g 得た。¹H NMR 等 で化合物 3 (6-2)であることを確認した(収率 91 %)。

○化合物 3(6-4)の合成

4-[2-(ペルフルオロヘキシル)エチルスルホニル]-4'-ブロモベンゼン 27.7 g (48.8 mmol), 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ブトキシベンゼン 13.6 g (49.3 mmol), 酢酸パラジウム 2.2 mg (0.0098 mmol), トリフェニルホスフィン 9.0 mg (0.034 mmol), 炭酸ナトリウム 52 g (488 mmol), 1,4-ジオキサン 450 mL 及び蒸留水 250 mL を 2 L のなすフラスコで混合し,反応系周囲の雰囲気を窒素ガスに置換した後,反応液を大気 下,95 ℃で 40 分間撹拌した。次いで,放冷して得られた析出物を 2 回洗浄し,更にヘキ サンで 2 回洗った。その後,溶媒留去を経て,白色固体の状態で合成物を 28.6 g 得た。¹H NMR, ¹⁹F NMR で化合物 **3 (6-4)**であることを確認した (収率 92%)。¹H NMR (400 MHz, CDCl₃) δ = 1.00 (3H, m), 1.51 (2H, m), 1.81 (2H, m), 2.64 (2H, m), 3.36 (2H, m), 4.03 (2H, m), 7.01 (2H, d, *J* = 8.0 Hz), 7.56 (2H, d, *J* = 8.0 Hz), 7.77 (2H, d, *J* = 8.0 Hz), 7.95 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.62 (2F, m), -123.60 (2F, m), -123.34 (2F, m), -122.37 (2F, m), -114.02 (2F, m), -81.25 (3F, m) ppm, GC: 93.8 %(19.21 分) ○化合物 **3 (6-6)**の合成

4-[2-(ペルフルオロヘキシル)エチルスルホニル]-4'-ブロモベンゼン 27.7 g (48.8 mmol), 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ヘキシルオキシベンゼン 15 g (49.3 mmol), 酢酸パラジウム 2.2 mg (0.0098 mmol), トリフェニルホスフィン 9.0 m (0.034 mmol), 炭酸ナトリウム 52 g (488 mmol), 1,4-ジオキサン 450 mL 及び蒸留水 250 mL を 2L のなすフラスコで混合し, 反応系周囲の雰囲気を窒素ガスに置換した後, 反応液を大気 下, 95 ℃で 40 分間撹拌した。次いで, 放冷して得られた析出物を水で 2 回洗浄し, 更に ヘキサンで 2 回洗った。その後, 溶媒留去を経て, 白色固体の状態で合成物を 29.4 g 得た。 ¹H NMR, ¹⁹F NMR で化合物 **3 (6-6)**であることを確認した (収率 91 %)。¹H NMR (400 MHz, CDCl₃) δ = 0.92 (3H, m), 1.48 (6H, m), 1.81 (2H, m), 2.65 (2H, m), 3.33 (2H, m), 4.02 (2H, m), 7.01 (2H, d, *J* = 8.0 Hz), 7.56 (2H, d, *J* = 8.0 Hz), 7.76 (2H, d, *J* = 8.0 Hz), 7.95 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.62 (2F, m), -123.60 (2F, m), -123.35 (2F, m), -122.36 (2F, m), -114.01 (2F, m), -81.25 (3F, m) ppm; GC: 99.1 %(20.50 分)

○化合物 3 (6-8)の合成

4-[2-(ペルフルオロヘキシル)エチルスルホニル]-4'-ブロモベンゼン 27.7 g (48.8 mmol), 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)オクチルオキシベンゼン 16.38 g (49.3 mmol), 酢酸パラジウム 2.2 mg (0.0098 mmol), トリフェニルホスフィン 9.0mg (0.034 mmol), 炭酸ナトリウム 52 g (488 mmol), 1,4-ジオキサン 450 mL 及び蒸留水 250 mL を 2 L のなすフラスコで混合し, 反応系周囲の雰囲気を窒素ガスに置換した後, 反応液を大気 下, 95 ℃で 40 分間撹拌した。次いで, 放冷して得られた析出物を 2 回水で洗浄し, 更に ヘキサンで 2 回洗った。その後, 溶媒留去を経て, 白色固体の状態で合成物を 31.4 g 得た。 ¹H NMR, ¹⁹F NMR で化合物 **3 (6-8)**であることを確認した (収率 93 %)。¹H NMR (400 MHz, CDCl₃) δ = 0.88 (3H, m), 1.48 (10H, m), 1.80 (2H, m), 2.65 (2H, m), 3.35 (2H, m), 4.02 (2H, m), 7.01 (2H, d, *J* = 8.0 Hz), 7.56 (2H, d, *J* = 8.0 Hz), 7.77 (2H, d, *J* = 8.0 Hz), 7.95 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.62 (2F, m), -123.60 (2F, m), -123.34 (2F, m), -122.36 (2F, m), -114.01 (2F, m), -81.25 (3F, m) ppm; GC: 98.2 %(22.06 分)

○化合物 3 (6-12)の合成

4-[2-(ペルフルオロヘキシル)エチルスルホニル]-4'-ブロモベンゼン 27.7g(48.8 mmol), 4-(4,4,5,5・テトラメチル-1,3,2・ジオキサボロラン-2・イル)ドデシルオキシベンゼン 19.15 g (49.3 mmol), 酢酸パラジウム 2.2 mg (0.0098 mmol), トリフェニルホスフィン 9.0mg (0.034 mmol), 炭酸ナトリウム 52 g (488 mmol), 1,4・ジオキサン 450 mL 及び蒸留水 250 mL を 2 L のフラスコで混合し, 反応系周囲の雰囲気を窒素ガスに置換した後,反応液を大気下, 95 ℃で 40 分間撹拌した。次いで,放冷して得られた析出物を水で 2 回洗浄し,更にヘキ サンで 2 回洗った。その後,溶媒留去を経て,自色固体の状態で合成物を 32.9 g 得た。¹H NMR, ¹⁹F NMR で化合物 **3 (6-12)**であることを確認した (収率 90%)。¹H NMR (400 MHz, CDCl₃) δ = 0.89 (3H, m), 1.47 (18H, m), 1.83 (2H, m), 2.64 (2H, m), 3.36 (2H, m), 4.02 (2H, m), 7.02 (2H, d, *J* = 8.0 Hz), 7.56 (2H, d, *J* = 8.0 Hz), 7.79 (2H, d, *J* = 8.0 Hz), 7.99 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.61 (2F, m), -123.60 (2F, m), -123.35 (2F, m), -122.36 (2F, m), -114.01 (2F, m), -81.25 (3F, m) ppm; ○化合物 **3 (6-14)**の合成

4-[2-(ペルフルオロヘキシル)エチルスルホニル]-4⁻ブロモベンゼン 27.7 g (48.8 mmol), 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)テトラデシルオキシベンゼン 21 g (49.3 mmol), 酢酸パラジウム 2.2 mg (0.0098 mmol), トリフェニルホスフィン 9.0 mg (0.034 mmol), 炭酸ナトリウム 52 g (488 mmol), 1,4-ジオキサン 450 mL 及び蒸留水 250 mL を 2 L のフラスコで混合し, 反応系周囲の雰囲気を窒素ガスに置換した後, 反応液を大 気下, 95 ℃で 40 分間撹拌した。次いで, 放冷して得られた析出物を水で 2 回洗浄し, 更 にヘキサンで 2 回洗った。その後, 溶媒留去を経て, 白色固体の状態で合成物を 34.1 g 得 た。¹H NMR, ¹⁹F NMR で化合物 **3 (6-14)**であることを確認した (収率 90 %)。¹H NMR (400 MHz, CDCl₃) δ = 0.88 (3H, m), 1.48 (22H, m), 1.80 (2H, m), 2.63 (2H, m), 3.35 (2H, m), 4.02 (2H, m), 7.00 (2H, d, *J* = 8.0 Hz), 7.56 (2H, d, *J* = 8.0 Hz), 7.76 (2H, d, *J* = 8.0 Hz), 7.95 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.62 (2F, m), -123.59 (2F, m), -123.34 (2F, m), -122.35 (2F, m), -114.01 (2F, m), -81.25 (3F, m) ppm 〇化合物 **3 (4-2)**の合成

4-[2-(ペルフルオロブチル)エチルスルホニル]-4'-ブロモベンゼン 22.8 g (48.8 mmol), 4-

(4,4,5,5・テトラメチル・1,3,2・ジオキサボロラン・2・イル)エトキシベンゼン 12.2 g (49.3 mmol), 酢酸パラジウム 2.2 mg (0.0098 mmol), トリフェニルホスフィン 9.0 m (0.034 mmol), 炭酸ナトリウム 52 g (488 mmol), 1,4・ジオキサン 450 mL 及び蒸留水 250 mL を 2 L のフラスコで混合し,反応系周囲の雰囲気を窒素ガスに置換した後,反応液を大気下, 95 ℃で 40 分間撹拌した。次いで,放冷して得られた析出物を 2 回洗浄し,更にヘキサン で 2 回洗った。その後,溶媒留去を経て,自色固体の状態で合成物を 22.3 g 得た。¹H NMR で化合物 **3 (4-2)**であることを確認した (収率 90 %)。¹H NMR (400 MHz, CDCl₃) δ = 1.43 (3H, m), 2.64 (2H, m), 3.35 (2H, m), 4.03 (2H, m), 7.00 (2H, d, *J* = 8.0 Hz), 7.76 (2H, d, *J* = 8.0 Hz), 7.94 (2H, d, *J* = 8.0 Hz) ppm 〇化合物 **3 (4-4)**の合成

4-[2-(ペルフルオロブチル)エチルスルホニル]-4'-ブロモベンゼン 22.8 g (48.8 mmol), 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2・イル)ブトキシベンゼン 13.6 g (49.3 mmol), 酢酸パラジウム 2.2 mg (0.0098 mmol), トリフェニルホスフィン 9.0 m (0.034 mmol), 炭酸ナトリウム 52 g (488 mmol), 1,4-ジオキサン 450 mL 及び蒸留水 250 mL を 2 L のフラスコで混合し, 反応系周囲の雰囲気を窒素ガスに置換した後, 反応液を大気下, 95 ℃で 40 分間撹拌した。次いで, 放冷して得られた析出物を 2 回洗浄し, 更にヘキサン で 2 回洗った。その後, 溶媒留去を経て, 白色固体の状態で合成物を 23.8 g 得た。¹H NMR, ¹⁹F NMR で化合物 **3 (4-4)**であることを確認した (収率 91%)。¹H NMR (400 MHz, CDCl₃) δ = 1.00 (3H,m), 1.51 (2H, m), 1.81 (2H, m), 2.65 (2H, m), 3.35 (2H, m), 4.03 (2H, m), 7.01 (2H, d, *J* = 8.0 Hz), 7.56 (2H, d, *J* = 8.0 Hz), 7.76(2H, d, *J* = 8.0 Hz), 7.95 (2H, d, *J* = 8.0 Hz), respectively.

○化合物 3 (4-6)の合成

4-[2-(ペルフルオロブチル)エチルスルホニル]-4⁻ブロモベンゼン 22.8 g (48.8 mmol), 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)へキシルオキシベンゼン 15 g(49.3 mmol), 酢酸パラジウム 2.2 mg (0.0098 mmol), トリフェニルホスフィン 9.0 m (0.034 mmol), 炭酸ナトリウム 52 g (488 mmol), 1,4-ジオキサン 450 mL 及び蒸留水 250 mL を 2 L のフラスコで混合し, 反応系周囲の雰囲気を窒素ガスに置換した後, 反応液を大気下, 95 ℃で 40 分間撹拌した。次いで, 放冷して得られた析出物を 2 回洗浄し, 更にヘキサン で 2 回洗った。その後, 溶媒留去を経て, 白色固体の状態で合成物を 25.6 g 得た。¹H NMR, ¹⁹F NMR で化合物 **3 (4-6)**であることを確認した (収率 93%)。¹H NMR (400 MHz, CDCl₃) δ = 0.93 (3H, m), 1.48 (6H, m), 1.81 (2H, m), 2.65 (2H, m), 3.35 (2H, m), 4.02 (2H, m), 7.01 (2H, d, *J* = 8.0 Hz), 7.56 (2H, d, *J* = 8.0 Hz), 7.76 (2H, d, *J* = 8.0 Hz), 7.94 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.50 (2F, m), -122.56 (2F, m), -114.24 (2F, m), -81.46 (3F, m) ppm

○化合物 **3 (4-8)**の合成

4-[2-(ペルフルオロブチル)エチルスルホニル]-4'-ブロモベンゼン 22.8 g (48.8 mmol), 4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)オクチルオキシシベンゼン 16.38 g (49.3 mmol), 酢酸パラジウム 2.2 mg (0.0098 mmol), トリフェニルホスフィン 9.0 mg (0.034 mmol), 炭酸ナトリウム 52 g (488 mmol), 1,4-ジオキサン 450 mL 及び蒸留水 250 mL を 2L のフラスコで混合し, 反応系周囲の雰囲気を窒素ガスに置換した後, 反応液を大 気下, 95 ℃で 40 分間撹拌した。次いで, 放冷して得られた析出物を 2 回洗浄し, 更にへ キサンで 2 回洗った。その後, 溶媒留去を経て, 白色固体の状態で合成物を 27.2 g 得た。 ¹H NMR, ¹⁹F NMR で化合物 **3 (4-8)**であることを確認した (収率 94%) で。¹H NMR (400 MHz, CDCl₃) δ = 0.88 (3H, m), 1.48 (10H, m), 1.80 (2H, m), 2.65 (2H, m), 3.35 (2H, m), 4.01 (2H, m), 7.01 (2H, d, *J* = 8.0 Hz), 7.56 (2H, d, *J* = 8.0 Hz), 7.76 (2H, d, *J* = 8.0 Hz), 7.94 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.50 (2F, m), -122.36 (2F, m), -114.20 (2F, m), -81.48 (3F, m) ppm; GC: 98.7 %(21.59 分) ○化合物 **3 (4-14)**の合成

