Heat capacity and X-ray scattering studies on phase transitions of Rb_2MoO_4

Hirotake Shigematsu^a, Shinya Kaneyasu^a, Atsuko Uchida^b, Hitoshi Kawaji^b,

Hironobu Kasano^c, and Hiroyuki Mashiyama^d

^aFaculty of Education, Yamaguchi University, Yamaguchi, Japan;

^bMaterials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Japan; ^cDepartment of Physics, Faculty of Science, Yamaguchi University, Yamaguchi, Japan;

dYamaguchi University, Yamaguchi, Japan

(Received 19 June 2016, Accepted 27 March 2017, Published online: 07 Sep 2017.)

ABSTRACT

The structural phase transitions of Rb₂MoO₄ have been reinvestigated using heat capacity measurement and X-ray scattering technique. In as-grown single crystals of Rb₂MoO₄, the crystal structure is a monoclinic one isomorphous to β -K₂MoO₄ (α -sequence) at room temperature. The α -sequence transforms into the β -sequence (isomorohius to β -K₂SO₄, space group *Pnam*) at a temperature range from 400 to 500 K. This α - β transition is reconstructive and depends on both temperature and time, especially with accompanying the temperaturedependent incubation time. In the β -sequence, an incommensurate phase characterized by wave vector $q_x = 1/3 \sim 2/5$ was observed below $T_3=223$ K.

Introduction

A lot of A₂BO₄-type dielectrics, for example, A₂SO₄, A₂CrO₄, A₂MnO₄, Rb₂SeO₄, Cs ₂SeO₄, Cs ₂SeO₄, Cs₂MoO₄, and Cs₂WO₄ (here A=K, Rb, and Cs), undergo a same type of successive phase transition (group I): these transform from the parent high-symmetry phase (phase I, space group P_{63}/mmc , α -K₂SO₄ type structure) to the orthorhombic phase (phase II, *Pnam*, β -K₂SO₄ type structure) at high temperature ($T_{I-II} = 700 \sim 1100$ K), and retain the orthorhombic system down to 0 K. In K₂SeO₄, with decreasing temperature, the crystal transforms from phase I to phase II, and to an incommensurate phase (phase III), which is followed by a ferroelectric phase (Phase IV, *Pna*2₁) [1]. Among these A₂BO₄-type dielectrics belonging to the group I, it has been believed that only K₂SeO₄ transforms into the incommensurate phase. It is suggested that the other oxides in group I have no transition below the phase II; that is, if the phase II structure became unstable, then it took place below 0 K [2–4].

On the other hand, another group in A₂BO₄-type dielectrics (group II), e.g. K₂MoO₄, K₂WO₄, Rb₂MoO₄, and Rb₂WO₄, take the monoclinic β -K₂MoO₄ type structure (space group *C*2/*m*) at room temperature and two typical first-order anomalies were observed above room temperature by differential scanning calorimetry (DSC) measurement [5]. Furthermore, in Rb₂MoO₄, the existence of polymorphous structures has been confirmed at room temperature

[6]. One of the polymorphous structures is the monoclinic β -K₂MoO₄ type one called as the α sequence and another is the orthorhombic β -K₂SO₄ type one called as the β -sequence. In the β sequence, a new λ -type anomaly similar to the normal-incommensurate (N-INC) phase transition in K₂SeO₄ was observed at T₃ = 223 K. According to an empirical rule about the relation between the lattice parameter ratios a_0/c_0 and the N-INC phase transition temperatures [6, 7], we can expect that the incommensurate phase should exist in the β sequence of Rb₂MoO₄. However, behavior of modulation in the incommensurate phase, the presence or absence of the lock-in transition, and mechanism of the transition between α - and β -sequences (α - β transition) have not yet been clarified definitely in Rb₂MoO₄ so far. In order to obtain additional information about structures and structural phase transitions in Rb₂MoO₄, we have performed heat capacity measurement and X-ray scattering experiments.

