博士論文

ストロンチウムタンタレート光触媒の水分解特性に関する 構造化学的研究 ――放射光X線回折、中性子回折、高温紫外ラマン分光――

Structural Chemistry Study on Strontium Tantalate Photocatalysts for Their Water-Splitting Properties: Synchrotron X-ray Diffraction, Neutron Diffraction and High-Temperature Ultraviolet Raman Spectroscopy

平成30年3月

川西一平

山口大学大学院理工学研究科

本論文の要旨	
Abstract	
第1章 序論	5
1.1 はじめに	5
1.2 水分解光触媒の課題	
1.3 光触媒による水分解反応	
1.4 本研究で注目する光触媒 Sr ₂ Ta ₂ O ₇	7
1.5 本研究の目的と意義	9
参考文献	9
第2章 放射光X線回折および中性子回折のリートベルト法に	こよる結晶構造解析11
2.1 諸言	
2.1.1 目的	
2.1.2 A ₂ B ₂ O ₇ 層状ペロブスカイト構造の3つの型	
2.1.3 放射光X線回折の特徴	
2.1.4 中性子回折の特徴	14
2.1.5 第二高調波発生(SHG)	
2.2 実験方法	
2.2.1 試料の合成	
2.2.2 第二高調波(SH)測定	
2.2.3 放射光X線回折	
2.2.4 中性子回折	
2.2.5 リートベルト法による結晶構造解析	
2.3 結果と考察	
2.3.1 第二高調波(SH)測定の結果	
2.3.2 回折実験の結果:構造モデルの決定	
2.3.3 リートベルト法により得られた結晶構造	
2.3.4 リートベルト法により求めた結晶構造の妥当性の評	范価43
2.3.5 光触媒活性への結晶構造の影響	
2.4 結論(まとめ)	
参考文献	
第3章 高温紫外ラマン分光による化学結合の性質の評価	
3.1 諸言	
3.1.1 目的	
3.1.2 高温その場測定による化学結合の評価~isobaric mo	de Gruneisen parameter, $\gamma_{iP} \sim \dots 55$
3.1.3 紫外ラマン分光法の長所	
3.2 実驗方法	

目次

3.2.1 試料の)合成	
3.2.2 高温紫	ミ外ラマン分光	
3.3 結果		59
3.3.1 Sr ₂ Ta ₂	O7の高温その場測定	59
3.3.2 (Sr _{0.85} H	3a _{0.15}) ₂ Ta ₂ O ₇ の高温その場測定	65
3.3.3 Sr ₂ Nb ₂	O 7の高温その場測定	69
3.4 考察		74
3.5 結論(まと	:め)	75
参考文献		75
第4章 総合考察	ξ	77
参考文献		80
謝辞		
Appendix 第2章の)付録	83
A.1 A ₂ B ₂ O ₇ 層状	ペロブスカイト構造の I1型、I2型および II 型の単位格子の対応関係	
A.2 本論文で得	られた I ₂ 型の Sr ₂ Ta ₂ O ₇ 層状ペロブスカイト構造の特徴	
A.3 A ₂ B ₂ O ₇ 層状	ペロブスカイト構造の4種類の III 型の特徴	
参考文献		

本論文の要旨

本論文の要旨

エネルギーおよび環境問題を解決するために、化石燃料や原子力に頼らないエネルギーを創 成する仕組みを確立することが必要である。その仕組みの一つとして、光触媒の水分解反応に よる水素製造が注目されている。しかしながら、現在世の中にある水分解光触媒は、量子効率 が実用水準に達しておらず、さらなる高活性化への糸口をみつける必要がある。

紫外光照射下において NiO_xを担持した Sr₂Ta₂O₇は水分解活性の高い光触媒である。この光触 媒は Sr の一部を Ba に置換することによって水分解反応の活性が 2 倍程向上する一方、Ca に置 換すると活性が 2 分の 1 程度に低下する。しかしながら、このように活性が変化する要因は明 らかとなっていない。

Sr とイオン半径が異なる Ba もしくは Ca を置換することにより、ペロブスカイト構造中の TaO₆ 八面体の歪みや回転角が変化するなど、Sr₂Ta₂O₇ のバルクの結晶構造中になんらかの歪み が導入されると予想される。本論文では、このようなバルクの結晶構造中の歪みによって、光 触媒反応の活性を決定づける励起電子と正孔の再結合の確率や励起電子の移動度が変化すると 考え、歪みを制御することによって水分解活性を向上させることができるという指針を提案し た。その指針を実験的に立証するために、放射光 X 線回折および中性子回折による精密な結晶 構造解析と高温ラマン分光による化学結合の性質の評価を行った。

Sr₂Ta₂O₇、ならびに Sr を Ba および Ca に置換した Sr₂Ta₂O₇は、重原子である Sr、Ba、Ca お よび Ta のみならず、軽原子である O を含む複合系である。X 線は原子番号の大きい重原子に は高感度である一方、原子番号の小さい軽原子には感度が低い。そのため、セラミックスのよ うな重原子と軽原子が共存する系においては、粉末 X 線回折により結晶構造を決定することに 困難を伴うことが多々ある。本論文では、高強度で角度分解能が高い放射光 X 線を用いた粉末 回折実験を行い、格子定数および重原子である Sr、Ba、Ca および Ta の結晶構造パラメータを 精密に求めた。さらに、軽元素である O に対して感度が高い中性子も併用することで、O の結 晶構造パラメータも精密に求めることができた。

高温その場において、温度を変化させながらラマンスペクトルを測定することにより、物質 中の化学結合の強さを評価することができる。通常の可視レーザーを用いた場合、高温になる につれて熱輻射の影響が大きくなり、バックグラウンドが上昇し微弱なラマンスペクトルを検 出することが困難となる。この問題は、プランクの放射則に従い、熱輻射の強度が赤外側では 高い一方、紫外側では低いという性質を利用することによって、回避することができる。紫外 レーザーを用いると、熱輻射のバックグラウンドへの影響を小さくすることができ、超高温に おいても良質なラマンスペクトルの測定が可能となる。本論文では、紫外レーザーを用いるこ とにより熱輻射によるバックグラウンドの上昇を抑え、1773 K までの高温において良質なラマ ンスペクトルを観測することに成功した。 本論文は第1章から第4章で構成され、その内容は以下に示すとおりである。

第1章では、光触媒を用いた水分解反応による水素製造の原理、Sr₂Ta₂O₇の既往の研究、本 論文の目的と意義を述べた。

第2章では、放射光X線回折および中性子回折を用いたリートベルト法により行った結晶構造解析の結果を述べた。Sr₂Ta₂O₇のSrの一部をBaあるいはCaに置換することにより、TaO₆八面体内の歪みが増加し、TaO₆八面体内の双極子モーメントと結晶全体の自発分極が誘起された。結晶全体およびTa周辺の局所的な分極が増加すると、励起電子と正孔の再結合が抑制され、光触媒活性が増加すると考えられる。しかし、このことによりBa置換に伴う光触媒活性の向上と、Ca置換による光触媒活性の低下の違いを説明することはできない。TaO₆八面体中の歪みとTaO₆八面体の回転の両方の効果により、Ta-O-Ta結合角は変化しなかったのに対して、Ca置換の場合ではTa-O-Ta結合角が180°から大きく離れていることがわかった。Ta-O-Ta結合角の180°からの乖離は、伝導帯下部を構成する電子軌道であるTa5d-t₂gとO2p間の重なりが小さくなることを意味しており、このことにより光触媒活性を決定づける励起電子の移動度が減少したと考えられる。これらの結果により、光触媒活性を向上させるためには、Ta-O-Ta結合角を180°から大きく乖離させることなく、結晶構造中に分極を誘起することができる元素置換が有効に働くことが、実験的に明らかとなった。