4·[2·(ペルフルオロブチル)エチルスルホニル]・4・ブロモベンゼン 22.8 g (48.8 mmol), 4· (4,4,5,5・テトラメチル・1,3,2・ジオキサボロラン・2・イル)テトラデシルオキシベンゼン 21 g (49.3 mmol), 酢酸パラジウム 2.2 mg (0.0098 mmol), トリフェニルホスフィン 9.0 mg (0.034 mmol), 炭酸ナトリウム 52 g (488 mmol), 1,4・ジオキサン 450 mL 及び蒸留水 250 mL を 2L のフラスコで混合し, 反応系周囲の雰囲気を窒素ガスに置換した後,反応液を大 気下, 95 ℃で 40 分間撹拌した。次いで, 放冷して得られた析出物を水で 2 回洗浄し, 更 にヘキサンで 2 回洗った。その後, 溶媒留去を経て, 白色固体の状態で合成物を 29.7 g 得 た。¹H NMR, ¹⁹F NMR で化合物 **3 (4·14)**であることを確認した (収率 90 %)。¹H NMR(400 MHz, CDCl₃) δ = 0.88 (3H, m), 1.45 (22H, m), 1.80 (2H, m), 2.60 (2H, m), 3.34 (2H, m), 4.00 (2H, m), 7.01 (2H, d, *J* = 8.0 Hz), 7.56 (2H, d, *J* = 8.0 Hz), 7.76 (2H, d, *J* = 8.0 Hz), 7.94 (2H, d, *J* = 8.0 Hz) ppm; ¹⁹F NMR (400 MHz, CDCl₃): δ = -126.50 (2F, m), -122.35 (2F, m), -114.20 (2F, m), -81.48 (3F, m) ppm

5-2-2 測定・評価法

ゲル化能は以下の通りに評価した。液体と秤量したゲル化剤とをガラス製バイアルスク リュー (NICHIDENRIKA-GLASS, 20 mL)中で混合し,液体が溶解するまで加熱した。 得られた液体を室温まで降温し,その降温過程を目視で観察することで行った。降温した時 に不動で単相になれば,そのサンプルは「ゲル化能を有する」と評価した。ゲル化能を有さ ないサンプルは降温すると固液分離をしたり,液体の単相になったりした。降温後にガラス 製バイアルスクリューを反転させて,液体が染み出さないことを確認した。ゾルーゲル相転 移温度も同様に目視で評価した。アルミニウム製のブロックヒーターで 100 ℃以上に昇温 してゾル化させたサンプルを 100 ℃から 5 ℃ずつ降温し,各温度で 5 分間静置した。静置 5 分後にゲル化していたものはその温度が相転移温度であると判断した。 液体中へ溶解するゲル化剤量は¹⁹F NMR で評価した。F の標準にはリチウムビス(トリ フルオロメタンスルホニル)イミド(LiTFSI)を用い,振動数 372.46 MHz の装置で測定 した。

ゲルの形態は走査型電子顕微鏡(SEM)(S-4700(日立))で観察した。形成したゲルから溶媒を除去(凍結乾燥)した,キセロゲルの加速電圧 1.0 kV での二次電子像を観察した。 装置内では冷却された金属ブロック上に,ゲルサンプルを載せたカーボン支持膜を有する 銅グリッドを載せており,真空チャンバーで減圧を維持した。

ゲルの構造はX線散乱法と動的光散乱法にて解析した。X線散乱測定は超小角X線散乱 測定(USAXS),小角X線散乱測定(SAXS),広角X線散乱測定(WAXS)で行った。

SAXS&WAXS の静的測定は 100 ℃以上に加熱してゾルにしたサンプルを室温まで降温 し,数日静置した後に行った。装置はリガク製 の Nano Viewer を用い,X線波長 λ=0.154 nm,光学系としてポイントコリメーションを用いた。試料の厚みは1mm,測定は900 秒 とした。検出器には PILATUS 100K を用いた。この時,検出器の位置を変えて3回測定す ることでほぼ正方形に近いエリアを測定した。カメラ長は層構造と結晶一次構造を同時に 測定できる条件である 98 mm とした。二次元検出器で得られた散乱パターン *I*obs(θ, φ)に対 して式1のように円環平均することで1次元散乱プロフィール *I*obs(θ)を得た。

$$I_{obs}(\theta) = \frac{1}{2\pi} \int_0^{2\pi} \frac{I_{obs}(2\theta, \phi) - I_{BG}}{\cos^3 \theta} d\phi$$

θ: 散乱角, *φ*: 方位角, *I*_{BG}: IP バックグラウンド値

その後,円環変換した一次元プロフィールに対し,空セル散乱補正,絶対強度補正を行った。絶対強度補正では,測定時間 time,試料厚み th (X線照射体積),透過率 Tr,装置定数 C の補正が行われる。

$$I(\theta) = \frac{C}{th} \left[\frac{I_{obs,sample}(\theta)}{time_{sample}Tr} - \frac{I_{obs,empty}(\theta)}{time_{empty}} \right]$$
$$I(\theta) : 空セル散乱, 絶対強度補正済みの散乱強度$$
$$I_{obs}(\theta) : 補正前散乱強度 (1 次元プロフィール)$$

ゲルの構造形成を追跡するために時分割の動的測定を実施した。

SAXS での時分割測定は上記と同じ装置を用い,同じ処理をした。時分割測定条件は6秒測 定 x 100 回であり,温度ドロップは100 ℃で5分加熱後に所定温度までドロップさせた。 温度ドロップ測定装置は図5-2の通りである。

Figure 5-2. Temperature-drop measurement method of SAXS.

USAXS の時分割測定では SPring8 の装置である BL03XU を用い, X 線波長 0.2 nm, カメラ長 4433mm, 検出器に II+CCD を用いた。時分割測定条件(露光時間/1 サイクル) は 0.25 秒/1 秒または 5 秒であり,そのサイクルを t=630 秒まで実施した。温度ドロッ プの条件は SAXS と同じように実施した。

ゲルのマクロ構造を解析するために走査型顕微光散乱装置を用いた,動的光散乱測定を 行った。ゲルの光散乱測定を行う上での課題はゲル網目の不均一性による非エルゴード性 にある²⁾。そこで今回は入射光の集光部と散乱光の検出部に対物レンズを用いることにより 散乱体積を直径数 µm まで絞り,かつ走査機構によって測定位置を変えながら多点での動 的光散乱測定を行い,アンサンブル平均を取ることでこの課題を解決した。光源は半導体レ ーザーの 532 nm の光を用い,散乱角は 40°,60°,90°で行った。検出器は光電子増倍 管を用いた。1 測定あたり 10 箇所でのアンサンブル平均を求めた,測定時間は各点で 90 秒 とした。各サンプルは 120 ℃まで昇温した後,30 ℃,60 ℃,70 ℃に急冷した。1 測定あ たり 10 箇所の時間平均自己相関関数 $g^{(2)}t(\tau)$ を測定し,下記式によって散乱電場のアンサ ンブル平均自己相関関数 $g^{(1)}en(\tau)$ を算出した。

$$g_{\rm en}^{(1)}(\tau) = \frac{\left\langle \left\langle I(t) \right\rangle_t \gamma^{-1} \sqrt{1 + g_t^{(2)}(\tau) - g_t^{(2)}(0)} \right\rangle_{\rm sp}}{\left\langle I(t) \right\rangle_{\rm en}}$$

ここで Iは散乱光強度, γ は装置定数, $< \cdots >_t$, $< \cdots >_{sp}$, $< \cdots >_{en}$ はそれぞれ時間平均, 空間平均,アンサンブル平均を表す。

また、今回の測定では、 $g^{(2)}_{t}(\tau)$ に含まれる動的揺らぎの成分に着目し、以下の式によって $g^{(2)}_{t}(\tau)$ の成分のうち時間的に減衰する成分だけを抽出、規格化して $\Delta g^{(1)}_{en}(\tau)$ を算出した。

$$\Delta g_{\rm en}^{(1)}(\tau) = \frac{g_{\rm en}^{(1)}(\tau) - g_{\rm en}^{(1)}(\infty)}{g_{\rm en}^{(1)}(0) - g_{\rm en}^{(1)}(\infty)} = \frac{\left\langle \left\langle I(t) \right\rangle_t \sqrt{1 + g_t^{(2)}(\tau) - g_t^{(2)}(0)} \right\rangle_{\rm sp} - \left\langle \left\langle I(t) \right\rangle_t \sqrt{2 - g_t^{(2)}(0)} \right\rangle_{\rm sp}}{\left\langle I(t) \right\rangle_{\rm en} - \left\langle \left\langle I(t) \right\rangle_t \sqrt{2 - g_t^{(2)}(0)} \right\rangle_{\rm sp}}$$

更に,得られた $\Delta g^{(1)}$ en(τ)を逆ラプラス変換し,アンサンブル平均の緩和時間分布 $P_{en}(\tau)$ を求めた。 $P_{en}(\tau)$ は系の内部の緩和時間の分布を表しており,ゲル中での超分子構造体の運動モードの分布を反映している。

ここで、ゲルの形成の各階層構造に対して、一般的に用いられる光散乱の方法を表 5-1 に 示す。

q (Å ⁻¹)	Λ(Å)	Method			Hierarchical structure of gel	
10-5~10-4	10 ⁵ ~10 ⁶				LS	Size of spherocrystal
10-4~10-3	10 ⁴ ~10 ⁵			USAX		Fractal aggregate
10-3~10-2	10 ³ ~10 ⁴		SAX			
10-2~10-1	10 ^{2~} 10 ³					(Length of fiber)
10 ⁻¹ ~10 ⁰	10 ¹ ~10 ²	WAX				Cross section radius of fiber
100~	10 ^{0~} 10 ¹					Molecular length

Table 5-1. Hierarchical structure of gel.

q: Wavenumber vector of scattering light, A: Size of structure

ゲル化剤の配向状態を考察するために、計算機シミュレーションとして分子動力学シ (MD) ミュレーションを行った。使用ソフトウエアは構造モデリングに SciMaps3.1 を, MD シミュレーションに Lammps を用い、力場パラメータとして pcff を用いた。シミュレ ーション温度は 300 K とし、シミュレーションプロトコルは以下の通りとした。「初期構造 発生→分子力学計算でエネルギー緩和→定温定容(NVT)条件で 100 ps の緩和計算→定温 低圧(1 bar, NP)条件で 5 ns 計算→NVT 条件で 3 ns 計算→データサンプリング」

レオロジー分析は温度分散測定を行った。TA インスツルメントの ARES を備えた溶媒散 乱防止キャップを備えたパラレルプレートにサンプルを置いた。130 ℃まで昇温したサン プルを1 ℃/分で 40 ℃まで降温しながら角振動数 1 rad/s で測定した。

5-3 結果と考察

5-3-1 ゲル化能

本ゲル化剤を用いてプロピレンカーボネートをゲル化させるときの MGC とその時のゾ ルーゲル相転移温度を表 5-1 に示す。骨格にビフェニル基を有する化合物 3 でもフェニル基 を有する化合物 2 と同様にペルフルオロアルキル基及びアルキル基が長いものほど高いゲ ル化能を示した。このことによって化合物 3 でも分子両端のアルキル鎖が共にゲル化に寄 与することが示された。すなわち、それぞれのアルキル鎖が疎溶媒性の相互作用で凝集する ことがゲル化の駆動力になっていることを示唆している。なお、n が非常に大きな化合物 3 (n=12, 14) も合成したが、それらはプロピレンカーボネートと混合した後に 120 ℃まで 昇温しても溶媒に溶解しなかったため、それ以上の評価は行わなかった。疎溶媒に基づく凝 集力が高くなり過ぎ、120 ℃のエネルギーでは溶解できなかったものと推察する。また、

「ゲル化には m と n の比の適切な比があり, n を大きくすると溶媒へ溶解しやすい傾向が 見られる。」ことを推測していたが,今回の検討の範囲ではそのような結果にはならず, m も n も大きくするほど溶媒に溶解しにくい傾向であった。n が短い化合物は, m=6 の化合 物 3 で, n を短くしても高いゲル化能を示し, n=1 や n=2 の化合物もゲル化能を示した。 一方, m=4 の化合物は n を短くすると高温時に溶媒に溶解し,降温すると再結晶で固体が 析出する挙動であった。ゲル化と再結晶はどちらも規則的な分子配列構造を形成するとい う点では類似する現象であり,化合物 3 は n の値に関わらず,規則的な高次構造を形成す ることがわかった。さらに, m=6 の化合物は n のアルキル基をイソプロピル基として分枝 構造にしてもゲル化能を示した。化合物 2 では分枝構造はゲル化能を低下させる傾向であ ったことと対照的であり,そのことも化合物 3 のゲル化能の高さを示している。

また,化合物2(6-n)と化合物3(6-n)とを比較すると化合物2(6-n)でゲル化能を示すため にはより大きなnを有する必要があった。ここで,化合物2(6-n)ではnを長くしても化合 物3相当のゲル化能を示すことができず,高いゲル化能のためにはmを長くする必要があ った。これらの結果から,芳香環の構造もゲル化能に寄与することが明確である。芳香環が 有するスタッキング作用は液晶のメソゲンとしても有名であるように,超分子構造を形成 する駆動力となることが知られている。芳香環が多いビフェニル型で高いゲル化能を示す ことはそれに類似する効果であると考える。更に,芳香環は単素環ではなく複素環を持つ化 合物であっても,ゲル化能を有することも確認できた。今回はひとつの芳香環をピリジン環 にする検討しか行っていないが,どのヘテロ原子をどの位置に配置するかによってゲル化 能が変わる可能性があると考えている。

Table 5-2. MGC and sol-gel phase transition temperature of MGC gel in propylene carbonate.

Comp	ound3	n n					
(m	i-n)	2	4	6	8	12	14
7	4	solid-liquid	2.0	1.0	0.5	_	solid-liquid
-	4	separation ¹⁾	<65	65	75		separation ²⁾
ш	c	0.8	0.5	<0.5	<0.5	solid-liquid	solid-liquid
	6	70	80	90	95	separation ²⁾	separation ²⁾

Compound2 (m-n)			n
		6	10
	4	—	sol ³⁾
m	•	.3)	3.0
	0	sol	70
	10	<0.5	
	10	90	

Upper line, MGC; Lower line, Phase transition temperature.

1) It became solution under heating, but phase separation at room temperature.

2) Gelator did not dissolve in solvent under heating (120 $^{\circ}$ C).

3) Gelator dissolved in solvent at room temperature. (>10 wt%).