Experimental

Single crystals of Rb₂MoO₄ were grown by a slow evaporation method from a saturated ammonium solution of Rb₂CO₃ and MoO₃ at 310 K. As-grown samples have the monoclinic b-K₂MoO₄ type structures (space group C2/m) at room temperature. The existence of polymorphous structures has been confirmed. It is also confirmed that annealed samples, kept in air at 500 K for 4 hours, have the orthorhombic morphotype (β -K₂SO₄ type structure, space group *Pnam*). All obtained samples were colorless and transparent and showed strong deliquescence.

A heat capacity measurement was carried out using a heat capacity measurement module, Quantum Design PPMS, in the temperature range from 2 to 300 K; the sample weights were 4.02 mg for as-grown Rb₂MoO4. Above 300 K, differential scanning calorimetry (DSC) measurement was carried out on a SEIKO DSC220 with a heating rate of 5 Kmin⁻¹. X-ray powder diffraction measurements were performed using RIGAKU Smart Lab XRD spectrometer with Cu-K α radiation. Furthermore, the diffraction data for single crystals were collected using an automatic four-circle diffractometer (RIGAKU AFC-5R) with graphitemonochromated Mo-K α radiation. The temperature of the specimen was controlled within +-0.1 K using a cold nitrogen gas flow system.

Results and discussion

Figure 1 shows the molar heat capacity measured below room temperature in as-grown Rb₂MoO₄ (α -sequence) and annealed Rb₂MoO₄ (β -sequence). In as-grown Rb₂MoO₄, no anomalous change is detectable below room temperature (Fig. 1(a)). Furthermore, the X-ray diffraction pattern corresponds to the β -K₂MoO₄ type structure (space group *C*2/*m*) at room temperature and the pattern remains unchanged below room temperature (phase I_{α}).

On the other hand, in annealed Rb_2MoO_4 , the λ -type anomaly in the molar heat capacity is observable at $T_3 = 223$ K [7]. The X-ray diffraction pattern that corresponds to the β -K₂SO₄ type structure (space group *Pnam*) at room temperature (phase III_{β}).

Below T_3 (phase IV_β), a new incommensurate phase characterized by wave vector $q_x=1/3 \sim 2/5$

was observed by single-crystal X-ray diffraction technique. Figure 2 shows the integrated intensity I and the satellite position of the h32 superlattice reflection, where indices are referred to the normal phase III_{β}, on cooling. The temperature dependence of I can be fitted to the relation $I=A(T_3-T)^{2\beta}$ where A denotes the constant and the critical index β is estimated as 0.36. The modulation wave vector q_x is close to 1/3 at T_3 and changes monotonously approaching to 2/5, with decreasing temperature. The presence or absence of the lock-in transition was not able to confirm, because of the limit of the measurement temperature under a condition using a cold nitrogen gas flow system.

In the case of K₂SeO₄, the modulation wave number q_x changes from 0.31 to 0.33 in the incommensurate phase and it locks into the commensurate value 1/3; the phase is ferroelectric (space group *Pna*2₁). However, the behavior of the modulation wave number is different between K₂SeO₄ and Rb₂MoO₄; the wave number q_x approaches to 1/3 in the former, but to 2/5 in the latter. The crystal structure of the commensurate phase in Rb₂MoO₄ will probably be different from that of K₂SeO₄ if the lock-in transition exists in Rb₂MoO₄ [8].

Another interesting characteristic of Rb₂MoO₄ is that the α - β reconstructive transition takes place between polymorphous structures, which is described as follows. Figure 3(a) shows the temperature dependence of the integrated intensities of the Bragg reflections 312 in phase I_{α} of α -sequence and 111 in phase III_{β} of β -sequence for the as-grown Rb₂MoO₄ crystal with the average heating rate of 10 K/min. The intensities of the Bragg reflections of two polymorphous structures change gradually and coexist in a temperature range of about 100 K similarly.