第3章では、高温紫外ラマン分光の結果を述べた。高温でのその場観察を行うことにより、 各ラマンバンドを TaO₆/NbO₆ 八面体の内部結合と外部結合に帰属を行い、これらの各ラマンバ ンドの温度変化から化学結合の強さの違いを議論した。Sr₂Ta₂O₇ の類縁化合物である Sr₂Nb₂O₇ では、NbO₆ 八面体の Nb-O 内部結合は、外部結合と同程度に弱いことがわかった。この弱い Nb-O 結合は、NbO₆ 八面体を大きく歪ませ、NbO₆ 八面体の O の重心位置からの Nb の大きな静 的変位を誘発する。この静的変位は、NbO₆ 八面体の回転と同様に、Nb-O-Nb 結合角の 180° か らの乖離に寄与し励起電子の移動度を下げ、光触媒活性の低下を招く。一方、無置換および Ba 置換 Sr₂Ta₂O₇ の場合、TaO₆ 八面体の Ta-O 内部結合は外部結合に比べて強いことが明らかとな った。そのため Sr₂Ta₂O₇ は、Ba 置換により TaO₆ 八面体内に歪みが生じにくく、Ta-O-Ta 結合角 を 180° から大きく乖離させることなく結晶構造中に分極を生じさせることができる。これによ り、光触媒活性が高いことが示唆された。

第4章では、他の研究グループの光触媒活性に影響を及ぼすメカニズムに関する考察、ならびに第2章と第3章の両方の結果を踏まえ、光触媒活性を向上させるための指針を議論し、総括を述べた。

以上により本論文における回折実験とラマン分光実験のどちらの結果においても、助触媒 NiO_xを担持した Sr₂Ta₂O₇系光触媒の光触媒活性を向上させるためには、Ta-O-Ta 結合角を 180° から大きく解離させることなく、結晶構造中に分極を誘起させることができる元素置換が有効 であることが示された。このようにして本論文は、元素置換による結晶構造への歪みの導入に より、伝導帯下部を構成する電子軌道の重なりを制御し励起電子の移動度を低下させることな く、結晶中に分極を導入することによって励起電子と正孔の再結合を抑制し、光触媒活性を向 上させる方針を実験的に示している。この指針は可視光で応答する光触媒にも応用が可能であ るため、この分野に大きく貢献しうると期待される。

Abstract

Abstract

The establishment of energy systems is demanded without dependence on fossil fuel and nuclear power in order to solve energy and environmental problems. As a candidate of the systems, hydrogen production by photocatalytic water-splitting has received a lot of attention. However, the quantum efficiency of reported photocatalysts has not reached a practical level. Thus, a clue to achieve a further higher photocatalytic activity is required.

 $Sr_2Ta_2O_7$ with NiO_x cocatalyst is known as a photocatalyst, which has the high activity for overall water splitting under ultraviolet (UV) light irradiation. The activity increases about two times by Ba substitution for Sr in $Sr_2Ta_2O_7$, whereas it decreases to about one-half by Ca substitution. The mechanism of the changes in the activity has not been revealed. The larger-sized Ba or smaller-sized Ca substitution than Sr would introduce some distortions in the crystal structure of $Sr_2Ta_2O_7$, such as changes in the degree of distortions of TaO_6 octahedra and/or in the angle of the octahedral tilts. In this dissertation, based on the thought that these distortions in bulk of the $Sr_2Ta_2O_7$ photocatalyst would change mobility of photoexcited electrons and a probability of recombination between photoexcited electrons and holes, the author proposed a guideline for enhancement of the water-splitting activity by control of the distortions. For the purpose of a demonstration of the guideline, accurate crystal structural analysis of the photocatalysts was performed by synchrotron X-ray and neutron diffractions. Moreover, high-temperature UV Raman spectroscopy was performed for estimation of chemical bonds and vibrations of the photocatalysts.

Sr₂Ta₂O₇ and Ba- or Ca-substituted Sr₂Ta₂O₇ for Sr are complex systems consisting of heavy and light atoms. X-ray gives precise information on heavy atoms due to the larger number of electrons but not on light atoms with the smaller number of electrons. Since ceramic materials consist of both heavy and light atoms, the crystal structures are often difficult to be decided by powder X-ray diffraction. On the other hand, neutron diffraction data give useful information on O atom because the neutron scattering ability of O atom is relatively high compared with that of X-ray diffraction. Lattice parameters and structural parameters of heavy atoms such as Sr, Ba, Ca and Ta were accurately obtained by using high-intensity and high-resolution powder synchrotron X-ray data. In addition, structural parameters of O atom were accurately obtained by powder neutron diffraction data.

Strength of chemical bonds in the substances can be estimated by in-situ observation of the Raman spectra at high temperature. However, the measurable region of temperature is limited under conventional Raman spectroscopy using visible-region excitation. Weak Raman scattering from substances is difficult to be detected at high temperature in comparison with an intense continuous background due to thermal emission. In such a case, continuous-wave UV Raman spectroscopy is more suitable for measurement at high temperature, because UV excitation shifts the Raman scattering to a shorter wavelength away from the intense thermal emission. In this dissertation, high-temperature Raman spectra up to 1773 K were successfully observed by using UV laser to diminish the influence of thermal emission on the background intensity of the spectra.

This dissertation is divided into four chapters. The results in each chapter are summarized below.

Chapter 1 presents the principle of the photocatalytic reaction on $Sr_2Ta_2O_7$. The objective and significance of this dissertation are described.

Chapter 2 presented the results of crystal structural analysis by synchrotron X-ray and neutron diffractions. Partial Ba- or Ca-substitution for Sr in $Sr_2Ta_2O_7$ increases the distortions in TaO_6 octahedra and induces dipole moments in TaO_6 octahedra and the spontaneous polarization. The electronic field in whole crystal of $Sr_2Ta_2O_7$ (the spontaneous polarization) and/or the local electric field around Ta ions (the dipole moments) seemingly enhance the photocatalytic activity of NiO_x -supported $Sr_2Ta_2O_7$ due to the suppression effect on the recombination between photoexcited electrons and holes. However, this fact cannot explain the difference between an increase in the activity by the Ba substitution and a decrease in the activity by the Ca substitution. The bond angles of Ta-O-Ta are changed by the distortions in TaO_6 octahedra as well as the tilts of the octahedra. The Ba substitution does not change the bond angles of Ta-O-Ta from 180°. The deviation of the bond angles of Ta-O-Ta from 180°. The deviation of the bond angles of Ta-O-Ta from 180°. The deviation of the bond angles of Ta-O-Ta from 180°.

Chapter 3 presents the results of high-temperature UV Raman spectroscopy. Estimation of the strength of chemical bonds related to respective Raman bands was carried out by the in-situ observation at high temperatures, which enabled each Raman band to be assigned to vibrations of internal or external bonds of TaO_6/NbO_6 octahedra. For $Sr_2Nb_2O_7$, one of the related compounds of $Sr_2Ta_2O_7$, the strength of the internal Nb-O bonds was as weak as the external bonds. The weak Nb-O chemical bonds induce the large distortions of the NbO₆ octahedra and the static displacements of Nb ions from the gravity center of six O ions in the NbO₆ octahedra, which is as crucial as the static NbO₆ octahedral tiltings to decide a deviation of the Nb-O-Nb bond angles from 180° . The deviation leads to a decrease in electron migration and would decrease the photocatalytic performance. On the other hand, for unsubstituted and Ba-substituted $Sr_2Ta_2O_7$ for Sr, the strength of the internal Ta-O bonds in TaO₆ octahedra was estimated to be stronger than that of the external bonds. Due to the strong Ta-O chemical bonds, the dipole moments in the TaO₆ octahedra and the spontaneous polarization in the whole crystal lattice can be induced by the Ba substitution without a large deviation of the Ta-O-Ta bond angles from 180° , which enhances the photocatalytic performance.