続いて、溶媒にプロピレンカーボネートを用いた時の化合物 3 の添加量と相転移温度の 関係を化合物 2 と比較して示す。添加量に伴って相転移温度は高くなるのは低分子ゲル化 剤の特徴であり、今回もその傾向を示した。ゲル化剤の添加量で相転移温度が変わるのは添 加濃度が高いほどゲル化剤繊維が形成するネットワーク構造が密になるため、その構造を 崩壊させるためにはより高いエネルギー(即ち高い温度)が必要になるためである。なお、 化合物 2 と比べて化合物 3 の方が添加量に伴う相転移上昇の程度が大きかった。それは、 化合物 2 と比べて化合物 3 は繊維状構造同士の相互作用がより強くなっていることを示し ていると考えることができる。ゲル化剤のアルキル基の炭素数と添加量で所望の相転移温 度を示すゲルを調製できるが、化合物 3 ではより広範な相転移温度でゲルを設計できる。

また,ゲル化剤をプロピレンカーボネートに対して 1 wt%添加して形成したゲルを,室 温で 1 ヶ月以上静置したが,長期間保存しても固液の相分離が起こったり,ゲル化剤が溶 解した溶液になったりすることはなく,初期の形態を保持した。相転移温度と室温との差が 十分にあることで高い安定性を示したと考えている。

			Compound 3 (m-n)				
		4-8	6-4	6-6	6-8	10-6	
Concentration of gelator (wt%)	0.5	45 ℃	55 ℃	60 °C	60 °C	65 ℃	
	1.0	60 °C	70 ℃	75 ℃	75 ℃	70 °C	
	3.0	70 ℃	90 ℃	95 ℃	95 ℃	70 ℃	
	5.0	90 °C	100 ℃	100 ℃	100 ℃	75 ℃	

Table 5-3. Sol-gel phase transition temperatures of gels

次に,様々な有機溶媒に対するゲル化能を評価すると,本ゲル化剤はほとんどの有機溶媒 に対して高いゲル化能を示した。その中でも非プロトン性の極性溶媒に対してより高いゲ ル化能を示した。それは,ペルフルオロアルキル鎖の示す疎溶媒相互作用がゲル化の主な推 進力になっているという考察とも,第三章の結果とも矛盾しない。

続いて、プロピレンカーボネートをゲル化したサンプルを用いて、溶媒中に溶解している ゲル化剤の濃度を測定した。表 5-5 により、いずれのゲルでも溶媒に対する溶解量は非常に 少なかった。即ち、ほとんどのゲル化剤は固体様に存在していることがわかった。しかし、 化合物2(10-6)は他よりも溶媒への溶解量が多く、ゲル化能が高い化合物ほど溶媒への溶 解量が少なかった。低分子ゲル化剤は固体様に存在しているゲル化剤が超分子構造を形成 することでゲルを形成するため、溶解しているゲル化剤が少ない方が有利である。また、温 度を高くするとゲル化剤の溶解量は多くなったが、ゾル状の温度まで昇温しても、大半のゲ ル化剤は溶解していなかった。即ち、低分子ゲル化剤を用いたゲルが「ゾル状になる」とは 全てのゲル化剤が溶解することではなく、溶解していないゲル化剤も含めて流動性を示す ことであると言える。これらの結果は第三章の結果とほぼ同じである。さらに昇温すると溶 解するゲル化剤量は増え、液粘度は下がっていくものと推察する。

	Galator					
Solvent	Compound 3 (6-6)	Compound 2 (10-6)	Compound 2 (6-10)			
Propylene carbonate	<0.5	<0.5	3			
Acetonitrile	0.5	2	4			
γ—Butyrolactone	0.5	2	3.5			
N-Methylpyrrolidone	0.5	2.5	4			
Ethanol	1	3	Solution			
2-propanol	1	3	Solution			
Ethyl methyl carbonate	5	Solution	Solution			
Hexane	Low solubility ¹⁾	Low solubility ¹⁾	Low solubility ¹⁾			
Water	Insolubility ²⁾	Insolubility ²⁾	Insolubility ²⁾			

Table 5-4. MGC in various solvent (wt%).

It became solution under heating, but phase separation at room temperature.
 Gelator did not dissolve in solvent under heating.

Table 5-5. G	elator concentration	that dissol	ved in pro	pylene carbonat	e (m	M).
--------------	----------------------	-------------	------------	-----------------	------	-----

	Comp	ound 3	Compound 2		
m-n	6-6	4-8	10-6	6-10	
Gelator amount	1 wt%	1 wt%	1 wt%	3 wt%	
30 ℃	0.051 0.077 (0.003 %) (0.004 %)		0.043 (0.003 %)	0.493 (0.026 %)	
70 °C	0.442 (0.024 %)	0.557 (0.027 %)	0.455 (0.030 %)	1.128 (0.061 %)	
		Gel	•	Sol	

5-3-2 ゲルの形態

次に各種ゲル化剤を用いてプロピレンカーボネートをゲル化して得られたサンプルを 凍結乾燥して形成したキセロゲルの形態を SEM で観察した。SEM では、ゲル化剤が繊維 状に成長した構造が見られた。ゲル化剤種による形態の違いを比較すると、図 5-3 の通り、 ゲル化能が高いサンプルほど繊維状構造体は細く、長く、均一であった。低分子ゲル化剤に 基づく溶媒のゲル化はゲル化剤が一次元や二次元の低次元で会合し,それが絡まることで 三次元構造を形成することに惹起されることが知られている。従って,細く,長く,均一な 繊維状構造ほど効率的に会合し,高いゲル化能を示すことが推察できる。

また,化合物 3(6-6)で,添加濃度を変化させて SEM 観察をした。その結果,添加濃度に 従って形成される繊維状構造が密になる様子が見られたが,添加濃度を変えても繊維状構 造の長さや太さはほとんど変化せず,MGC 以下(溶液状態)であっても繊維状構造を形成 していた。MGC 以下でのゲル化剤は溶媒を保持するには繊維状構造が疎であるものと考え る。「添加濃度が低いときには繊維状構造を形成していない。」わけではないことがわかった。

第三章で観察した,化合物 2 (10-6)のキセロゲルはゲル化剤が低濃度の時には溶融して いるような状態が見られたが,化合物 3 (6-6)を用いたゲルではゲル化剤が低濃度であって もそのような様子は見られなかった。このことも,添加量が少なくても繊維状構造を形成で きる化合物 3 (6-6)は,そうではない化合物 2 (10-6)と比べてゲル化能が高いことを示唆し ている。

Figure 5-3. SEM images of xerogels by various gelators (Additive amount: 3 wt%). (A): Compound **3 (6-6)**, (B): Compound **2 (10-6)**, (C): Compound **2 (6-10)**.

Figure 5-4. SEM images of xerogels by Compound 3 (6-6) (A): 1 wt%, (B), 3 wt%.

5-3-3 ゲルの構造解析

ゲル化剤が繊維状構造体を形成していることが SEM で観察できたため,光散乱によって その構造解析を行った。ゲル化剤には化合物 3 (6-6) を用いた。

先ず,ゲル化剤の添加濃度を変化させたサンプルで USAX & SAXS 測定を行った。図 5-5 に結果を示す。横軸は散乱ベクトル q であり, q は以下の式で求めた。

 $q = 4\pi n_0 \sin(\theta/2)/\lambda$ n_0 : 屈折率(X線に対してはすべての物質でほぼ1)

この結果によると全てのサンプルでのピーク形状は類似しており、添加濃度に関わらず同 じ構造を形成することがわかった。周期的なピークが得られたので、SEM で見られた繊維 状構造を反映した棒状の構造を仮定してカーブフィッティングを行った。それによると、径 が約 80 nm の棒状構造の近似曲線とよく一致した。特にピーク位置はかなり高次までよく 一致した。これは SEM で見られた繊維状構造と同スケールである。そのため、キセロゲル と含溶媒のゲルの形態はほぼ同じであることが推察できる。さらに、USAXS パターンは強 度が等方的な円状であった。この対称性は棒状構造が等方的に分布している構造を反映し ており、液晶のような配向性は有していないことがわかった。このことも SEM で見られた 構造と矛盾しない。

また 2 nm⁻¹付近にはフィッティングと一致しないピークが見られた。これを詳細に解析 するために SAXS & WAXS の測定を行った結果を図 5-6 に示す。それによると,層構造を 示唆する周期的なピークが高次まで見られた。以下のブラッグの式より計算した相関距離 d は 2.9 nm であり, 2.9 nm 周期の層構造が存在することがわかった。

 $d = 2\pi/q_m$ $q_m : 1 次ピークにおける q$

これはほぼゲル化剤の分子長に相当することから、繊維状構造は 2.9 nm の分子が連なっ て形成されていることがわかる。また、分子が交互方向に連なって層構造を形成している場 合には 2 分子単位ごとのピークも見られることが予想されるが、今回はそのようなピーク がなかったため、分子は同一方向に配列して層を形成している可能性が高い。これは、第三 章で実施した、化合物 2(10-6)によるキセロゲルの XPS 測定から得られた仮説とも一致す る。また、20>14 nm の広角領域に結晶性に由来すると思われるピークショルダーが見ら れたが、結晶化測定などを行うことができない非常に小さなものであった。そのため、この ゲル化剤が形成する構造の結晶性は非常に低いこともわかった。

99

Figure 5-5. USAXS and SAXS measurements of propylene carbonate gels by Compound **3 (6-6)**.

Figure 5-6. SAXS and WAXS measurements of propylene carbonate gels by Compound **3 (6-6)**.

このような構造の安定性を判断するため,第三章と同様に分子動力学シミュレーション を行った。結果のスナップショットを図 5-7 に示す。結果,化合物 3 (6-6)についても層構 造は安定に存在できることが計算からもわかった。また,ゲル化能の異なる各種ゲル化剤で シミュレーションをした結果を表 5-6 に示す。シミュレーション結果と実験結果は比較的 よく一致したので,シミュレーションによってゲル化能を推定することができる。今回のシ ミュレーションで化合物 3 (4-8)の安定性は化合物 3 (6-6)より劣る結果となった。実際の実 験では化合物 3 (4-8)と化合物 3 (6-6)の安定性差がわからなかったが,長期的には差が出る 可能性がある。従って、ペルフルオロアルキル基は炭素数 6 のものが潜在的に優れると判断し、今後の評価では炭素数 6 の化合物を優先して選択することとした。

Figure 5-7. Snapshot of Compound 3 (6-6) arrangement after MD simulation.

Gelator	Stability of layered structure by simulation	Gelation ability (MGC in propylene carbonate)
Compound 2 (10-6) Compound 3 (6-6) Compound 3 (6-8)	Very stable	<0.5
Compound 3 (4-8)	Stable	<0.5
Compound 2 (6-10)	Disarrayed	3.0
Compound 2 (6-6)	Unstable (Unable to form layered structure)	Solution

Table 5-6. Stabilities of bilayerd structure in propylene carbonate by MD simulations

続いて動的光散乱法での緩和を観測することで,X線散乱で観測できる構造よりも大き な構造の解析を行った。その結果,ゲル化剤濃度に関わらず,30℃ではΔg^(f)en(τ)に緩和 の観測が認められず,この温度では構造が強固に固定され,繊維状構造体の運動は制限され ていた。一方,70℃まで昇温するとゲル化剤の濃度によって挙動に差が見られた。3%添 加したサンプルでは緩和が認められなかったが,1%添加や0.5%添加のサンプルでは緩和 時間が10⁻³~1秒付近に非常に遅い緩和モードが認められた。すなわち3wt%以上の濃度で は高温度までゲルの運動が制限されると推定される。ゲル化剤濃度が0.5%のサンプルでは, 散乱角度に従って緩和時間が短時間にシフトする角度依存性が認められたことから,構造 体の並進拡散運動が見られたものと推定する。この時,相関長は構造体の見かけの流体力学 的半径を表していると考えられる。

相関長は緩和時間分布のピークトップより求めた *r* max から計算した。溶媒の屈折率として 1.4 を使用した。

$$\xi = \frac{q^2 k_{\rm B} T}{6\pi\eta} \tau_{\rm max}$$

k_B: ボルツマン係数 T: 絶対温度 η: 溶媒の粘性係数(今回は 0.5 mPa・s を使用)

ゲル化剤を1%添加したときの相関長は3µmを超えており、ゲル化剤を0.5%添加した ときと比較して約10倍異なる非常に大きな構造体が形成されていることがわかった。ゲル 化剤の添加量によって相関長は異なるのは、相転移温度との関係で考察した。ゲル化剤を3 wt%添加したゲル電解質は測定温度の 70 ℃ではゲル状であるため, 運動性が低くて相関長 が求められなかったのに対して、ゲル化剤を 1 wt%添加したゲル電解質は相転移温度の直 上であるため、分子サイズと比して巨大な相関長での運動性が見られ、ゲル化剤を 0.5 wt% 添加したゲル電解質は完全にゾル状であるために,ゲル化剤を 1 wt%添加したゲル電解質 と比べて短い相関長での運動性が見られた。しかし、ゲル化剤を1wt%添加したサンプル であっても、その相関長は分子サイズと比べるとまだ非常に長い。これはゾルでも分子がレ ベルで均一に溶解しているのではなく,多くの分子が連なった構造で溶融し,運動している ことを示唆している。このことは NMR で測定した、ゲル化の溶解量の結果と一致する。さ らに、1%添加のサンプルでは相関長が非常に短い速い緩和モードも見られた。この速い緩 和モードで示された相関長はゲルの構造そのものに由来するにしてはあまりにも小さいも のである。これはゲル化剤が少ないときには見られなかったことも鑑み、ゲルの網目間のブ ラウン運動や、棒状超分子構造体の回転拡散等の速い運動モードに起因していると推定さ れる。

		Gelator: 0.5 %		Gelator: 1.0 %	
	Scattering anagle(°)	Slow mode	Fast mode	Slow mode	Fast mode
Correlation length (nm)	40	600	-	2900	0.3
	60	230	-	3100	1.1
	90	120	-	3100	0.3
	Average	320	-	3030	0.6

Table 5-7. Correlation length of each motion mode by dynamic light scattering $(70~^\circ\text{C})$.

5-3-4 ゲルの形成挙動

このような繊維状構造体の棒状構造,層状構造のそれぞれの構造を形成するのに要する 時間を見積もるために時分割 X 線測定を行った。USAXS や SAXS でピークが見られない 120 ℃までサンプルを加熱しその後ゲル化する温度まで温度ドロップをさせ,構造形成に かかる過程を測定した。先ず,ゲル化剤 3%添加のサンプルを 25 ℃まで降温したときの構 造形成過程を SAXS で追跡した。結果を図 5-8 に示す。測定開始後すぐにピークが検出さ れ,温度ドロップ 45 秒で強度は飽和した。従って棒状構造は温度ドロップ後瞬時に形成開 始し,45秒以内に終了することがわかった。また,そのサンプルを8日後に改めて測定してもピーク変化がなく,一度形成した構造は温度変化をさせない限りはそれ以上の構造変化をしないこともわかった。

Figure 5-8. Time-division USAXS and SAXS measurement of gels (Compound **3 (6-6)** amount: 3 wt%).

ここでサンプル温度と SAXS のピーク強度比の関係を求めるとサンプル温度とピーク強度は相関しており、構造形成は温度変化に敏感に追随することがわかった。構造形成終了時のサンプル温度は約40℃であり、ドロップ速度で構造形成速度を調整できるものと思われる。

Figure 5-9. Change in peak intensity of $q=2.1 \text{ nm}^{-1}$ and sample temperature after temperature drop to RT.