The as-grown crystal was heated from room temperature with a speed of 10 K/min and the temperature was kept at 450 K. Then the integrated intensities of Bragg reflections changed with time. The time dependence is shown Fig. 3(b), in which the change of the integrated intensities is recorded with respect to the holding time. Thus the α - β reconstructive transition takes place with depending both on temperature and time. The time dependence at various temperatures of the Bragg reflections 312 in phase I_{α} of α -sequence is summarized in Fig. 4. The part of the Rb₂MoO₄ crystals, which has transformed from the I_{α} phase to the III_{β} phase once, maintained the structures of β -sequence.

However, these crystals suddenly returned to the previous β -K₂MoO₄ type structure (phase I_a) at room temperature frequently [6]. The variation of the total mass before and after the phase transition was not observed. From the results of our study, the newly established transition sequence of Rb₂MoO₄ is summarized in Fig. 5.

Funding

The present work was partly supported by the collaborative research project of Materials and Structures Laboratory, Tokyo Institute of Technology, and by a research grant from the Yamaguchi University Foundation.

References

- 1. M. Iizumi, J. D. Axe, G. Shirane, K. Shimaoka, Structural phase transition in K₂SeO₄. Phys. Rev. B **15**, 4392–4411 (1977).
- 2. I. Etxebarria, J. M. Perez-Mato, G. Madariaga, Lattice dynamics, structural stability, and phase transitions in incommensurate and commensurate A₂BX₄. Phys. Rev B **46**, 2764–2774 (1992).
- H. Shigematsu, Y. Akishige, H. Mashiyama, T.Tojo, H. Kawaji, T. Atake, T. Matsui, Heat Capacity, X-Ray scattering and neutron scattering studies in Rb₂SeO₄. J. Korean Phys. Soc. 46, 235 –238 (2005).
- 4. H. Shigematsu, Y. Akishige, T. Matsui, T. Tojo, H. Kawaji, T. Atake, Structures and Phase Transitions in (K_{1-x}Rb_x)₂SeO₄. J. Thermal Analysis and Calorimetry **81**, 555–558 (2005).
- 5. I. L. Yanchuk, A. Jorio, P. Saint-Gregoire, Thermodynamics of the incommensurate state in Rb₂WO₄: The Lifshitz point in A2BX4 compounds. Phys. Rev B **61**, 3147–3150 (2000).
- H. Shigematsu, K. Nomura, K. Nishiyama, T. Tojo, H. Kawaji, T. Atake, Y. Kawamura, T. Miyoshi, Y. Matsushita, M. Tanaka, H. Mashiyama, Structures and phase transitions in Rb₂MoO₄ and Rb₂WO₄. Ferroelectrics **414**, 195–200 (2011).
- H. Shigematsu, K. Nishiyama, Y. Kawamura, H. Mashiyama, Neutron and X-ray Scattering Studies of Rb₂CoCl₄ and Successive Phase Transition in A₂BX₄-type Crystals. J. Phys. Soc. Jpn. 83, 124601 (2014).
- 8. H. Mashiyama, H. Shigematsu, Phase transitions and the quantum effect in A₂BX₄-type ferroelectric crystals. Ferroelectrics **511**, 5–11 (2017).

Figure 1. Molar heat capacity measured in as-grown Rb_2MoO_4 (a) and annealed Rb_2MoO_4 (b).

Figure 2. The temperature dependence of the integrated intensity and the satellite position of the h32 superlattice reflection in phase IV_{β} for annealed Rb₂MoO₄.

Figure 3. The gradual structure transformation of Rb_2MoO_4 from the phase I_{α} of the α -sequence to the phase III_{β} of the β -sequence. (a) On heating 10 K/min, the integrated intensity of the Bragg reflections 31-2 (phase I_{α} of the α -sequence) decreases, while 111 (phase III_{β} of the β -sequence) increases gradually. (b) On keeping temperature at 450 K, the Bragg intensities of the phase I_{α} and III_{β} counterchange, where the maximum intensity is scaled by 100.

Figure 4. The time dependence of the integrated intensity of the Bragg reflection 312 in the phase I_{α} of the a-sequence for the as-grown Rb₂MoO₄ at 380, 400, 440, 445, and 455 K.

Figure 5. The revealed phase transition sequences of Rb₂MoO₄.