In chapter 4, the results of this study were summarized and the ways to enhance the photocatalytic performance were discussed on the basis of both results in chapters 2 and 3.

As stated above, this dissertation experimentally demonstrated a guideline that enhances the photocatalytic water-splitting performance by inducing distortions in the bulk crystal structure of the photocatalyst by the elemental substitution. One of the important keys is suppression of recombination between photoexcited electrons and holes by introduction of electric fields into the crystal, without reduction of the electron migration by controlling a degree of overlap between electron orbitals composing the lower part of the conduction band. This guideline can be applied to visible-light responsive photocatalysts and is expected to contribute greatly to this field.

第1章 序論

1.1 はじめに

エネルギーおよび環境問題を解決するために、化石燃料や原子力に頼らない再生可 能エネルギーを創成する仕組みを確立することが必要である。私たち人類は産業革命 以来、石油、石炭、天然ガスなどの化石燃料や原子力など地球環境に優しくないエネ ルギーに頼って生活をしてきた。化石燃料は埋蔵量に限りがあるだけでなく、大気汚 染や地球温暖化などの環境破壊の原因となるという欠点がある。原子力発電は事故が 起こらないならば低コストで経済的であるが、万一事故が起きた場合、大気中に大量 の放射能物質および放射線を放出してしまう危険性がある。現代のエネルギー社会は このような問題を抱えているため、太陽光、水力、風力、波力、地熱を利用した発電 や水素製造が大きく注目を集めている。この中でも太陽光を利用した水素製造はエネ ルギー・環境問題に対する最も重要な解決策のひとつとみなされ、政府が一丸となり、 20年~50年のスパンで水素エネルギー社会を実現することを目指している。化学エ ネルギーである水素は電気を必要としないときには、気体あるいは液体状態として、 エネルギー量をほとんど減少させることなく貯蔵することができる。その結果、長距 離の運搬も容易であるという長所も有する。

1.2 水分解光触媒の課題

地球環境を考えた際、水素は化石燃料から作るのではなく、太陽光をはじめとした 再生可能エネルギーで製造することが求められる。光触媒という材料は、それを実現 する可能性を持っている。可視光応答型の光触媒は永久機関のようなもので、太陽光 と地球上に無尽蔵に存在する水さえあれば、水分解により水素を作り出すことができ る。そして光もしくは水の供給を止めると働かなくなるので、原子力発電のように暴 走することもない。まさに夢の技術である。こうして得た水素は、電気を得るために

5

燃やしても、電気の他に水と熱しか生じず、地球環境に優しい真にクリーンなエネル ギーであるといえる。しかしながら、可視光応答の光触媒の水素製造能は、紫外光応 答のそれに対し開発が遅れているのが現状である。Fig. 1.1 に示すように太陽光に紫 外光はほとんど含まれていないため、太陽光を利用した光触媒による水素製造を実用 化させるためには、可視光応答の光触媒のさらなる高活性化が必要である。それと同 時に、紫外光応答型光触媒のさらなる高活性化により、実用水準に到達させることが 極めて重要である。

Fig. 1.1 緯度 37°の地表における太陽光の標準放射スペクトル (ASTM Air Mass 1.5 G) [1] 。

1.3 光触媒による水分解反応

光触媒の水分解反応による水素製造は、次に示す①~③に沿って進行する。

- ① 光触媒粒子に光照射をすることで、励起電子(e⁻)と正孔(h⁺)を生成する。
- ② 粒子表面に向けて、励起電子と正孔が移動する。
- ③ 励起電子および正孔が粒子表面の水分子とそれぞれ還元反応および酸化反応を起こし、水素(H₂)と酸素(O₂)を生成する【水分解反応】。

①~③からわかるように、光触媒の水分解反応においては、励起電子と正孔が反応

の担い手となる。ただし、励起電子と正孔が水分子と反応することなく、再結合し消滅してしまうこともある。助触媒としては、NiやPtなどの金属および酸化物が良く使われ、近年では、Rh-Cr等の助触媒が提案されている(Fig. 1.2参照)。これらの助触媒は、励起電子を集め、正孔を寄せ付けない電荷分離(励起電子と正孔間の再結合の抑制)の効果を持つ。結果として助触媒上は、水素を生成する還元反応の反応場となり、酸化反応の反応場と区別される。

光触媒の活性を高めるためには、上記に示した助触媒の担持をはじめとする光触媒 表面の修飾だけでなく、光触媒のバルクの修飾も重要であると筆者は考える。本論文 は、光触媒のバルクについて着目した。

Fig. 1.2 助触媒を粒子表面に担持した光触媒の水分解反応の模式図。

1.4 本研究で注目する光触媒 Sr₂Ta₂O₇

NiO_x 助触媒を担持した $Sr_2Ta_2O_7$ は紫外光照射下において水分解に高活性な光触媒 であることが Kudo 氏ら[2]によって発見された。 $Sr_2Ta_2O_7$ の結晶構造は、Ishizawa 氏 ら[3]の単結晶 X線回折により調査されており、室温において空間群は *Cmcm* であり、 Fig. 1.3 に示すように、 TaO_6 八面体が頂点を共有して連なり TaO_6 八面体同士の間隙に Sr が占有するペロブスカイト層と TaO_6 八面体が欠損して Sr のみが存在する TaO_6 八 面体欠損層が積層した層状ペロブスカイト構造であることがわかっている。一方で、 Yamamoto 氏ら[4]は電子回折による研究をおこない、この物質の室温における空間群 は *P2*₁/*m* であると報告しているが、彼らは原子座標などの結晶構造パラメータは報告 していない。

Kudo 氏ら[2]は固相反応法により合成したこの物質の光触媒活性を報告していた が、Yoshino 氏ら[5]はこの物質を錯体重合法により合成することで、光触媒活性が 3.5 倍程向上することを報告している。本研究室のグループである Kozu 氏ら[6]も錯体重 合法を合成法として採用したが、この物質の Sr の一部を同族のアルカリ土類金属で ありイオンサイズの大きい Ba に置換することで、光触媒活性がさらに 2 倍ほど向上 すると報告した。一方、Sr の一部をイオンサイズの小さい Ca に置換した場合には光 触媒活性が 2 分の 1 ほどに低下することも本研究室のグループによりわかっている。 しかし、このように Sr を Ba あるいは Ca に置換することによって光触媒活性が変化 する要因は明らかとなっていない。

Fig. 1.3 層状ペロブスカイト構造を有する Sr₂Ta₂O₇の結晶構造の模式図。

1.5 本研究の目的と意義

Sr₂Ta₂O₇のSrの一部をBaもしくはCaに置換すると、ペロブスカイト層中のTaO₆ 八面体の歪みや回転角が変化するなど、光触媒のバルクの結晶構造中になんらかの歪 みが導入されると予想される。本論文では、このようなバルクの結晶構造中の歪みに よって、光触媒反応の活性を決定づける励起電子と正孔の再結合の確率や励起電子の 移動度が変化すると考え、歪みを制御することによって水分解活性を向上させること ができるという指針を提案する。本論文では、この指針を実験的に立証するために、 放射光X線回折および中性子回折による精密な結晶構造解析と高温ラマン分光によ る化学結合の評価を行う。