次に USAXS でも同様に温度ドロップで構造形成挙動を追跡した。本系はゲル状態において、溶媒との電子密度差 $\Delta \rho$ 。の棒状構造を形成していると仮定して解析を行った。棒状構造間に相関は存在せず、棒状構造は体積分布が Schultz-Zimm 分布に従う半径分布を持っていると仮定した。また、棒状構造の長さは無限大と仮定して計算を行った。長さが数 100 nm 程度以上の場合には無限大と仮定しても本測定 q 領域の散乱にはほとんど影響しないことが知られている。

フィッティング式は以下の理論散乱式で求めた。

$$I(q) = \Delta \rho_e^2 N \int_0^\infty P(a) [V(a)\Phi(qa)]^2 da + I_b(q)$$

 $\Phi(qa) = \frac{2J_1(qa)}{aa}$

N:単位体積中の棒状構造の個数, a:棒状構造の半径, V(a):半径 a の棒状構造の体積 *L*(q):バックグラウンド散乱, *J*(x):1 次の Bessel 関数

Schultz-Zimm 分布式

$$P(x) = \frac{P'(x)/V(x)}{\int P'(x)/V(x)dr}$$

$$P'(x) = \frac{M^{M}}{\Gamma(M)x_{0}^{M}} x^{M-1} \exp(-\frac{M}{x_{0}}x)$$

 $M = \sigma^{-0.5}$ x₀: 平均值 σ : 標準偏差/x₀

なお,上記のフィッティング式では内部に構造は存在しないと仮定しているおり,棒状構 造の内部に規則的な構造が存在する場合にはその分の誤差が生じる。

先ず,100 ℃以上に加熱したサンプルを室温にドロップした後の USAX S 測定を行い, 次にその試料を再び 100 ℃以上に加熱した後に 75 ℃にドロップした後の USAX 測定を行 った。二水準の温度で測定することでドロップの深さによる形成構造差を追跡した。完全に ゲル化する室温へのドロップと相転移温度に近い 75 ℃へのドロップを行うことで,ゲルの 構造を形成する途中を追跡できると考えた。図 5-10 に温度ドロップ後の USAXS パターン を示す。室温にドロップしたときにはドロップ直後からほぼ等方的な散乱パターンが得ら れ、生成した構造に異方性がなく,時間が経過しても変化はしないことがわかった。このパ ターンは図 5-5 の SAXS の結果と類似する。一方,75 ℃にドロップしたときには 120 秒程 度までは等方的な弱い散乱強度が見られたが,その後,異方性を持って散乱強度が増加した。 しかし、長さ数 100 nm 以上ある棒状構造が異方性のない状態で生成し、その後回転し、時 間とともに一定方向に配向するとは考えにくい。そこで、構造形成初期は棒状構造の長さが 短く,時間とともに長くなり,且つそれらがある方向に配向していくものと推定している。 それは,光散乱には,棒状構造の長さが無限大の場合には軸に垂直方向にしか現れないが, 長さが短い場合にはそれ以外の方向にも現れるという特徴があること,径と長さが同程度 の場合には構造が球に近くなるためほとんど等方的に近い散乱となることから考えた。な お,配向の程度や方向はサンプルを置く基板に依存することを確認した。配向の少ない構造 や無配向の等方的な構造を形成することも基板の選定によれば可能である。室温へのドロ ップの場合には構造形成が早すぎるため,基板によらず等方的になるが,75 ℃へのドロッ プの時には基板の状態を反映する時間があるものと考える。

Figure 5-10. USAXS patterns after temperature drop of gels (A): Drop to RT, (B): Drop to 75 °C.

続いて円環平均 USAXS プロフィールの時間変化を図 5·11 に示す。室温にドロップした とき、75 ℃にドロップしたとき共に得られた散乱プロフィールに対して棒状構造の理論散 乱式でフィッティングを行った。室温にドロップしたときには温度ドロップ直後に構造形 成されることがわかったが、その過程は捉えられなかった。この時間スケールは SAXS 測 定での結果と一致するものであったまた、t=630 秒の構造サイズは 76 nm 程度である。 75 ℃にドロップしたときには、90 秒まではほとんど散乱がなく、100 秒から散乱強度が増 加し、130 秒でほぼ平衡に達した。この時、散乱プロフィールの形状の大きな変化はなく、 平行移動であった、最終的な構造サイズは 25 ℃への温度ドロップの時とほぼ同じであっ た。なお、q>0.1 nm⁻¹で実測とフィッティング曲線で差異が存在するが、これはフィッテ ィングの際に棒状構造の内部に存在する構造を考慮していないためであると考える。

Figure 5-11. Changes in circular average USAXS profile of gels by temperature drop (A):Drop to RT, (B): Drop to 75 °C.

75 ℃への温度ドロップ後の異方性を有するサンプルを用いて SAXS 測定を行った。異方 性のあるサンプルでの SAXS と USAXS を比較することで繊維状構造の棒状構造と層状構 造との関係を考察できると考えた。SAXS の結果を図 5-12 に示す。SAXS 測定は 25 ℃で 実施した。SAXS でも図 5-10(B)と同様の異方性が見られ,層状構造の周期由来の散乱,棒 状構造の形状由来の散乱とも同方向(ほぼ 11 時方向)が強くなっていた。X 線散乱では, 棒状構造ではその軸方向と垂直方向に散乱が現れ,層状構造ではその層の法線方向に散乱 が現れるので繊維状構造体は,棒状構造の軸と垂直方向と層状構造の法線方向が同方向に なっていることがわかった。従って,棒状構造の中の層状構造は図 5-13 のような年輪構造 になっていると考えることができる。第三章ではキセロゲルの XPS 測定から同様の形態を 推定したが,今回,溶媒を含んだゲルではその構造を散乱光から直接確認することができた。 なお,層状構造の周期は 2.9 nm,棒状構造の直径は 75~100 nm 程度であることも明確に なった。

Figure 5-12. SAXS pattern after temperature drop to 75 $\,\,^\circ\!\mathrm{C}.$

層構造を形成する分子は同一方向に配列する。 Figure 5-13. Probable layered structures in a lod structure.

続いて室温への温度ドロップは同ゲル化剤1%のサンプル, 0.5%のサンプルでも行い, 温度に対する構造成長のゲル化剤濃度依存性を評価した。ここで構造形成の指標 X は InvariantのQから以下の式を用いて算出した。

$X=(Q-Q^0)/(Gmax-Q^0)$

結果,構造形成が開始するまでの時間は添加剤濃度依存性が認められ,ゲル化剤の濃度に よって構造形成の核ができるまでの時間が異なることがわかった。しかし,構造形成が始ま ると構造成長にかかる時間はどれもほぼ同じであり,ゲルの構造成長速度には濃度依存性 がないことがわかった。

Figure 5-14. Correlation between gelator amounts and structure forming time by time-division USAXS and SAXS measurement of gels.

以上をまとめると繊維状構造体の形成は以下のように進行すると推定できる。

Figure 5-15. Probable formation mechanism of fibrous structures.

5-3-5 ゲルのレオロジー解析

最後に化合物 3 (6・6)とプロピレンカーボネートとを用いて形成したゲルのレオロジー 解析を行った。図 5・16 に貯蔵弾性率 G'と損失弾性率 G"の温度分散測定の結果を示す。ゾ ル - ゲル相転移は目視でも判断できるがレオロジーで評価を行うとより正確な値が得られ ると言われている。一般にゾル状態では貯蔵弾性率 G'は非常に低く,ゲル状態になると急 激に増加して弾性的な挙動を示す。そこで、G'とG" が交差する温度が相転移温度であると 判断できる 3。G'とG" が交差する温度はゲル化剤濃度が 1 wt%の時には 78 ℃,ゲル化剤 濃度が 3 wt%の時には 92 ℃であった。これは先に述べた目視で判断した相転移温度と近 い値である。ここで、相転移温度付近では粘弾性変化が急激に起こっていることがわかる。 すなわちこのゲルは温度に敏感で、温度変化に対して瞬時に相転移をするものであると言 える。先に、時分割 X 線散乱測定で温度ドロップ後間もなく構造を形成していることがわ かったと述べたが、この結果はそれと同じことを示す。なお、周波数分散測定も実施したが、 G'に明確な周波数依存性が観測されず、G'はG''よりも常に大きな値を示していた。それは 第三章の化合物 2 (10-6)の結果と同じであり、化合物 3 (6・6)が形成している構造は棒状で あることの裏付けとなった。

Figure 5-16. Temperature dispersion rheology measurements (Compound **3 (6-6)** in propylene carbonate).

5-4 まとめ

本章では、高いゲル化能を示す、ペルフルオロアルキル基を有するゲル化剤を合成し、そ の特性評価を行った。様々な有機溶媒に対して高いゲル化能を示し、第三章で提案したゲル 化剤と比較しても高いゲル化能であった。第三章で提案したゲル化剤の課題であったペル フルオロアルキル鎖の短鎖化達成と、第三章のゲル化剤と比較してゲル化能の向上を達成 した。

このゲル化剤ではペルフルオロアルキル鎖に基づく疎水相互作用と芳香環が有するスタ ッキング相互作用がゲル化の主たる推進力になっていることが示唆された。そして、形成し たゲルのゲル化剤に基づく超分子構造は、2.9 nm の分子が連なって約 80 nm の径を形成 し、その径を持つ長い繊維が絡まっているものであり、その構造はゲル化剤の添加濃度や温 度履歴に影響を受けるものではなかった。その繊維状の構造はゲル状では運動性が制限さ れ、ゾル状では添加濃度に応じたサイズの構造体を形成していることが示唆された。また、 この構造形成は温度に敏感であり、相転移温度以下に降温されると非常に短い時間幅で形 成されることがわかった。構造形成は、まず 80 nm の核ができ、それが長く成長していく、 という過程を経ることが推定された。

本章のゲル化剤は簡易な構造ながら非常に高いゲル化能を示す本化合物でありこれを用 いた様々なアプリケーションが期待できる。さらに、芳香環の選択や両アルキル鎖の選定な ど分子設計のさらに詳細な検討を行うことで、ゲル化の目的に応じたゲル化剤の提案に繋 がると考えている。 References

- 1) http://www.meti.go.jp/policy/chemical_management/int/1_chousairai_besshi1.pdf. http://www.epa.gov/oppt/pfoa/pubs/stewardship/index.html_
- $2)\ http://softmatter.jp/document/061221/pdf_seminar01/R106_A01mshibayama.pdf.$
- 3) M. Djabourov, J. Leblond, P. Papon, J. Phys. France, 49, 319-332 (1988).

第六章 ペルフルオロアルキル部位およびスルホニルビフェニル部位を有する新規低分子 ゲル化剤を用いた非水電解質およびリチウムイオン電池

6-1 緒言

前章で、ペルフルオロアルキル鎖を有する新規なゲル化剤を提案し、非常に高いゲル化 能が発現すると共にゲル化の機構を明らかにした。また、第四章でペルフルオロアルキル 部位を有するゲル化剤がリチウムイオン電池電解液のゲル化剤として有用であることを見 出した。前章のゲル化剤はその性能の高さから、第四章のゲル電解質を上回る性能の電解 液が達成できることが期待できる。そこで、前章で検討したゲル化剤をリチウムイオン電 解液のゲル化剤として適用する検討を行った。

6-2 実験

6-2-1 合成 · 調製

本研究では図 6-1 に示すゲル化剤を用いた。これらのゲル化剤はペルフルオロアルキル 基,エチルスルホン鎖,ビフェニル部位,アルコキシ基を有する。これらのゲル化剤はペ ルフルオロアルキル基の炭素数をm,アルキル基の炭素数をnとしてm-nと表記する。 ゲル化剤の合成はスキーム 6-1 に従い,前章と同じように合成した。

環状カーボネートと鎖状カーボネートの混合溶媒に LiPF6 を溶解した電解液を対照電解 液とした。ゲル化剤と対照電解液とを混合し、加熱してゲル化剤を溶解した後、冷却するこ とでゲル電解質を調製した。電解液溶媒と電解質塩はキシダ化学の電池グレードの製品を 用いた。

Compounds **3 (m-n)** Figure 6-1. Chemical formula of gelators in this chapter.

Scheme 6-1. Synthetic scheme of gelators.

6-2-2 測定・評価法

○ゲル電解質の調製, ゲル化能の評価

対照電解液としてはエチレンカーボネートとエチルメチルカーボネートを体積比 1:2 又は 3:7 で混合した混合溶媒に対して LiPF6 を 1M 溶解したものを用いた。対照電解液に対して,所定量のゲル化剤を混合し,加熱溶解した。その後,室温に降温してゲルを調製した。ゲル化能の評価は前章と同様の方法で実施した。

○電解液の性能

電解質のイオン伝導性評価は、磁場勾配 NMR による、7Li と ¹⁹F の拡散係数を測定する ことで行った。磁場勾配 NMR の測定は JEOL 製の ECA400(400 MHz)と磁場勾配パル スが 13 T/m の GR プローブを用いた。大きな拡散係数を示すほどイオン伝導性が高いと 判断できる。また、溶媒の拡散性を示す ¹H の拡散係数およびゲル化剤分子の拡散性を示 す ¹⁹F の拡散係数も評価した。

○電池作製

電池試験は定格容量が3mAhのコインセルと定格容量が45mAhの単層パウチセルを用 いた。安全性試験には定格容量が45mAhの単層パウチセルまたは定格容量が720mAhの 積層パウチセルを用いた。コインセルは2cm²の円盤状の正極と負極の間にポリエチレン 製のセパレータを挟んだ構造のものを用いた。単層パウチセルは5.0cm×3.0cmの正極5.2 cm×3.2cmの負極の間にポリエチレン製セパレータを挟む構造で作成した。積層パウチセ ルでは両面塗工の電極を用いた。8枚の正極(それぞれ5.0cm×2.8cm)と9枚の負極(そ れぞれ5.2cm×3.0cm)を間にポリエチレン製の不織布を挟みながら交互に積層した。正 極活物質のニッケル・コバルト・マンガンの混合リチウム酸化物またはコバルト酸リチウム と PVdF バインダーと導電性のアセチレンブラックとの混合物をアルミニウム集電体に塗 工して正極板とした。負極活物質の人造黒鉛と PVdF バインダーとアセチレンブラックと の混合物を集電体の銅箔に塗工して負極板とした。両電極とも塗工後は十分に乾燥させ、その後所定の厚みと電極密度になるようにプレスして完成させた。ポリエチレン製セパレー タには旭化成のハイポア ND420 を用いた。電解液を電極セパレータ積層体の空孔を埋める ように注液し、セルをシールすることで試験用電池を完成させた。

○電池特性-充放電性能試験 -

充放電試験はアスカ電子の充放電機(ACD-01)を双葉化学の恒温槽(PLM-63S)に接続 して行った。電解液を注液した後の電池は25 ℃でコンディショニングを行った。パウチセ ルではコンディショニング後に一度電池を開封し,発生したガスを除去した後に再封止し て電池の完成とした。コンディショニングは0.2 C の CC-CV 充電を4.2 V まで行い(総充 電時間:8時間),10分間の休止の後に2.75 V まで0.2 C の CC 放電を行った。 このとき の充放電容量を初充放電容量とした。コンディショニングが終了した電池で様々な試験を 行った。

電池試験はコインセルで 25 ℃のレート試験をまず行った。1 C の CC-CV 条件で 4.2 V まで充電し, 10 分間の休止の後に様々なレートの CC 条件 (0.33 C, 0.5 C, 1 C, 2 C, 3 C) で 3.0 V まで放電することで行った。その後低温レート試験を行った。25 ℃1 C で充電 を行い,様々なレート (0.33 C, 0.5 C, 1 C) と温度 (-20 ℃, -10 ℃, 0 ℃) で放電を行 った。コインセルでは, 25 ℃と 60 ℃の充電サイクル試験も行った。それぞれ 4.2 V まで の CC-CV 充電と 3.0 V までの CC 放電を繰り返した。充放電共に1 C で実施した。

電解液の劣化を追跡するために、単層パウチセルを用いた高温保存試験を実施した。CC-CV 条件で 4.2 V に満充電したセルを 50 ℃で 28 日間保管した。その後 1 C CC 条件で 3 V まで放電することで残存容量を測定し、再び 1 C CC-CV 条件で 4.2 V まで充電した後に 1 C CC 条件で放電することで復帰容量を測定した。残存容量、復帰容量共に多いほど劣化が 起こっていないと推察できる。

○電池特性-電気化学測定

電気化学測定としてサイクリックボルタンメトリー(CV)法での試験を実施した。装置 はソーラトロン社の電気化学測定システムを用い,三電極法で測定した。作用極は充放電試 験と同じ正極又は負極を用い,対極には金属 Li を用いて実施した。

○電池安全性−外力に対する保液性

電極面に平板で圧力を印加させた際の内部抵抗変化で評価した。具体的には単層パウチ セルの電極部へ弾性体シートを置き,その部分へ加圧プレス機にて圧力を印加しつつ内部 抵抗の変化を AC インピーダンス法でその都度測定した。印加した圧力は 5 kgf/cm² から 200 kgf/cm²の範囲である。圧力を変更する毎にその圧力を 10 分間維持してから内部抵抗 を測定した。低圧領域の圧力値は圧力センサーで,高圧領域の圧力値はポンプゲージでモニ ターした。第四章では不織布を用いて加圧による重量変化で保液性の評価を行ったが,本章 ではより実電池に近い形態での評価を試みた。

Figure 6-2. Test method of electrolyte retention by pressure.

続いて遠心力に対する漏液試験を実施した。注液した単層パウチセルに対し、セル表面に 0.2 mm φ の孔を 9 箇所開孔した。それを遠心分離機にセットし、1000 rpm (100G 相当) で 5 分間回転した。取り出したセル表面を不織布でふき取り、遠心力印加前後のセル重量 を測定し、その重量減少量から保液率を求めた。なお、初期注液量は 1.0 g である。 ○電池安全性-加熱に対する保液性

電極部分にコイルスプリング収縮量で1kgf/cm²の圧力を印加する拘束治具を用いてセル をセットした。セル形状はガス溜まりを設けてガス発生挙動が測定可能な形にした。満充電 した電池に対して,室温から150 ℃まで,5 ℃/分で昇温して,そのセル膨張部の厚さ変化 を測定した。そして,四角錘台(切頭四角錐)体積計算法で,およそのガス発生量を換算し た。

Figure 6-3. Test method of electrolyte retention by temperature

○電池安全性ー過充電時のデンドライト観察

セルの安全性試験として過充電試験を実施した。まず、単層パウチセルでは過充電時に負 極表面に析出する Li デンドライト形状を観察した。第四章でゲル電解質にすると Li デン ドライトが平滑になることを示したが本章の電解質でも同様の評価を実施した。本章では、 充電条件による効果の有無も評価した。本試験のセルでは負極容量を約15%多く設定した。 従って充電率が115%を超えるとリチウムの電析が始まる。又、170%以上の過充電をする と電解液の分解が活発化してしまうことが知られているため,充電率は 130 %と 150 %に した。この充電率であれば十分なデンドライトが見られながらも電解液が分解する前に止 めることができると考えた。コンディショニングをした電池に対して,3.0 V から1C また は3CのCC 充電で所定の充電率まで充電した。Li デンドライト形態の観察は,過充電後 に乾燥環境下でセルを解体し,負極表面と断面を光学顕微鏡で観察した。乾燥環境とは露点 -60 ℃以下(水分10 ppm 以下)に設定したドライルームである。正負極電極の分離までは, ドライルーム内の簡易チャンバーにアルゴンガスを流し込んだ雰囲気で作業した。解体後 の光学顕微鏡観察も全てドライルーム内にて実施した。 ○電池安全性-過充電時の短絡挙動

Li デンドライト形状と安全性の関係を調べるため、過充電電池を加圧して短絡挙動を評価した。この試験では内部ガス発生の状況も把握するため、本試験に用いた単層パウチセルのアルミラミネート外装にはガス溜まりを設けた。このガス溜まり部の厚みを測定することによりガス発生挙動が測定可能となる。なお、電極部分にはコイルスプリング収縮量で一定の圧力印加(1 kgf/cm²)が可能な拘束治具を用いている。セパレータにはポリプロピレン製微孔膜(透気度 200 秒, 膜厚 25 µm)とポリエチレンテレフタレート製不織布(目付 21 g/cm², 膜厚 32 µm)を用いた。コンディショニング後に完全放電した電池を用い、3 C の CC-CV 条件で充電を行った。不織布セパレータでは 3 C の充電に加えて 1 C の CC-CV 条件での充電も実施した。短絡に基づく電圧降下又は CV に到達したところで過充電を終了した。

○電池安全性−リチウムデンドライトの反応性評価

電解液種によって Li デンドライト形状が異なるが,その形状が実際に安全性向上に関与 することを実証するため,過充電電極と電解液との高温での反応を発熱挙動で評価した。

まず、デンドライト観察試験と同様の正極・負極を準備し、250 mAh 設計の積層パウチ セルを作製した。(両面塗工の正極4枚と負極3枚での6面対向)セパレータには、高温で も閉塞しにくいセルロース製の薄膜を用いた。電解液は高温でも揮発しにくい溶媒である、 γ-ブチロラクトンに1 MのLiPF6を溶解したものを対照電解液とし、対照電解液に対し てゲル化剤を1.5 wt%溶解させたものをゲル電解質とした。ゲル化剤を1.5%にしたのはゲ ル化能とハンドリング性の両立の観点による。これらの電解液を用いたセルをコンディシ ョニングした後に1 C で150%までの過充電処理を行い、ドライ環境下で、正極のみを剥 離した。負極/電解質・セパレータの3セットを取り出し、新たなラミネート外層体に挿入 し、封口して評価用のハーフセルを作製した。続いて、前記ハーフセルを、電極に一定圧力

(1 kgf/cm²) 印加可能な拘束治具にセットし,1 ℃/分で 165 ℃まで昇温し,そのときのセル温度変化とガス発生挙動を測定した。 なお,この試験は図 6-4 に示した「リチウムドープ電極の発熱挙動テスト」¹⁾を参考に実施した。この方法を用いると,ある程度の容量を持った電極で,自己発熱の度合を測定すると同時に,内部でガスが発生するタイミングや反応に基づく発生ガス量を評価できる。DSC などに比較して,実電池に近い環境で測定できる

ことが特徴である。

Figure 6-4. Test method of exothermal behavior of Li-doped electrode¹⁾.

この試験を実施するに際しては,過充電処理を実施したセルはそれぞれ 2 つずつ作成した。一方は解体した後に光学顕微鏡で Li の析出挙動を観察するのに用い,もう一方を反応性評価に使用した。これまでの評価とは電解液が異なるため,Li 析出の形態が異なることを懸念し,顕微鏡観察も行った。セル解体のドライ条件,光学顕微鏡観察の条件はこれまでの他の評価と同様の方法で実施した。

○電池安全性-(過) 充電正極の発熱挙動

ゲル電解質にすることで正極側への安全性の寄与に関して DSC を用いて評価した。ニッ ケル・マンガン・コバルト正極系のコインセルを用い、電池評価用のセルと同じ構成のセル を作製し、同様のコンディショニングを行った。その後、1 C の CC-CV 充電で充電率 100 % まで充電したセルと、充電率 200 %まで過充電したセルを作製した。充電を終えたセルをド ライ環境下で解体して負極とセパレータを分離した。得られた正極/電解液複合体を所定 のサイズに裁断し、DSC で室温から 350 ℃まで昇温して発熱温度と発熱量を評価した。ゲ ル電解質は、対照電解液に対してゲル化剤として化合物 3 (6-6) を 3 wt%添加して調製し た。

○電池安全性-発火試験

発火試験は満充電後した積層パウチセルを 0.75 C, 20 V の CC-CV の充電条件で実施した。セルが発火したり、爆発したり、充電が停止したりするなどの異常な状態になったところで試験は終了した。電圧、電流、温度、セルの厚みのモニターにより挙動を追跡した。

6-3 結果と考察

6-3-1 電解液に対するゲル化能

ゲル化剤として化合物 3 (6-6) を用いた。このゲル化剤はエチレンカーボネートとエチ ルメチルカーボネートを体積比 1:2 及び 3:7 で混合したいずれの対照電解液に対しても MGC が 0.2 wt%であった。また,形成したゲルは1ヶ月以上静置しても変化がなく,第四 章のゲル電解質と遜色なく,高い安定性を示すゲルであると判断した。図 6-5 はエチレンカ ーボネートとエチルメチルカーボネートを 1:2 で混合した溶媒を用いたゲル電解質の外観 である。以降の評価は,原則,エチレンカーボネートとエチルメチルカーボネートとを 1:2 で混合し,LiPF6を 1M 溶解した溶液を対照電解液とした。

Figure 6-5. Gel-sol phase transition behavior of gel electrolyte used in this chapter. (A): Gel, (B): Sol.

6-3-2 電解液の性能

ゲル化剤を3wt%添加したゲル電解質での、電解質成分のイオン伝導性として拡散係数 の結果を表 6-1 に示す。2 種類のゲル化剤を用いたが、どの電解液成分も、どちらのゲル化 剤を用いたゲル電解質でもほぼ同じ拡散性を示す結果であった。また、対照電解液との差も 小さく,イオン伝導性は対照電解液と遜色ないことが窺えた。なお,化合物2(10-6)を3% 添加したゲル電解質と比較して化合物 3(6-6)を添加したゲル電解質の方が全体に高い拡 散性を示した。化合物2(10-6)の拡散性能でも電池特性として差が出ることはなかったが、 より拡散性が高い化合物 3(6-6)の方が電池材料としては有利であると考える。また、化 合物 3 (6·6) 自体も非常に小さな拡散係数を示したが, 化合物 2 (10·6) よりは大きな値で あった。即ち, 化合物3(6-6)を用いたゲル電解質の方がやや粘性が低く, LiやFの拡散 性が高まったと考える。なお,化合物3(4-8)では-20 ℃の拡散が Liよりもはやい結果と なった。また、図 6-3 のアレニウスプロットで拡散の活性化エネルギーを比較すると、化合 物3(6-6)を用いたゲル電解質のプロットではLiもFも対照電解液のプロットとほぼ同じ 傾きを示した。一方,化合物 **2(10·6)**では特に Li のプロットで他より傾きが小さい結果 であった。すなわち、化合物 3 (6-6) を用いたゲル電解質のイオン伝導性は対照電解液と ほぼ同じであり、化合物2(10-6)を用いたゲル電解質に対しても同等以上になることが確 認できた。これに基づき,化合物 **3(6·6)**を用いたゲル電解質で各種電池試験に進めるこ ととした。

ゲル電解質でも電解液の各構成成分の拡散性は変化しないことが対照電解液種に依らな いことを確認するために、エチレンカーボネート、プロピレンカーボネート、γ - ブチロラ クトンの混合溶媒に LiBF4 を 1.5M 溶解させた電解液でも電解液各成分の拡散係数を求め る実験を行った。この時も対照電解液とゲル電解質とはほぼ同じ結果であった。

	Tempera ture	Nuclear spieces					
Electrolyte		⁷ Li (Li⁺)	¹⁹ F (PF ₆ ⁻)	¹⁹ F (Comp. 3)	¹ H (EC)	¹ H(MEC)	Li transport number
Control electrolyte	-20 ℃	4.83E-11	7.57E-11	-	1.04E-10	1.3E-10	0.39
	30 °C	1.98E-10	3.12E-10	-	4.38E-10	4.99E-10	0.39
	70 °C	7.89E-10	9.77E-10	-	1.25E-09	1.6E-09	0.45
Gel electrolyte	-20 ℃	3.94E-11	6.18E-11	3.79E-11	8.34E-11	1.08E-10	0.39
Compound3	30 ℃	2.05E-10	2.94E-10	1.72E-10	4.11E-10	4.75E-10	0.41
(6-6)	70 °C	5.76E-10	7.08E-10	4.32E-10	9.97E-10	1.09E-09	0.45
Gel electrolyte	-20 ℃	3.98E-11	6.42E-11	4.52E-11	9.02E-11	1.18E-10	0.38
Compound3	30 ℃	2.08E-10	3.09E-10	1.72E-10	4.21E-10	4.96E-10	0.4
(4-8)	70 ℃	6.78E-10	8.72E-10	6.00E-10	1.07E-09	1.17E-09	0.44

Table 6-1. Diffusion coefficients of each electrolyte component.

Figure 6-6. Arrhenius plots based on diffusion coefficient of electrolyte components. (A): 7Li (Li+), (B): ¹⁹F (PF₆-), Gelator: 3 wt%.