計算科学による研究では、計算結果を実験から得られたデータと照合し、つじつま が合うかどうか検証する必要がある。したがって、本論文のような精密に得られた結 晶構造の蓄積は、計算科学の研究の発展にも寄与し、計算科学による光触媒の研究を 加速させていくだろう。また、さらに重要なこととして、この論文で立証しようと試 みている指針は、可視光で応答する光触媒にも応用することができる可能性があると いうことである。本論文で、光触媒のバルクの構造を制御して、励起電子と正孔の再 結合確率および移動度を高めることにより水分解活性を向上させる指針を立証する ことは、太陽光を利用した地球環境に優しい真にクリーンな水素エネルギー社会の実 現のために役立つと期待される。

参考文献

- [1] Electricity, Resources & Building Systems Integration Center, National Renewable Energy Laboratory, U. S. Dept. of Energy (DOE), Solar Resource Data, ASTM G-173 Air Mass 1.5, http://rredc.nrel.gov/solar/spectra/am1.5/
- [2] A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B, 104 [3], 571-75 (2000); H. Kato and A. Kudo, J. Photoch. Photobio. A, 145 [1-2], 129-33 (2001)

- [3] N. Ishizawa, F. Marumo, T. Kawamura, M. Kimura, Acta Cryst. B32 [9], 2564-66 (1976)
- [4] N. Yamamoto, K. Yagi, G. Honjyo, M. Kimura, T. Kawamura, J. Phys. Soc. Jpn., 48 [1], 185-91 (1980)
- [5] M. Yoshino, M. Kakihana, W. S. Cho, H. Kato, A. Kudo, *Chem. Mater.* 14 [8], 3369-76 (2002)
- [6] A. Kozu, H. Fujimori, K. Kim, K. Oshiro, S. Yamamoto, Y. Sakata, H. Imamura, *Mater. Sci. Forum*, **534-536**, 1481-84 (2007)

第2章 放射光×線回折および中性子回折のリートベルト法による結晶構造解析

2.1 諸言

2.1.1 目的

第1章で述べたように、NiO_xを担持した Sr₂Ta₂O₇の Sr の一部を同族でイオンサイズの大きい Ba に置換すると光触媒活性が向上する一方、同族でイオンサイズの小さい Ca に置換すると光触媒活性が低下することがわかっている。しかし、このように特性が変化する要因は未だ明らかになっていない。

本論文では、結晶構造中の歪みによって、光触媒反応の活性を決定づける励起電子 と正孔の再結合の確率や励起電子の移動度が変化すると考え、歪みを制御することに よって水分解活性を向上させることができるという指針を提案する。この指針が有効 であることを立証するために、本章では、Sr₂Ta₂O₇、Ba 置換 Sr₂Ta₂O₇ である (Sr_{0.90}Ba_{0.10})₂Ta₂O₇[以下、Ba10]および、(Sr_{0.85}Ba_{0.15})₂Ta₂O₇[以下、Ba15]、また、Ca 置 換 Sr₂Ta₂O₇ である(Sr_{0.40}Ca_{0.60})₂Ta₂O₇[以下、Ca60]に対して、放射光X線回折および中 性子回折を用いたリートベルト法による結晶構造解析を行い、結晶構造中の歪みが光 触媒活性に及ぼす影響を議論する。

2.1.2 A2B2O7 層状ペロブスカイト構造の3つの型

リートベルト法による結晶構造解析を行うためには、結晶構造モデルを仮定する 必要がある。Ba10、Ba15 および Ca60 の結晶構造は報告されていないが、これらの結 晶構造は、既報の *A*₂*B*₂O₇ 層状ペロブスカイト構造のいずれかに該当する可能性が高 いと考えられる。Fig. 2.1 に示されるように、*A*₂*B*₂O₇ 層状ペロブスカイト構造は大き く分けて I 型、II 型および III 型の 3 つの型に分類することができる。I 型は *B*O₆ 八面 体の回転がなく、対称中心がある構造モデルである一方、II 型および III 型は *B*O₆ 八 第2章 放射光X線回折および中性子回折のリートベルト法による結晶構造解析 面体の回転があり、対称中心がない構造モデルである。II型では一つの軸周りに関し て BO₆ 八面体の回転があるのに対して、III型では 2 つの軸周りに BO₆ 八面体の回転 が見られる。また、III型では、BO₆ 八面体の回転の影響を受け、Fig. 2.1 の矢印で示 されるような A カチオンの互い違いの微小変位がある。I型には、Sr₂Ta₂O₇ に対して Ishizawa 氏ら[1]が報告した空間群 Cmcm、Z = 4 (Z は単位格子中に含まれる化学式 $A_2B_2O_7$ 単位の数)である I₁型と、Yamamoto 氏ら[2]が報告した空間群 P2₁/m、Z = 4 である I₂型の 2 種類のモデルが考えられる。I₂型については、原子座標までは報告さ れていない。II 型には空間群 Cmc2₁、Z = 4 の 1 種類のモデルがある。III 型には、BO₆ 八面体の回転や A カチオンの微小変位の仕方によって、III₁型、III₂型および III₄型の 4 種類がある (詳細は Appendix A.2 を参照)。III₁型は La₂Ti₂O₇[3]で報告され ている空間群 P2₁(Z = 4)、III₂型は Ca₂Nb₂O₇[4]で報告されている空間群 Pna2₁(Z = 8)、 III₃型は Sr₂Nb₂O₇[5]で報告されている空間群 Pna2₁(Z = 8)、また、III₄型は Nd₂Ti₂O₇[6] で報告されている空間群 P2₁(Z = 8)の構造モデルである。

Fig. 2.1 A₂B₂O₇ 層状ペロブスカイト構造の3つの型。Z は単位格子中に含まれる 化学式 A₂B₂O₇ 単位の数を表す。

2.1.3 放射光×線回折の特徴

本論文では放射光X線回折により、精密な構造解析を行う。放射光X線回折の特徴 を実験室系におけるX線回折と比較して以下に示す[7]。

- (i) 放射光は連続X線源であるので、モノクロメータを用いて単一の波長のX 線を取り出して粉末X線回折測定を行うことが出来る。その結果、実験室 系の粉末X線回折データにおいて見られるK_{a1}とK_{a2}ビームによるプロファ イルの分裂がなく、より質の高いデータを収集することができる。
- (ii) 強度と平行度が高いので角度分解能を上げることができる。
- (iii) 強度が高いので係数統計を上げ、測定時間を短くすることができる。
- (iv) 平行度が高いので、θを固定して複数の検出器で 2θ をスキャンすることに よりデータを収集することができる。高温や高圧などの試料特殊環境装置 の設計が容易である。
- (v) 強度と輝度が高いので、ビームの大きさを小さくしたデバイ・シェラー光
 学系や微小領域の測定が容易である。また、強度と輝度が高いことを生か
 すと高温や高圧など試料特殊環境での測定が容易である。
- (vi) 試料からの蛍光X線をできるだけ減らすように波長を選択できる。
- (vii) 短波長のX線を用いることにより、格子面間隔 d の小さな反射を測定し、 X線の吸収を減らすことができる。これは電子密度解析など精密構造解析 において利点となる。
- (viii) 短いパルス光の繰り返しであることを生かして数十ピコ秒の時間分解測定 を行うことができる。

このように放射光X線回折は精密な結晶構造解析を行う上で、非常に有用な特徴を持っている。しかしながら、放射光とはいえX線である以上、原子番号の小さい軽原子

第2章 放射光X線回折および中性子回折のリートベルト法による結晶構造解析 に対して感度が低いという欠点はぬぐえない。本論文で扱う光触媒粉末は重原子と軽 原子の複合系であるため、放射光X線回折だけでは、十分に精密な構造解析を行うこ とは難しい。

2.1.4 中性子回折の特徴

Fig. 2.2 に示すように、X線回折では原子番号が大きい原子になるにしたがって散 乱強度が高くなるが、中性子回折では散乱強度は原子番号の順番に依らない。したが って、セラミックスのような重原子と軽原子が共存する系においては、X線回折だけ でなく中性子回折、ときにはNMR やラマン散乱も併用して構造解析を行う必要があ る。

 Fig. 2.2
 X線回折、中性子回折、NMR、ラマン散乱における重

 原子(Fe およびZr)と軽原子(H およびO)の感度

 の比較。

2.1.5 第二高調波発生(SHG)

第二高調波(SH)は対称中心のない結晶に光をあてた際に生じる光で、入射光の 波長の1/2の波長の光である。したがって、結晶の対称中心の有無を調べる際に重 宝する。X線回折ではX線の分散効果のためにフリーデル対、すなわち $hkl \ge \bar{h} \ \bar{k} \ \bar{l}$ の結晶構造因子の大きさである $|F(hkl)|\ge |F(\bar{h} \ \bar{k} \ \bar{l})|$ に差が生じる[7]。しかし、粉末の 回折実験においてはこのフリーデル対を見分けることは難しい。したがって本論文で は、SH 測定を用いることで、中心対称性を持つか否か判断をすることにした。

2.2 実験方法

2.2.1 試料の合成

Sr₂Ta₂O₇、Ba10、Ba15 および Ca60 の粉末試料は、全て光触媒活性を測定した試料 と同様に錯体重合法により合成したものを使用した。錯体重合法で合成した試料は固 相反応法で合成したものに比べ、組成が均一で粒径が揃った細かい微粒子である[8]。 したがって、選択配向や粗大粒子の影響を受けにくく、粉末の回折測定に有利である という利点もある。

2.2.2 第二高調波(SH)測定

SH 測定は、Kurtz 氏と Perry 氏の粉末法[9]によって測定した。本論文で用いた SH 測定の光学系を Fig. 2.3 に示す。粉末試料は 2 枚の透明なスライドガラスで密に挟み 込んだ。SH シグナルはフェムト秒パルスレーザービームを粉末試料に当てて発生さ せた。モードロック Ti:サファイアレーザー(wave length ~800 nm, repetition rate ~82 MHz, pulse width ~80 fs, Tsunami, Spectra-Physics, Newport Corporation, USA)からなる 光源は CW YAG レーザー(wave length 532 nm, Millennia, Spectra-Physics, Newport Corporation, USA)によって励起した。SH の強度は入射光の強度の 2 乗に比例するた め、レーザー光をレンズなどで集光すると、観測される SH 強度は大きくなる。した がって、ビームは石英レンズ (L1, f= 100 mm)で試料表面に直径約 0.1 mm のスポッ 第2章 放射光X線回折および中性子回折のリートベルト法による結晶構造解析 トまで絞った。入射光基本波長(~800 nm)の散乱光を含む SH シグナルは、試料の 対角線上の前に置かれた石英レンズ(L2, f = 100 mm)によって収集した。入射光基 本波長(~800 nm)の光を SH シグナル(~400 nm)から除くために、色ガラスフィル タ(transmission from near-infrared to blue light, V-44, Toshiba glass Co. Ltd., Japan)を使 用した。SH シグナルは光ファイバープローブ(Hamamatsu Photonics K. K., Japan)に よって集光し、分光器(Imaging Spectrograph 250is, Chromex Inc., USA)で分光し、CCD 検出器(M6296-01, Hamamatsu Photonics K. K., Japan)により検出した。露光時間 30 s (Sr₂Ta₂O₇、Ba10 および Ba15)もしくは 2 s(Ca60)で、それぞれ積算 2 回の SH 測 定を行った後、シャッターを閉めた状態で、30 s(Sr₂Ta₂O₇、Ba10 および Ba15)もし くは 2 s(Ca60)で、それぞれ積算 2 回のバックグラウンド測定を行った。

Fig. 2.3 SH 測定の光学系。

2.2.3 放射光X線回折

放射光X線回折で用いる試料は、通常の実験室系の粉末X線回折装置(RINT2200TS, Rigaku Corporation, Japan)を用いて2θを固定し、θ軸をスキャンするロッキングカー ブを測定し、粗大な結晶粒がないことを確認した。また、ブラッグ回折のピークの半 値幅が大きくなりすぎていないことから粒子が細かすぎないことも確認した。放射光 第2章 放射光X線回折および中性子回折のリートベルト法による結晶構造解析 X線回折測定は、高エネルギー加速器研究機構(茨城県、つくば市)の Photon Factory の BL-4B₂に設置されている高分解能の多連装粉末X線回折装置で行った。測定条件 を Table 2.1 に示す。この装置は 6 本の検出器を備えており、それらを同時に走査す ることで測定時間を約1/5 に短縮することができる。通常の実験室粉末X線回折装 置では θ-20 スキャン (対称回折法)により回折パターンを得るが、この装置ではX 線の入射角を θ=α=7°で固定し、6 本の検出器を用いて α-20 スキャン (非対称回折 法)により回折パターンを得る。平板試料を用いた反射法により測定することができ るので、ガラスキャピラリーを用いた透過法に比べてバックグラウンドの低い回折デ ータを得ることができる。通常、反射法による測定では、透過法による測定に比べて 選択配向と粗大粒子の影響を受けやすいという欠点があるが、この装置ではさらに、 平板試料を回転させながら測定することができ、これにより選択配向と粗大粒子の影響を抑えることができる。さらに言えば今回の測定試料に関しては、錯体重合法によ り試料を合成したので、粒径は揃っていると考えられ、粗大粒子の心配は少ない。

6本の検出器を用いた非対称回折法によって測定したデータは、虎谷氏作成のプ ログラム DATAPRO を用いることで、入射ビームの強度を考慮して接合を行い、接合 後の強度データ $y^*(2\theta) e^y(2\theta) = \frac{1}{2} \left[1 + \frac{\sin \alpha}{\sin(2\theta - \alpha)} \right] \cdot y^*(2\theta)$ により対称回折法の場合と同 等の回折強度データ $y(2\theta)$ に変換した[10]。

試料	Sr ₂ Ta ₂ O ₇	Ba10	Ba15	Ca60
モノクロメータ	Si (111) 2 結晶分光器			
X線波長	1.197487(4) Å			
走査 2θ 範囲	7° ~ 155°			
試料容器	平板容器を使用、30 rpm で水平に回転させながら測定			
測定温度	室温			

Table 2.1 放射光 X線回折測定の条件

2.2.4 中性子回折

中性子回折は、放射光X線回折測定で使用した試料と同じものを用いて行った。回 折実験は、日本原子力研究開発機構(茨城県、東海村)のJRR-3MのBL-T1-3に設置 されている多連装粉末中性子回折装置 HERMES で行った。HERMES は異方性の原子 変位パラメータを精密化できるほどの分解能は持たないといわれているが、X線回折 で散乱強度の低い軽元素の原子座標と等方性原子変位パラメータを決めるのに有用 である。測定条件を Table 2.2 に示す。

試料	Sr ₂ Ta ₂ O ₇	Ba10	Ba15	Ca60
モノクロメータ	Ge(331) 5枚 固定ベント			
モノクロメータ角	90°			
モノクロメータ高さ	10 cm			
ガイド管ビーム幅	2 cm			
中性子波長	1.8265(1) Å 1.8204(5) Å			
走査 2θ 範囲	7° ~157° 3° ~157°		3° ~ 154°	
試料容器:	0.5 am	0.5 am	0.405 am	0.6075 am
V セルの半径	0.5 cm	0.5 cm	0.493 cm	0.0073 cm
測定温度	室温			