6-3-3 リチウムイオン電池の充放電特性の評価

ゲル電解質を用いた電池と対照電解液を用いた電池のレート試験結果及びサイクル試験 結果を示す。レート試験は25 ℃及び低温で行い、いずれもゲル電解質と対照電解液とで大 きな差は見られず、出力に問題がないことを確認した。低温での性能低下もなかった。低温 の試験は 25 ℃, 0.5 C 放電時の放電容量を 100 %としたときの放電容量維持率で示してい る。サイクル試験は25 ℃と高温で行った。この範囲においては電池特性が低下することは なく、充放電に伴ってゲル化剤やゲル電解質が劣化したり変質したりしないことがわかっ た。従って、本章のゲル電解質でも充放電性能に与える影響は少ない。この結果もゲル化剤 は添加量が少ないため、イオン伝導を阻害することなく、また、ゲル化剤には高反応性基が 含まれないため、電池性能を低下させる反応も見られなかったと考える。化合物 3 (6-6) を用いたゲル電解質は化合物 2(10-6)を用いたゲル電解質と比較してゲル化能が高い分, より固体に近い性質を持っており、その分電池性能低下が生じることが懸念であったが、そ のようなことはなかった。すなわち、電極・電解液の界面接着性不足による界面抵抗増加や、 それに基づく電池性能低下は見られなかった。ここで、第四章で見られたような、ゲル化剤 の量を増やすにしたがって、25 ℃でのサイクル容量維持率が向上する傾向は今回の試験で もわずかに見られた。第四章ほど顕著な結果ではなかった理由は用いている電池系が異な り,本章の電池系は第四章の電池系の半分の定格容量であるためである。容量が小さい分, 差が見えにくかったものと考えている。

また,高温サイクル試験は50 サイクルで終了させているが,それは,コインセルでのサ イクル試験を長期に行うと,電極の劣化に起因する容量低下が見られたり,余剰電解液の影 響が見られたりして,評価としての信頼性が足りなくなるためである。そこで,長期耐久性 を確認するために高温での電池保存試験を実施した。満充電状態で保存した電池の残存容 量と復帰容量を評価した。残存容量が多いほど自己放電が少なく,回復容量が多いほど劣化 が少ないと考える。結果,残存容量も回復容量も対照電解液とゲル電解質で差がなく,長期 使用でゲル電解質が劣化しないことの裏付けとなった。

なお、レート試験、サイクル試験、高温保存試験のいずれも評価用電池の正極活物質には ニッケル・マンガン・コバルト複合のリチウム酸化物を用いた。

119

Figure 6-7. Discharge capacities at various discharge rate (25 $^{\circ}$ C).

Figure 6-8. Discharge capacity retentions at various discharge rates (low-temperature).

Figure 6-9. Discharge capacity (A) and capacity retention (B) by charge-discharge cycle (25 $\,^\circ\mathrm{C}$).

Figure 6-10. Discharge capacity by charge-discharge cycle (60 $^{\circ}$ C).

	Residual capacity (%)	Recovery capacity (%)
Control electrolyte	64.4	78.4
Gel electrolyte	63.7	77.1

Table 6-2. Discharge capacity after high-temperature storage test.

6-3-4 リチウムイオン電池の電気化学特性

リチウムイオン電池では電解液の分解を抑制するために負極表面の制御が重要である。 そのために、コンディショニング時に電解液成分の一部を分解させ、負極表面に SEI (Solid electrolyte interface)と呼ばれる薄膜を形成させることでそれ以上の電解液分解を抑制し, 安定な充放電ができるようにする。良好な SEI を形成されるために、電解液添加剤として ビニレンカーボネート (VC) やフルオロエチレンカーボネート (FEC), あるいは含 SO 化 合物などが用いられており ²), VC は二重結合が, FEC は C-F が良好な SEI に寄与すると 考えられている。本章のゲル化剤はSOやCFなど、SEI形成剤としての共通の構造を有す ることから、ゲル化能に加えて SEI 形成の機能も持たせることができるのではないかと考 えた。そこで、サイクリックボルタンメトリーでその可能性を追跡した。その結果、酸化側 (正極),還元側(負極)ともに対照電解液では見られない、ゲル化剤の分解に由来すると 推定できるピークが見られた。還元側は1 サイクル目で 1.3-1.4 V で分解ピークが検出さ れ、これは既存の負極添加剤分解ピークとほぼ同じであった。また、2 サイクル目からはピ ークがほぼ見られなくなり、ゲル化剤は分解し続けるわけではなく、SEIの形成が示唆され た。今回の試験では実セルよりも遥かに容量が小さい電池を用いているため、対照電解液で も良好なサイクル性能を示し、SEIの形成による電池性能向上効果は明確ではなかったが、 実セルでは明確な差が見られる可能性があると考えている。一方、正極側はゲル電解質で 4.5 V付近でピークが検出されたが、それより低電圧では特段目立ったピークは見られなか った。今回の電池試験は4.2Vまでの充電であったため、この分解は充放電性能に影響しな かったと考える。なお、近年は電池を高エネルギー密度化するために「高電圧正極」を用い て 4.5V 以上まで充電する検討も盛んである³⁾。そのような電池では正極で電解液の酸化分 解が起こり続けることが課題になっており、その改善のひとつのアプローチとして正極に も SEI を形成することが提案されている 4。このゲル電解質は1サイクル目の高電圧域で ゲル化剤の一部が分解し,3 サイクル目以降は安定することから,正極 SEI の形成が示唆 される。従って、高電圧で駆動する電池でも、対照電解液よりもゲル電解質で充放電性能が 向上することが期待できる。

また,この試験より,初充放電時にゲル化剤の一部が分解することがわかった。そのため, 「安全性向上」電解液を達成するためには MGC よりも,ゲル化剤を多めに導入する必要が ある。

6-3-5 リチウムイオン電池安全性の評価一外力に対する電解液の保液性

電池安全性試験として、まず、保液性を評価した。ゲル電解質の第一の特徴は漏液抑制で ある。そこで、化合物 3(6-6)を用いたゲル電解質での漏液抑制能を評価した。この評価 には正極活物質がコバルト酸リチウムの単層のパウチセルを用いた。漏液して電極やセパ レータへの液が不足すれば内部抵抗が上昇するので、セル電極面加圧時の AC インピーダ ンスをモニターした。ゲル電解質は化合物3(6-6)を3wt%添加して調製した。その結果, およそバルク抵抗を示す 20,000 Hz の抵抗では最高 200 kgf/cm² 条件の際に対照電解液で は抵抗増加率が197%であったのに対し、ゲル電解質では175%(液系より-22%)であっ た。なお、1,000 Hz の抵抗では更にその差が大きく、対照電解液では抵抗増加率が 186% に対しゲル電解質では 136%であった。一方, 拡散を含む反応抵抗である 0.1 Hz-20000 Hz の抵抗値では両系とも175%程度で大きな差が見られなかった。この周波数帯による差は、 漏液箇所を示唆する。バルク抵抗が両電解液で差が大きかったことは、ゲル電解質ではセパ レータ域での漏液を抑える効果が高かったと言える。拡散を含む反応抵抗は主に電極電解 液界面抵抗を示しており, その漏液抑制効果も認められはしたが, セパレータ域での漏液抑 制に比べると小さいものであった。言い換えると,対照電解液で最も漏液しやすいのがセパ レータ域であることがわかった。本測定条件では両電解液共に 50 kgf/cm² 程度の圧力印加 までは内部抵抗が徐々に低くなり、それ以上の圧力で内部抵抗が増加していく傾向が見ら れた。低圧印加で抵抗が低くなったのは、加圧によって電極間距離が近付いたためであると 考えている。

なお,実際に自動車等へ搭載される電池は多数の電池が積み重なった状態で固定され,圧 力がかかった状態になることから,加圧時に漏液を抑制できる効果は大きな意味がある。

また, 上記圧力印加後にセルをドライルーム内で解体したところ外装の余剰部(液染み出

し部)に電解液が染み出していることを確認した。そこで素早く外装体を切断して周囲への 染み出し分を拭き取り,正極,セパレータ,負極のみの重量を測定することで加圧後の電解 液保持率を計算した。加圧後に残った電解質の対照電解液系とゲル電解質系との重量差よ り,電極,セパレータの空隙率から理論上計算上される元の注液含浸量に対する保持率を求 めた。その結果ゲル電解質系が対照電解液系より約 10 %多く保持しており、ゲル電解質で は実際に漏液が抑制できていることを重量変化からも確認した。

続いて,遠心力による漏液を評価した。実電池での漏液因となる外力として大きな影響が あるのが遠心力だと言われている。この評価用セルの正極活物質にはニッケル・マンガン・ コバルト複合のリチウム酸化物を用いた。電池のピンホールから漏液することを模擬し,穴 をあけたセルに遠心力を与える試験を行った。ゲル電解質は化合物3(6-6)を3wt%添加 して調製した。その結果,試験後の保液率に明らかな差があり,遠心力に対してもゲル電解 質は強いことがわかった。ここで,ゲル電解質での漏液物は液体ではなく,ゲル状であった。 液が絞り出されないため,たとえ漏液しても周囲への広がりが小さくなる。そのため,ゲル 電解質では漏液量が減ることと漏液物がゲル状であることの二面で安全性向上になってい る。今回の試験では実際の電池で生じる可能性があるピンホール(小穴)よりもかなり大き な穴をあけている。従って,ゲル状であると実セルではますます漏れにくいと期待できる。 なお,今回,遠心力を受けている瞬間がゲル状になっているかゾル状になっているかは確認 していないが,遠心力印加を停止したら瞬時にゲルに戻るゲル電解質であるためそれは実 質的な差にはならないであろう。

Figure 6-12. Resistance changing rate by pressure.

	Injection Weight (g)	Leakage Weight (%)	Remaining Rate
Control electrolyte	1.000	0.427	57.3
Gel electrolyte	1.000	0.025	97.5

Table 6-3. Electrolyte retention of centrifugalized cells.

6-3-6 リチウムイオン電池安全性の評価 – 加熱に対する電解液の保液性

保液性試験と同様のセルと治具を用い,固定した満充電電池を加熱することで評価した。 標準電解液,ゲル電解質とも約 105 ℃より電池膨張(=ガス発生)が始まったが,その後 の膨張速度は異なった。加熱されていく段階において,対照電解液系に対するゲル電解質系 でのガス発生量の比率が,100~105 ℃で 27~32%,110 ℃で 24%,115~120 ℃で 13%, 125 ℃で 7%と高温になるに従い低下していた。換言すると,対照電解液に対しゲル電解 質では同量のガスを発生させる温度 m は約 20 ℃高めで,温度が高い程その差も広がる傾 向があった。

この結果より、ゲル化剤と溶媒との相互作用により溶媒蒸気圧を上昇させる効果が見られたと考える。これは化合物2(10-6)を用いたゲル電解質では見られなかった結果であり(第四章参照)、化合物3(6-6)を用いたゲル電解質ならではの効果であると言える。熱暴 走抑制に寄与する重要な結果である。

Figure 6-13. Generated gas volume by heating of full charged cells.

6-3-7 リチウムイオン電池安全性の評価ー過充電電池のリチウムデンドライト析出観察 第四章同様に,過充電電池の解体解析を行った。正極活物質がコバルト酸リチウムの単層 型のパウチセル用い,単層パウチセルの過充電セルを解体したときの負極の光学顕微鏡観 察写真を示す。まず,充電率 130 %で充電レートを変えて観察をした。負極の表面観察から,正極に対向している面では均一にリチウムが析出していることが今回も確認できた。リ チウム含有率が高い状態の炭素と思われる特有の黄金色が見られている。

対照電解液でも電析物がセパレータを貫通する挙動は見られず,試験条件として適切であったと考えた点も第四章と同様である。1C 充電の場合には,負極表面を覆う様にリチウムが析出している状態に大きな差は無いが,対照電解液では直径 1~3 µm,長さ 10~15 µm の針状析出物が点在していた。3C 充電では,対照電解液,ゲル電解質共に負極表面を覆う状態がより不均一となり,リチウムが充電された黒鉛負極の黄金色が見える部分の割合が増えていた。又,1C で見られた針状析出物が,対照電解液系においてより多く確認された。

断面観察についてはゲル電解質では、1 C、3 C 充電共にほぼ平滑にリチウムが析出し、 大きな凹凸は無かった。対照電解液では、1 C、3 C 充電とも 5~20 µm 程度の凹凸があり、 ところどころには長さ 10 µm 以上に成長した針状の析出物が分散し、ゲル電解質と比較し て明らかにその凹凸は大きかった。しかし、充電レートによる析出形態の違いは見られなか った。

従って,過充電レートに関わらず,リチウムデンドライト成長形状は対照電解液に対する ゲル化剤添加系電解質の樹状成長抑制効果が見られた。

続いて充電率を150%にしたときの光学顕微鏡結果を示す。この系においても、負極表面 観察からは、 ゲル電解質での析出物は薄く広く堆積した形状であるのに対して, 対照電解液 での析出物は尖った部分の多い星状の粒子が多数孤立した状態であることが見て取れた。 断面観察ではこれまでの系と比較して、ゲル電解質での平滑性は同様であったが、対照電解 液での凹凸が激しかったため、相対的に平滑化効果が高まっていると判断できる。凹凸を画 像ソフト処理すると,稜線長はゲル電解質で標準電解液の数10分の1になっていた。表面 積にすると数 100 分の 1 になっていると推定できる。光学顕微鏡の限界で観察はできなか ったが、凹凸表面にはさらに微細な凹凸が存在しているはずである。そのため、顕微鏡で見 えている以上に標準電解液とゲル電解質では表面積差があるものと推察できる。それはゲ ル化能の高さに由来すると考察し、これにより、 短絡や発火のリスクがますます低減できる ものと考える。また、凹凸が少なければ電流偏在をさせにくく、長期サイクルの信頼性も期 待できる。実験室レベルのコインセルでは、他の要因での電池劣化が先に始まるため、今回 の電池評価ではこの結果を支持する評価までの充放電試験はできなかったが、実電池にお いては大きな効果が期待できると考えている。リチウムの針状析出を抑制できれば、セパレ ータを薄くしたりセパレータの空孔率を高くしたりすることも可能となり、それは電池の 容量向上を向上させる点から有効である。

Figure 6-14. Anode surface of overcharged cell by optical microscope.(A): Control electrolyte (1 C), (B): Gel electrolyte (1 C),(C): Control electrolyte (3 C), (D): Gel electrolyte (3 C).

Figure 6-15. Anode cross section of overcharged cell by optical microscope.(A): Control electrolyte (1 C), (B): Gel electrolyte (1 C),(C): Control electrolyte (3 C), (D): Gel electrolyte (3 C).

Figure 6-16. Anode cross section of overcharged cell by optical microscope (1 C, 150 %). (A): Control electrolyte, (B): Gel electrolyte.