Table 2.2 中性子回折測定の条件

2.2.5 リートベルト法による結晶構造解析

リートベルト解析は、泉氏が作成したリートベルト解析プログラム RIETAN-FP[11] を用いて行った。

Fig. 2.4 に示す流れで解析を行った。X線は重元素の感度が高いのに対して軽元素 の感度は低い。また、中性子は散乱能が電子数に依存せず、軽元素の感度も比較的高 い。これらを考慮して、本論文では、放射光X線回折のリートベルト解析と中性子回 折のリートベルト解析を交互におこなうことによって、より正確な構造を求めるよう 努めた。放射光X線回折のリートベルト解析においては、重元素である Sr、Ba、Ca および Ta の構造パラメータを精密化することを目的とし、中性子回折のリートベル ト解析においては軽元素である O の構造パラメータを精密化することを目的として 解析を行った。Ba および Ca は Sr サイトに占有すると仮定し、Ba および Ca の原子 座標および原子変位パラメータ(温度因子)は Sr と等しいと仮定した。Ba および Ca の占有率は、合成時の仕込み組成が保たれていると仮定し、Sr サイトに空孔が生 じない条件で解析を行った。

2.2.5.1 放射光 X 線回折のリートベルト解析

原子散乱因子に影響を及ぼす各化学種の酸化状態は、 Sr^{2+} , Ba^{2+} , Ta^{5+} , O'として解析 を行った。対称中心を持たない空間群に属する物質のX線回折データでは、X線分散 効果のためにフリーデル対である $h k l \ge h \bar{k} \bar{l}$ の結晶構造因子の大きさ $|F(h_K)|$ に差 が生じる。重原子を含む物質では特に両者の差が大きくなる。リートベルト解析プロ グラム RIETAN-FP では、このような空間群の場合、フリーデル対の結晶構造因子 $F(h_K)$ を別々に計算し多重度 m_K を2 で割って計算することで $|F(h_K)|$ の確度を高める 手法を用いることが出来る。従って、そのフリーデル対を生成して $|F(h_K)|$ の確度を 高める手法を、対称中心を持たない空間群で解析をする際には使用した。その上で必 要となるX線分散補正を行うために、放射光X線の使用波長である 1.197487 Åにお ける各元素の原子散乱因子の異常分散項の実数部 f_j と虚部 f_j "を計算して用いた。 Sasaki 氏の表[12]に載っている異常分散項の値を多項式フィッティングして、放射光 X線の使用波長である 1.197487 Åにおける各原子の原子散乱因子の異常分散項の実 数部 f_j と虚部 f_j "を計算した結果を Table 2.3 に示す。

j	f_j^{r}	f_j "
Sr	-0.881	1.162
Ba	-0.383	5.593
Ca	0.348	0.818
Та	-9.195	9.487
Ο	0.029	0.019

Table 2.3 X線の波長 λ = 1.197487 Åにおける原子 j のX線散乱因子の異常分散項 f[']iおよび f[']jの値。

2.2.5.2 中性子回折のリートベルト解析

中性子回折のリートベルト解析では、放射光 X 線回折のリートベルト解析で求め た格子定数を使用した。また、各 Sr サイトの Ba および Ca 占有率に関しても放射光 X線回折で決定した値を使用して解析を行った。

2.3 結果と考察

2.3.1 第二高調波(SH)測定の結果

SH 測定の結果を Fig. 2.5 に示す。約 800 nm の波長のレーザーを試料に入射させた ため、400 nm 付近に SH シグナルが観測されれば、その試料は中心対称を持たない物 質であると判断することができる。無置換の Sr₂Ta₂O₇は SH シグナルを生じていない ため、中心対称を持つ物質であることがわかった。また、それ以外の Sr を Ba あるい は Ca に置換した Ba10、Ba15 および Ca60 は SH シグナルを生じており、中心対称を 持たない物質であることがわかった。

Fig. 2.5 800 nm のレーザー照射で行った SH 測定の結果。Ca60 に関しては括弧 書きで尺度因子を示す。分光器由来のバックグラウンド強度を差し引い て表示している。

2.3.2 回折実験の結果:構造モデルの決定

得られた放射光X線回折パターンおよび中性子回折パターンをそれぞれ Fig. 2.6 お よび Fig. 2.7 に示す。 $A_2B_2O_7$ 型層状ペロブスカイト構造には、2.1.2 項で述べた 6 種類 のモデルが存在する。2.3.1 項の SHG の結果より、 $Sr_2Ta_2O_7$ の構造モデルの候補は、 対称中心のある I₁型もしくは I₂型に絞ることができる。一方、Ba10、Ba15 および Ca60 の構造モデルの候補は、II 型、III₁型、III₂型、III₃型および III₄型となった。放射光 X線回折パターンおよび中性子回折パターンを精査した結果、 $Sr_2Ta_2O_7$ は空間群 $P2_1/m, Z = 4$ (I₂型)、それ以外の Ba10、Ba15 および Ca60 は空間群 $P2_1, Z = 4$ (III₁型) の $A_2B_2O_7$ 型層状ペロブスカイト構造を有することがわかった。Ba15 に関しては、ご く微量の($Sr_{1-x}Ba_x$)₅Ta₄O₁₅ が含まれていた。構造モデルの絞り込みに寄与した 2 θ 範囲 の回折パターンを Fig. 2.8~Fig. 2.15 に示す。

Ba10、Ba15 および Ca60 のリートベルト解析における初期構造モデルとしては、空間群 $P2_1, Z = 4$ (III₁型)の Ca₂Nb₂O₇[13]を Unique axis b ($\alpha = \gamma = 90^\circ, \beta \neq 90^\circ$)とした ものを用いた (Fig. 2.16 参照)。また、Sr₂Ta₂O₇は空間群 $P2_1/m, Z = 4$ (I₂型)である ことがわかったが、各サイトの原子座標や原子変位パラメータの情報が報告されてい ない。本論文では、空間群が $P2_1$ である Ca₂Nb₂O₇[13]の結晶構造を参考にして、 $P2_1$ に鏡面 (m)が追加された空間群 $P2_1/m$ (Unique axis $b, \alpha = \gamma = 90^\circ, \beta \neq 90^\circ$)の I₂型の 初期構造モデルを作成して (Fig. 2.16 参照) リートベルト解析を行った。

Fig. 2.6 Sr₂Ta₂O₇、Ba10、Ba15 および Ca60 の放射光粉末 X 線回折パターン。

Fig. 2.7 Sr₂Ta₂O₇、Ba10、Ba15 および Ca60 の粉末中性子回折パターン。

Fig. 2.8 Sr₂Ta₂O₇の放射光粉末 X 線回折パターンのうち、構造モデルの絞り込みに寄与した 2 θ範囲の回折パターン。回折パターンは、空間群 P2₁/m, Z = 4 (l₂型)で指数付けしている。短冊は空間群 P2₁/m, Z = 4 (l₂型)におけるブラッグ反射の位置を示す。矢印は、空間群 Cmcm, Z = 4 (l₁型)では回折が起こらない反射の位置を示す。

Fig. 2.9 Sr₂Ta₂O₇の粉末中性子回折パターンのうち、構造モデルの絞り込みに寄与した20範囲の回折パターン。回折パターンは、空間群 P2₁/m, Z = 4 (l₂型)で指数付けしている。短冊は空間群 P2₁/m, Z = 4 (l₂型)におけるブラッグ反射の位置を示す。実線の矢印は、空間群 Cmcm, Z = 4 (l₁型)では回折が起こらない反射の位置を示す。