6-3-8 リチウムイオン電池安全性の評価ー過充電電池の短絡試験

ゲル電解質ではLiデンドライトの針状成長が抑制できていることがわかったため、実際 に短絡挙動を評価した。まず、正極活物質としてコバルト酸リチウムを、セパレータとして ポリプロピレン製微多孔膜を用いた電池を作製し、満充電した後にさらに過充電した。対照 電解液を用いた電池では170%付近でCV充電に切り替わり、電圧が上昇したが、200%付 近で元の電圧に戻った。ここで短絡(微短絡)が生じたと考える。その後、徐々に電圧は低 下し、300%付近で完全に短絡し、電池として機能しなくなった。一方、ゲル電解質を用い た電池では300%付近まで順調にCC充電が続き、CV充電に切り替わることができ、電圧 が低下することはなく、短絡は生じていなかった。今回の試験は発熱が小さく、熱暴走には 至らない(エネルギー密度が低い)電池を用いているため、短絡しても電池が機能しなくな るだけであるが、実際の電池では短絡すると発火に至る可能性が高くなるので、それを抑制 しているゲル電解質は意味がある。

また,今回の試験では充電率に対する温度の挙動は両電解液で同じであったにも関わら ず,厚みは対照電解液の方が大きな値になった。この温度域はカーボネート溶媒の沸点以下 であるため,溶媒そのものの揮発による体積増大は少ない。そのためこれは過充電によって 電解液が酸化分解して生じた気体成分であると考える。従ってゲル電解質は溶媒の分解も 抑制していることがわかった。それは,析出したリチウムが平滑になったことで表面積が小 さく,分解反応の起点が減少したためであると考察する。

続いて、セパレータとしてポリエチレンテレフタレート製不織布を用いて同様の実験を 行った(正極活物質はコバルト酸リチウム)。より粗大な孔を不均一に有する不織布セパレ ータでも短絡抑制の効果が見られればゲル電解質の効果の大きさを示すことができる。不 織布セパレータを用いた場合には電池の厚み上昇が見られなかったため(粗大な孔があり、 そこからガスが抜けるため)、電圧の挙動だけをモニターし、電圧降下が見られた点を短絡 した点であると判断した。3Cの過充電条件では不織布セパレータを用いた場合にはゲル電 解質を用いても短絡をほとんど抑制することはできなかった。しかし1Cの過充電条件で は短絡を遅くすることができ、不織布セパレータでも短絡抑制効果は見られた。不織布のよ うな不均一な大孔径セパレータを用いると充放電で電流集中が生じ、不安定な充放電挙動 になりやすい。このゲル電解質を用いればそのような電池での充放電信頼性を保持できる ことにも寄与すると考える。また、不織布セパレータ以外でも、薄膜、大孔径のポリオレフ ィン微多孔膜セパレータや紙セパレータなどでも短絡抑制が期待でき、展開は広がる。

Figure 6-16. Cell short behavior by overcharge (PP membrane separator). (Dotted line: Control electrolyte, Solid line: Gel electrolyte)

	Charging	@Short		OCV
	rate	SOC	Voltage	
Control	3 C	110 %	4.58 V	4.48 V
electrolyte	1 C	118 %	4.52 V	4.46 V
Gel	3 C	111 %	4.74 V	4.62 V
electrolyte	1 C	170 %	4.88 V	4.87 V

Table 6-4. Cell short behavior by overcharge (PET non-woven separator).

6-3-9 リチウムイオン電池安全性の評価ー過充電負極と電解液との反応挙動

まず,過充電後の負極の形態の光学顕微鏡観察写真を示す。この評価では正極活物質にコ バルト酸リチウムを用いた。これまでの評価はカーボネート溶媒を用いていたのに対し、こ の評価はγーブチロラクトンを用いているが、これまでと同様にLiの析出形態が対照電解 液とゲル電解質では異なることが確認できた。従って、評価に適したセルが作製できたと判 断した。ただし、ゲル化剤量を3wt%から1.5wt%に減らした影響であると推定するが、こ れまでのゲル電解質よりは凹凸が多くみられる構造であった。これに基づき、実際に反応性 試験を実施した。結果を表6-5 に示す。

電池温度に対する電池の厚み変化を測定すると、対照電解液では 112 ℃で、ゲル電解質 では 119 ℃で厚みの増加が開始した。電極を併存させない、電解液のみではガスの発生が ない(揮発がない)ことは試験前に確認しており、この厚み増加は、負極析出リチウムと電 解質との反応によるガス発生に起因していると考える。電池の厚みから四角錐台(切頭四角 錐)体積法で、およそのガス発生量を換算すると、同等ガス量が発生する温度は対照電解液 よりもゲル電解質でおよそ 7 ℃高かった。電池の温度に対する電池厚みを図 6-19 に示す。 電池の厚みが上昇し始めたときの傾きが反応開始時のガス発生の勢いであり、ゲル電解質 ではそれを約 2/3 に抑制することができた。また、ガス発生量が一定になってからの傾きを 外挿することで反応温度を求めたところ、ゲル電解質では反応温度が約 7.5 ℃低くなった。 これらによって、ゲル電解質の負極では電解液との反応が遅くなったり、反応性が低下した りしていることが確認でき、Li 析出形態の制御は反応性の制御になることがわかった。た だし、反応が開始すると、その後の両電解液のガス発生速度はほぼ同じであった(図 6-19 の実線の傾きがほぼ平行)。電解液分解反応は連鎖的に進行し、析出形態に関わらず激しい ものになることがわかった。そのため、反応が開始する前に暴走を止める必要がある。

Figure 6-17. Anode surface of overcharged cell by optical microscope. (A): Control electrolyte, (B): Gel electrolyte.

Figure 6-18. Anode cross-section of overcharged cell by optical microscope. (A): Control electrolyte, (B): Gel electrolyte.

Amount of	Reduced	Cell temperature (°C)		
increase in cell thickness (mm)	gas volume (cm ³)	Control electrolyte	Gel electrolyte	
1	0.59	112.2	118.7	
2	1.35	113.0	120.1	
3	2.11	113.2	120.6	
4	2.87	113.8	121.1	

Table 6-5. Generated gas amounts by heating.

Figure 6-19. Gas generation temperature and generating speed.

6-3-10 リチウムイオン電池安全性の評価ー過充電正極の安全性への寄与

これまでの安全性評価結果より,過充電時の負極の Li 析出形態が安全性向上に寄与する ことがわかった。また、電気化学測定結果ではこのゲル化剤は正極への作用も示唆する結果 が得られている。 そこで, ゲル化剤が正極へ作用することで安全性を向上させていることも 明確にするため、充電正極の DSC 測定を行った。評価用電池の正極活物質にはニッケル・ マンガン・コバルト複合のリチウム酸化物を用いた。

その結果,充電率 100 %の満充電時には対照電解液を用いて充電した正極もゲル電解質 を用いて充電した正極も320 ℃付近に発熱ピークが現れた。これは正極と電解液との反応 に関連するピークであると考える。この時,発熱ピーク面積はゲル電解質で小さかった。一 方,200%まで過充電したセルについては、対照電解液を用いた場合には約270℃で発熱 開始が見られたが、ゲル電解質を用いた場合には約310℃であり、やはりピーク面積がゲ ル電解質で小さくなった。このことから、ゲル電解質は正極と電解液との反応を遅らせ、反 応を穏やかにするという、正極側への安全性向上も示唆している。電気化学測定で、4.5 V 以上に充電すると正極 SEI が存在することが示唆されたが、それが正極と電解液との直接 接触を避け、電解液の酸化分解を遅らせることに繋がったと判断できる。

Figure 6-20. DSC thermogram of charging electrolyte and electrolyte complexes.

6-3-11 リチウムイオン電池安全性の評価ー過充電電池の発火・破裂試験

過充電時の発火挙動を追跡した。これまでの各種安全性試験の結果を総合し、 ゲル電解質 を用いると容量の大きな電池での安全性向上が見られるはずであると想定して開始した。 この試験では正極にニッケル・コバルト・マンガンの混合リチウム酸化物を用いて実施した。 満充電電池に対して,さらに充電を進めていくと150%を超える頃から発熱して温度が徐々 に上昇すると共に、ガス発生のために電池の厚みが上昇した。 電池の厚みが上昇すると電極 間距離が離れるため、抵抗が増大して益々温度が上昇したと考える。対照電解液とゲル電解 質では温度上昇や厚みの上昇の挙動がほぼ同じであることから過充電初期は同じような環 境になっていることが推定できる。すなわち,150 ℃付近から開始するガス発生の主因は 低沸点溶媒の揮発が想定できる。そして、200%を超える頃に、セルの体積の限界まで厚み が上昇し、厚みのピークに達した。対照電解液はここでセルの一部が開口し、電解液が噴出 したものと考える。電解液が噴出することで液枯れが生じ、抵抗・電圧の上昇が生じた。そ してその刺激により, 温度が急上昇して発火したと見ることができる。 外に噴出した電解液 は着火しやすく、一気に燃焼した。一方、ゲル電解質ではセルが厚みのピークに達するまで は対照電解液と同じであるが、 このときの温度ではまだゲル状を保持できるため、 セルが開 口しても、「電解液の噴出」にならなかったと推察する。ただし、抵抗

・電圧が上昇し、少 しの発熱はあったが、その後電池として機能しなくなり、それ以上の発熱は起こらずに電池 は安全に停止した。試験後の電池を取り出すと,対照電解液の電池では完全に燃焼していた のに対して、ゲル電解質を用いた電池ではセルが膨らみ、使用できない状態になって終了し ていた。従って、本章のゲル電解質を用いると、過充電時での燃焼を抑制することができる とわかった。この結果は第四章のゲル電解質よりもすぐれるものである。それは、①ゾルー

ゲルの相転移温度がより高いため、電池の厚みが最大になったときに電解液の噴出が少な かった、②ビフェニル構造に有する効果(過充電防止)があった、③電極への作用が異なり、 過充電時に有利な SEI が形成できていた、ことのいずれか一つ以上が機能していたと考え ている。どの効果も間接的には見られているため、これらの組み合わせで効果を示していた と考えることが適切であると考えている。

Figure 6-21. Cell behavior of overcharge condition.(A): Control electrolyte, (B): Gel electrolyte (Compound 3 (6-6) amount: 3 wt%).

Figure 6-21. Cell form after overcharge. (A): Control electrolyte, (B): Gel electrolyte.

6-4 まとめ

本章では、第五章で設計・合成した、新規なペルフルオロアルキル基を有するゲル化剤を ゲル電解質へ展開する検討を実施した。そして、イオン伝導性と電池特性は低下させずに安 全性を向上させる電解液・電池を達成できた。

使用しているゲル化剤が電解液に対して少量であるため、イオンの移動を阻害せずに電 池特性を維持できたこと、このゲル化剤が反応性官能基を持たないために、ゲル化剤に基づ く劣化がなかったことは第四章のゲル化剤(化合物 2 (10-6))に基づく電解液と同様であ る。加えて、本章では電気化学的測定も実施し、ゲル化剤は 4.5 V 以上にすると正極へ作用 することが分かった。

本章では保液性と過充電特性に焦点を当てた安全性試験を行った。加圧,遠心力,加熱の いずれに対しても漏液抑制ができた。そのことは安全性の向上はもちろんのこと,電池の信 頼性向上にもつながる。漏液抑制は、単に「ゲル」という物理的な形状のみに依るのではな く,本章のゲル化剤は電解液との親和性が高く、外力を受けても固液分離をしにくいことに も由来していると考えることができる。また、本章のゲル電解質を用いた電池は過充電して もデンドライトが針状成長せず、平滑な成長であった。このことによって、短絡を抑えられ たのはもちろんのこと、過充電負極の表面積減少の効果により、電解液の分解も遅らせるこ とができた。デンドライトが針状にならなければ、薄膜や大孔径膜のセパレータも使用でき る。また、ゲル化剤は正極表面へ作用し、SEIのようなものを形成していることが示唆され た。それによって発熱を遅らせる効果もあった。そして、総合的な効果により、対照電解液 を用いた電池では発火するような過充電条件であってもゲル電解質を用いた電池では発火 を抑制することができた。

以上,本章では新規な低分子ゲル化剤を用いたゲル電解質がリチウムイオン電池用電解 液として有望であることを示した。

現在,リチウムイオン二次電池は高容量化が求められている。本章のゲル電解質はそれに 対して以下の貢献ができると考えている。①高容量化によってより重要になる安全の向上 に寄与する,②薄膜や大孔径のセパレータを用いても安定した充放電ができることから体 積エネルギー密度向上に寄与できる,③ゲル化剤と正極との相互作用が4.5V以上で起こる ことから、高電圧充電時の電解液分解を抑制できる可能性がある。

様々な可能性を有する本章のゲル電解質であるが,液体の電解液や高分子ゲル化剤を用 いたゲル電解質(ポリマー電池)とは異なる取り扱いになる点もある。実電池の製造プロセ スを検討することが次の課題である。

References

1) 矢田 静邦 「リチウムイオンキャパシタ(LIC)の部材, 製造, 試験とその最新技術」技術情報協会 (2010).

2) S. S. Zhang, J. Power Sources, 162, 1379-1394 (2006)

3) Z. Lue, J. R. Dahn, J. Electrochem. Soc., 149, A 815-A822 (2002). K. Kang, Y. S. Meng,
J. Bréger, C. P. Grey, G. Ceder, Science, 17, 311, 977-980 (2006). M. Kundurac, J. F. A.Shara, G. G. Amatucci, Chem. Mater., 18, 3585-3592 (2006). Manthiram, K.
Chemelewskia, E. –S. Lee, Energy Environ. Sci., 7, 1339-1350 (2014).

4) S.-K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe & Z. Ogumi, *Langmuir*, 17, 8281-8286 (2001).

第七章 ペルフルオロアルキル部位およびスルホニルビフェニル部位を有する新規低分子 ゲル化剤の合成

7-1 緒言

これまでの検討でペルフルオロアルキル基及びスルホニルビフェニル部位を有するゲル 化剤が高いゲル化能を示し、リチウムイオン電池の電解液材料としても有用であることが わかった。このゲル化剤は新規化合物であるため、量産に向けては製造法の確立をする必 要がある。これまでの検討は実験室で最適化された条件で合成したゲル化剤を使用してお り、そのままでは量産プロセスには適さない。そこで製造法の検討を行った。

7-2 基本合成スキームの検討

まずは第五章で確立した製法が有する以下の課題を解決する基本スキームを検討した。 課題①各工程で使用する溶媒が異なるため、工程ごとに反応器を洗浄する負荷がかかる。

②1,4-ジオキサンのような有害性の高い溶媒の使用がされている。

③過酸化水素と酢酸を用いる酸化反応は過酢酸を生じる危険性がある。

そこで、各工程の溶媒を統一し、過酸化水素ではない酸化を検討した。

まず,酸化剤の検討を行った。汎用の酸化剤から次亜塩素酸ナトリウムとオキソン(ペルオキシモノ硫酸カリウム(2KHSO5・KHSO4・K2SO4)を候補として選択した。次亜塩素酸ナトリウムを用いた酸化反応ではS→SOはスムーズに進行したが,SO→SO2の反応が進行せず,温度,pHなどの検討を行っても低い収率しか得られなかった。オキソンを用いた酸化は比較的スムーズであったことからオキソンを酸化剤として用いることとした。なお,オキソンはpHによって安定性が異なるため,扱いには注意が必要であることがわかった。

続いて,溶媒系は親水性溶媒系と疎水性溶媒/水の二相系の2種類で検討し,前者では アセトニトリルを用いること,後者ではトルエン/水に相間移動触媒を添加することで, 全行程の溶媒を統一する製造方法を確立した。

合成にかかる時間,得られる化合物の純度,収率はどちらの方法でも差がほとんどなか ったが,二相系で合成することで,反応生成物と副生成物との分離が容易になり,目的物 の精製,溶媒回収が簡易になると考え,二相系を選択した。なお,各工程の塩基は炭酸ナ トリウム,炭酸カリウムのいずれを使用しても問題ないことも確認しており,塩基も統一 することができた。

反応スキームを以下に示す。

<Industrial synthetic process of Compound 3>

7-3 量産製法の検討

7-2の結果を元に実際に1Lの反応器を用いて実生産ラインでの製造の可否確認と課題の抽出を行った。各工程の各操作の後にガスクロマトグラフィーの測定を行い、純度と不純物を測定しながら進めた。なお本論文では代表的なガスクロマトグラフのみを載せた。

7-3-1 フルオロアルキル化工程

Scheme 7-1. Perfluoroalkylation process.

反応3時間後の反応液をガスクロマトグラフィーで分析すると反応率100%であった。

Figure 7-1. Gas chromatograph of toluene solution after reaction.

しかし,反応終了後の水相や洗浄水はチオール臭がしていた。複数回の洗浄を行ってい るがどの洗浄水もチオール臭がしたので本工程では水相の処理法が課題であることがわか った。そのため,次亜塩素酸ナトリウム等での処理検討が必要である。

また,トルエンのピークも見られており,水中にトルエンが少量残存することも排水処 理の点で課題である。

Figure 7-2. Gas chromatograph of water solution after reaction.

Scheme 7-2. Oxidation process.

反応後のガスクロマトグラフィー分析では反応率が100%であった。

Figure 7-3. Gas chromatograph of toluene solution after oxidation reaction.

しかし,反応率を100%にするためには,ペルフルオロ原料化合物に対して等量以上の オキソンを添加する必要があり,反応終了後に活性を持ったオキソンが残る。その活性を なくすためには,次亜塩素酸ナトリウム等での処理検討が必要である。

Figure 7-4. Gas chromatograph of water solution after oxidation reaction.

Figure 7-5. Gas chromatograph of water solution after removal of Na_2SO_3 .

また,本工程も複数回の洗浄水のいずれにもトルエンが含まれていた。水とトルエンの 分離は溶媒回収の点での課題である。

Figure 7-6. Gas chromatograph of cleaning water.

再沈殿後のヘキサン及び複数回の洗浄ヘキサンには合成原料が含まれていた。従って, 少量残存する原料はヘキサンで洗浄できることがわかった。

Figure 7-7. Gas chromatograph of mother liquid after reprecipitation by hexane.

Figure 7-8. Gas chromatograph of cleaning hexane.

得られた Wet 化合物にも特に不純物などはなく、純度が高い化合物が得られた。

Figure 7-9. Gas chromatograph of wet compound after purification.

Scheme 7-3. Suzuki coupling process.

反応3時間後の液をガスクロマトグラフで測定すると転化率100%であった。

Figure 7-10. Gas chromatograph of toluene solution after coupling reaction.

また,反応後の水相及び複数回の洗浄水にはトルエンが残存していた。この工程でも水と トルエンの分離精製が課題である。

Figure 7-11. Gas chromatograph of water solution after coupling reaction.

以上のとおり,溶媒回収等の課題はあるものの,量産の現実性があることが示せた。また, 鈴木カップリング後の精製物はゲル化能を有するため取り扱いが悪くなる。精製を簡単に するために「トッピング」の検討を行ったところ,それによって生産性が向上することもわ かった。スキーム 7-3の wet 化合物 3 (6-6) に熱水を加えてトッピングをすると簡単に溶 媒除去ができた。また,wet 化合物 3 (6-6) をヘキサンで再沈してからトッピングを行う と,ボロン酸原料が完全に除去でき,合成時に過剰にボロン酸原料を添加しても問題ないこ とがわかった。ただし、トッピングで得られた化合物はヘキサン処理をしない方が取扱いや すいため、トータルプロセスとして、合成時の原料仕込み比や合成後の精製法を決定してい きたい。

さらには、反応溶媒のトルエンには精製溶媒のヘキサンが混合した状態で回収されるため、その分留検討と共に、トルエン/ヘキサンの混合溶媒での合成検討を実施した。分留は以下のように実施でき、純度 100 %のトルエンが 27 %、純度 90 %のヘキサンが 73 %の比率で得られた。

また,回収溶媒(トルエン/ヘキサン混合溶媒)を用いて各工程を実施したところ,高純 度のトルエンを用いたときと同様に各工程の反応が可能であることを確認した。溶媒の回 収は繰り返すと組成が変わっていく可能性があるため,詳細な検討を追加する必要ではあ るが,混合溶媒でも合成できることがわかったことは溶媒精製の負荷を減らせることがで きて好ましい。

Figure 7-12. Solvent recovery process.

7-3-4 全工程のタイムチャート

以上の工程検討結果に基づき、合成タイムチャートを作成すると以下のようになった 夜勤や高負荷な体系にはならず、現実的なプロセスとなった。しかし、1回の合成が1週間 かかるものとなっており、これでは製造コストがかかりすぎることとなる。工程簡略化は課 題である。

Figure 7-13. Time chart of Compound 3 (6-6) synthetic process.

第八章 結言

8-1 本論文で得られた結果

本研究は「フッ素を用いた電気化学デバイス用の新規機能材を提案する」ことを目的として取り組んだ。具体的には,以下の2点である。

①ペルフルオロアルキル基と芳香環を有する新規な低分子ゲル化剤の達成すること

- ペルフルオロアルキル鎖の疎水相互作用に基づく凝集力をゲル化の推進力に用い,水 素結合に頼らないゲル化を達成する。

②①のゲル化剤を用いて実際に電気化学デバイスへの応用可能性を提案すること

- リチウムイオン電池用電解液をゲル化したゲル電解質を作製し,電気化学的特性と電池安全性を評価し,その適用性を提案する。

本目的を達成するために立てた各章の目的とそれに対する結果を表 8-1 にまとめる。

なお、いずれの章のゲル化剤もペルフルオロアルキル鎖を有するものであるため、「ペル フルオロアルキル鎖を有する」の記載は省略している。

Chapter	Purposes	Results
2	・ペルフルオロアルキル鎖を有する新規液晶 性ゲル化剤を提案 ・液晶性とゲル化能の評価	・液晶性とゲル化能を兼備する化合物の達成 ・液晶性とゲル化能の相関
3	・スルホニルフェニル基を有する新規ゲル化剤の提案 ・分子構造,ゲルの構造,ゲル化能の関係 を考察	・CF鎖の炭素数が10のゲル化剤で各種有機溶媒に対する良好なゲル化能を発現 ・形成したゲルは径が100nm~数100nmの繊維状構造の会合体であり、最表面にペルフルオロアルキル鎖が析出している螺旋/筍状構造を示唆
4	・3章のゲル化剤をリチウムイオン電池電解 液のゲル化剤として適用 ・電池特性と安全性についての評価と考察	・電解液としてはイオン伝導性を低下させることなく燃焼 遅延効果を付加,電池としては充放電特性を低下する ことなく,異常時の安全性を向上 ・難燃剤を併用すると相乗効果あり
5	・スルホニルビフェニル基を有する新規ゲル化 剤の提案 ・CF鎖の炭素数8未満で3章ゲル化剤相当 のゲル化能 ・ゲルの構造とゲル化の機構を考察	・Chap.3のゲル化剤の性能相当以上のゲル化能を示す ゲル化剤の達成 ほとんどの有機溶媒に対して少量の添 加でゲル化能を発現 ・ゲル化剤に基づく超分子構造は,2.9nmの分子が層 を形成し,径が80nmの長い繊維の絡まりを示唆 ・構造形成に要する時間は非常に短い
6	・5章のゲル化剤をリチウムイオン電池電解 液のゲル化剤として適用 ・4章を上回る電池安全性の達成 ・実電池での異常時発熱・発火抑制	・電解液,電池特性はChap.4相当以上を達成 ・各種外的因子に対する漏液抑制と短絡抑制を達成 ・異常時の発熱・発火・燃焼の抑制を達成 ・正極への作用により安全性と電池信頼性向上を示唆
7	・5章のゲル化剤の工業的製法の可能性を 提案	・水/トルエン/相間移動触媒系で一気通貫反応を達成 ・量産試作によりスケールアップ可能性と残課題抽出

Table 8-1. Purposes and resurlts of each chapter.

本研究の2点の目的は、第二章、第三章、第五章で①を、第四章、第六章で②を達成し

た。また、このゲル化剤の量産化に向けた検討を第七章で実施した。

8-2 本論文のまとめ

本論文は 8-1 に記載した「本研究のまとめ」の内容を具体的かつ詳細に述べたものである。

ペルフルオロアルキル鎖を有する新規なゲル化剤を設計し,ゲル化能の評価とそれをリ チウムイオン電池用電解液に展開した結果を示した。

第五章で設計した,スルホニルビフェニル基を有するゲル化剤を用いると,非常に良好な ゲル化能と第六章で示したような電池としての性能向上を達成することができた。

8-3 今後への提言

本研究をさらに深耕させ、進捗させるためには以下が課題であると考える。

① <u>ゲル化剤の設計に関して</u>

ゲル化能の良不良と分子設計の普遍的な理論はない。しかし,本研究及びこれまでの各種 研究を通し,「ペルフルオロアルキル基と芳香環を有する化合物」に限定すればゲル化能の 知見は蓄積されてきた。分子動力学シミュレーションの有用性もわかった。そこでこれらの 化合物の凝集力,溶媒との相互作用の強弱等を整理し,ゲル化能が高い化合物を設計する指 針を提案したい。

また,最近手法が提案されている Material Infomatics (MI)を分子設計に導入すると有用 な情報が得られるのではないかとも考える。

② ゲル化剤の合成に関して

本研究で設計したゲル化剤では第五章で合成した化合物 3(6-6) が各種用途,特にリチ ウムイオン電池電解液用途に対して本命であると考えている。そのため第七章で化合物 3

(6-6)の工業的な製造の検討を実施し、課題抽出と製造タイムチャートの作成を行った。 そこで、今回見つかった残課題を解決すると共に、更なる低コスト化・短時間化の検討を行 い、実現性のある製法の確立を目指したい。廃棄物処理・法規対応等を含めて実施する。

③ ゲルの構造に関して

第五章で X 線散乱法等を用いてゲルの構造解析が可能であること,ゲル化剤は階層的に 会合して繊維状構造を形成することがわかった。そこで,この各階層の会合状態のさらに詳 細に解析したい。例えば,今回見られている「弱い結晶性」についての考察,繊維状構造の 繊維径が「約 80 nm」でほとんど分布を持たずに一様になる機構,繊維状構造の末端の追 跡,ゲルが形成するのに要する「短い時間」で起こっている現象の詳細な理解,含溶媒のゲ ルとキセロゲルの相違点など,詰めていきたい。

④ <u>ゲルの物性評価について</u>

本検討では形成したゲルの、ゲル化能、ゲルの構造や形態、リチウムイオン電池への適用 について主眼をおいて実施した。その他のゲルの物性である、力学的特性、光学的特性、表

面特性,刺激応答性,などの基礎的な一般物性は得ていないので,それらも取得していきたい。 また,それによって新たな用途が見つけて提案したい。

 ① 電池製造に関して

現在実験室用の電池では特段の工夫はせずとも問題なく注液できているが、製造ライン でもトラブルなく注液するためには相応の検討が必要である。その方法は、電池メーカーが 有している既存の電池製造ラインをできるだけ改造しないで使用できる注液法であること が好ましい。具体的には、実ラインで余剰の電解液をほとんど加えずとも電極・セパレータ の空孔が確実に含侵される注液法を確立することである。

なお、本電解質に基づく安全向上効果はパウチ型セルで顕著であるため、パウチセルに限 定した注液検討を行うことでよいと考える。実験室では以下の(添付)の方法を検討した。 この方法を応用して製造ラインに適合するように検討したい。

⑥ <u>電池性能に関して</u>

本検討のゲル化剤は高電圧の充放電環境で効果を奏する可能性が示唆されたのでそれを 実証したい。正極への作用が示唆されているが、それは正極種によって違いが出る可能性も ある。従って、どのような正極種のどのような使用条件(電極密度、電圧、レート、温度等) で効果を奏するのかを明確にしたい。特に充放電の長期信頼性への寄与を、安全性の観点も 含めて判断する必要があると考えている。また、性能が悪くなる系や条件を懸念している。 そのような場合があるならばそれも見つけておきたい。

⑦ 安全性に関して

リチウムイオン電池の不安全状態は様々なモードがある。本研究では評価していない他 の安全性を評価したい。またゲル電解質以外の,他の安全機構と併用することでさらなる安 全性向上が見られるかを確認し,結果によっては「他の安全機構」と併用する提案を行いた い。

⑧ ゲルの用途に関して

本研究はリチウムイオン電池の電解液に焦点を絞った評価を行った。しかし, 潜在的には 他の電気化学デバイスへの応用も可能であるはずである。そこで, 他の電気化学デバイスへ の応用検討を具体的に行いたい。

低分子ゲル化剤を用いたゲルはその特性に基づいて様々な用途に用いられている。本研 究のゲル化剤,ゲルも電気化学デバイス以外の用途に適用できる可能性があると考えてい る。

以上

謝辞

本研究を実施し、本論文を仕上げるに当たり、多くの方々にご協力をいただきました。 関係の皆様に大変感謝いたします。

山口大学大学院創成化学研究科 准教授 岡本 浩明 博士 及び研究室の皆様 旭化成株式会社 研究・開発本部 リードエキスパート 植松 信之 博士, セパレータ 材料開発部長 石井 義行 博士 及び旧先端電池材料開発センターに在籍されていた皆様 に特に感謝いたします。

> 2018年9月 大橋 亜沙美