Fig. 2.10 Ba10の放射光粉末 X 線回折パターンのうち、構造モデルの絞り込みに寄与 した 2 θ 範囲の回折パターン。回折パターンは、空間群 P2₁, Z = 4 (III₁型)で指 数付けしている。短冊は III₁型におけるブラッグ反射の位置を示す。普通の矢 印は II 型では説明ができないピークを示す。先端が二重の矢印は、III₁型か III₄ 型でしか説明できないピーク位置を示す。点線矢印は、III₂、III₃、あるいは III₄ 型の場合に現れるピーク位置であるが、観測されなかった。

Fig. 2.11 Ba10 の粉末中性子回折パターンのうち、構造モデルの絞り込みに寄与した 20範囲の回折パターン。回折パターンは、空間群 P21, Z=4 (Ⅲ1型)で指数 付けしている。短冊はⅢ1型におけるブラッグ反射の位置を示す。実線の矢 印は、空間群 Cmc21, Z=4 (Ⅱ型)では回折が起こらない反射の位置を示す。

Fig. 2.12 Ba15の放射光粉末X線回折パターンのうち、構造モデルの絞り込みに寄与した20範囲の回折パターン。回折パターンは、空間群 P21, Z=4(III1型)で指数付けしている。上段の長い短冊はII1型におけるブラッグ反射の位置を示し、下段の短い短冊は(Sr1-xBax)5Ta4O15(空間群 P-3m1)のブラッグ反射の位置を示す。普通の矢印はII型では説明ができないピークを示す。先端が二重の矢印は、III1型かIII4型でしか説明できないピーク位置を示す。点線矢印は、III2、III3、あるいはIII4型の場合に現れるピーク位置を示すが、観測されなかったと考えている。その理由は、*のシンボルで示す(Sr1-xBax)5Ta4O15(空間群 P-3m1)のピーク位置と重なっていると思われるからである。

Fig. 2.13 Ba15の粉末中性子回折パターンのうち、構造モデルの絞り込みに寄与した 20範囲の回折パターン。回折パターンは、空間群 P21, Z=4 (Ⅲ1型)で指数 付けしている。上段の長い短冊はⅢ1型におけるブラッグ反射の位置を示し、 下段の短い短冊は(Sr1-xBax)5Ta4O15(空間群 P-3m1)のブラッグ反射の位置 を示す。実線の矢印は、空間群 Cmc21, Z=4(Ⅱ型)では回折が起こらない 位置を示す。*のシンボルは、(Sr1-xBax)5Ta4O15(空間群 P-3m1)のピーク位 置を示す。

Fig. 2.14 Ca60の放射光粉末 X 線回折パターンのうち、構造モデルの絞り込みに寄 与した 2 θ 範囲の回折パターン。回折パターンは、空間群 P2₁, Z = 4 (III₁型) で指数付けしている。短冊は III₁型におけるブラッグ反射の位置を示す。普 通の矢印は II 型では説明ができないピークを示す。ここでは II 型かどうか 判定できなかったが、Fig. 2.15 の中性子回折の結果から II 型ではないと判 断した。先端が二重の矢印は、III₁型か III₄型でしか説明できないピーク位 置を示す。点線矢印は、III₂、III₃、あるいは III₄型の場合に現れるピーク位 置であるが、観測されなかった。

Fig. 2.15 Ca60 の粉末中性子回折パターンのうち、構造モデルの絞り込みに寄与し た2θ範囲の回折パターン。回折パターンは、空間群 P2₁, Z = 4 (III₁型)で指 数付けしている。短冊は III₁型におけるブラッグ反射の位置を示す。実線の 矢印は、II 型では回折が起こらない 2θ 位置を示す。

Fig. 2.16 リートベルト法による結晶構造解析で仮定した初期構造モデル。

2.3.3 リートベルト法により得られた結晶構造

SHG の結果ならびに放射光X線回折および中性子回折の回折パターンを精査した 結果より、Sr₂Ta₂O₇は空間群 P2₁/m, Z=4(I₂型)、それ以外の Ba10、Ba15 および Ca60 は空間群 $P2_1, Z = 4$ (III₁型)の $A_2B_2O_7$ 型層状ペロブスカイト構造を有することがわ かった。放射光X線回折および中性子回折を用いたリートベルト解析の結果を Table 2.4 にまとめる。また、放射光X線回折および中性子回折を用いたリートベルト解析 によって最終的に得られた結晶構造を Fig. 2.17 に図示する。Sr₂Ta₂O₇は TaO₆ 八面体 が回転していないが、Ca60 は c 軸周りおよび b-c 面内 (a^* 軸周り) で TaO₆ 八面体が 大きく回転している様子が見て取れる。また、Balo と Bal5 も TaO₆ 八面体がわずか に回転しているように見える。Fig. 2.18 に結晶構造から実際に計算した c 軸周りおよ び *b-c* 面内(*a*^{*}軸周り)の TaO₆ 八面体の回転角を示す。Ba10 および Ba15 では TaO₆ 八面体はc軸周りおよびb-c面内(a^* 軸周り)において1~2°程度回転し、Ca60では TaO_6 八面体は c 軸周りおよび b-c 面内 (a^* 軸周り)において $6 \sim 8^\circ$ 程度と大きく回転 していた。また、Fig. 2.19 にペロブスカイト層の内側 Sr サイトおよび外側 Sr サイト における Ba および Ca の占有率を示す。Ba10 および Ba15 において、Ba はペロブス カイト層の内側 Sr サイトよりも外側 Sr サイトの占有率が高い。Ba は Sr よりもイオ ン半径が大きいため、Baはこのように空間の広いペロブスカイト層の外側 Sr サイト に優先的に占有するのだと考えられる。一方 Ca60 では、ペロブスカイト層の外側お よび内側 Sr サイトの Ca 占有率はほぼ等しいことがわかる。これは、Ca は Sr に比べ イオンサイズが小さいため、空間が広くない内側 Sr サイトにも容易に占有すること ができるためであると考えられる。イオンサイズの小さい Ca は占有サイトを選り好 みせず、ペロブスカイト層の内側および外側 Sr サイトの両方に均一に占有しやすい ことがわかった。

サンプル名	$Sr_2Ta_2O_7$	Bal0
目の数	1 (単相)	1 (単相)
化学式	$Sr_2Ta_2O_7$	$(Sr_{0.9}Ba_{0.1})_2Ta_2O_7$
化学式量	649.1315	659.073
结晶 系	単斜晶	単斜晶
空間群	$P2_1/m$ (unique axis b)	$P2_1$ (unique axis b)
各子定数		
<i>a</i> / Å	13.74510(8)	13.7543(3)
b / Å	5.69215(3)	5.71271(4)
<i>c</i> / Å	7.89778(5)	7.9187(3)
α / °	90	90
β / °	98.2419(12)	98.274(9)
γ / °	90	90
单位格子体積, V/Å3	611.535(6)	615.73(3)
単位格子中の化学式単位の数,Z	4	4
質量分率	1	1
言賴度因子		
R _{wp} / %	6.325	5.87
$S (= R_{wp} / R_e)$	1.1226	1.0259
$R_{ m B}$ / %	2.528	2.826
R_F / %	1.218	1.287
構造パラメータ		
Srl		
サイト多重度 + wycoff letter	2 e	2 <i>a</i>
サイト占有率, SOF	1.0 Sr	0.958(2) Sr / 0.042(2) Ba ^{††}
分率座標, x, y, z	0.1032(5), 0.25, 0.2766(12)	0.1058(4), 0.2613(14), 0.276(2)
等方性原子変位パラメータ, U/\AA^2	0.0058(3) †	0.0067(3)
Sr2		
サイト多重度 + wycoff letter	2 e	2 <i>a</i>
サイト占有率, SOF	1.0 Sr	0.842(2) Sr / 0.158(2) Ba ^{††}
分率座標, x, y, z	0.1032(5), 0.25, 0.2766(12)	0.41195(19), 0.7595(16), 0.3551(19)
等方性原子変位パラメータ,U/Å ²	0.0110(4) [†]	0.0128(4)

Table 2.4 放射光X線回折により最終的に得られたリートベルト解析の結果。Oサイトの 構造パラメータ(原子座標および原子変位パラメータ)は、中性子回折のリート ベルト解析で決定した値で固定した。そのためOサイトに関しては、中性子回 折のリートベルト解析で決定した値と標準偏差を示す。
Sr3		
サイト多重度 + wycoff letter	2 e	2 a
サイト占有率, SO F	1.0 Sr	0.958(2) Sr / 0.042(2) Ba ^{††}
分率座標, x, y, z	0.1091(5), 0.25, 0.7755(12)	0.1055(4), 0.247(2), 0.780(2)
等方性原子変位パラメータ, U/Å ²	= U(Sr1)	= U(Sr1)
Sr4		
サイト多重度 + wycoff letter	2 e	2 a
サイト占有率, SO F	1.0 Sr	0.842(2) Sr / 0.158(2) Ba ††
分率座標, x, y, z	0.4194(5), 0.75, 0.8533(10)	0.42876(19), 0.7500(19), 0.855(2)
等方性原子変位パラメータ, U/Å ²	= U(Sr2)	= U(Sr2)
Tal		
サイト多重度 + wycoff letter	2 e	2 a
サイト占有率, SOF	1.0 Ta	1.0 Ta
分率座標, x, y, z	0.1107(3), 0.75, 0.0302(6)	0.11072(19), 0.75, 0.0277(13)
等方性原子変位パラメータ, U/Å ²	0.00178(18) †	0.00179(14)
Ta2		
サイト多重度 + wycoff letter	2 e	2 a
サイト占有率, SO F	1.0 Ta	1.0 Ta
分率座標, x, y, z		0.3202(2), 0.2548(13), 0.0791(16)
等方性原子変位パラメータ, U/Å ²	0.00302(19) †	0.00445(16)
Ta3		
サイト多重度 + wycoff letter	2 e	2 a
サイト占有率, SOF	1.0 Ta	1.0 Ta
分率座標, x, y, z	0.3191(2), 0.25, 0.0785(6)	0.11017(19), 0.7444(11), 0.5290(13)
等方性原子変位パラメータ,U/Å ²	= <i>U</i> (Ta1)	= <i>U</i> (Ta1)
Ta4		
サイト多重度 + wycoff letter	2 e	2 a
サイト占有率, SOF	1.0 Ta	1.0 Ta
分率座標, x, y, z	0.3210(2), 0.25, 0.5755(6)	0.3197(2), 0.2493(12), 0.5788(16)
等方性原子変位パラメータ, U/\AA^2	= <i>U</i> (Ta2)	= <i>U</i> (Ta2)
01		
サイト多重度 + wycoff letter	2 <i>a</i>	2 a
サイト占有率, SO F	1.0 O	1.0 O
分率座標, x, y, z	0, 0, 0	0.002(3), 0.001(7), 0.996(9)
等方性原子変位パラメータ, U/\AA^2	0.0119(6)	0.0090(4)
02		
サイト多重度 + wycoff letter	4f	2 a
サイト占有率, SOF	1.0 O	1.0 O

分率座標, x, y, z	0.2002(10), 0.5055(19), 0.035(2)	0.0949(16), 0.733(8), 0.27(2)
等方性原子変位パラメータ,U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
03		
サイト多重度 + wycoff letter	4f	2 a
サイト占有率, SOF	1.0 O	1.0 O
分率座標, x, y, z	0.4122(11), 0.499(2), 0.102(3)	0.2911(11), 0.232(8), 0.321(13)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
04		
サイト多重度 + wycoff letter	2 <i>b</i>	2 a
サイト占有率, SOF	1.0 O	1.0 O
分率座標, x, y, z	0, 0, 0.5	0.2034(19), 0.999(7), 0.558(13)
等方性原子変位パラメータ,U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
05		
サイト多重度 + wycoff letter	4f	2 a
サイト占有率, SOF	1.0 O	1.0 O
分率座標, x, y, z	0.1971(10), 0.479(2), 0.545(4)	0.413(2), 0.010(7), 0.605(15)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
O6		
サイト多重度 + wycoff letter	4f	2 a
サイト占有率, SO F	1.0 O	1.0 O
分率座標, x, y, z	0.4144(11), 0.477(2), 0.602(3)	0.2051(18), 0.985(6), 0.044(14)
等方性原子変位パラメータ,U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
07		
サイト多重度 + wycoff letter	2 e	2 a
サイト占有率, SOF	1.0 O	1.0 O
分率座標, x, y, z	0.0968(17), 0.75, 0.285(4)	0.4128(19), 0.021(7), 0.099(13)
等方性原子変位パラメータ,U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
O8		
サイト多重度 + wycoff letter	2 e	2 a
サイト占有率, SO F	1.0 O	1.0 O
分率座標, x, y, z	0.3017(16), 0.25, 0.317(5)	0.0943(17), 0.731(7), 0.77(2)
等方性原子変位パラメータ,U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
09		
サイト多重度 + wycoff letter	2 e	2 a
サイト占有率, SOF	1.0 O	1.0 O
分率座標, x, y, z	0.0904(16), 0.75, 0.771(7)	0.1962(19), 0.486(7), 0.545(12)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)

O10		
サイト多重度 + wycoff letter	2 e	2 a
サイト占有率, SO F	1.0 O	1.0 O
分率座標, x, y, z	0.2997(16), 0.25, 0.831(5)	0.412(2), 0.494(7), 0.602(15)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
011	—	
サイト多重度 + wycoff letter	—	2 a
サイト占有率, SOF		1.0 O
分率座標, x, y, z		0.413(2), 0.489(7), 0.105(15)
等方性原子変位パラメータ, U/Å ²		= <i>U</i> (O1)
012	—	
サイト多重度 + wycoff letter	—	2 <i>a</i>
サイト占有率, SOF	—	1.0 O
分率座標, x, y, z	—	0.006(2), 0.000(8), 0.512(5)
等方性原子変位パラメータ, U/Å ²	—	= <i>U</i> (O1)
O13	—	
サイト多重度 + wycoff letter	—	2 <i>a</i>
サイト占有率, SOF	—	1.0 O
分率座標, x, y, z	—	0.3053(11), 0.235(8), 0.828(14)
等方性原子変位パラメータ, U/Å ²	—	= <i>U</i> (O1)
O14	—	
サイト多重度 + wycoff letter	—	2 <i>a</i>
サイト占有率, SOF	—	1.0 O
分率座標, x, y, z	—	0.1889(16), 0.473(7), 0.050(12)
等方性原子変位パラメータ,U/Å ²	_	= <i>U</i> (O1)

[†] 次に示す異方性原子変位パラメータ U_{ij}を等価等方性原子変位パラメータ U_{eq}に換算した値を示している。

site	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Sr1, Sr3	0.0024(6)	0.0092(3)	0.0059(5)	0	0.0009(16)	0
Sr2, Sr4	0.0074(9)	0.0189(5)	0.0058(6)	0	-0.002(2)	0
Ta3, Ta1	0.0008(2)	0.0034(2)	0.0013(4)	0	0.0008(9)	0
Ta4, Ta2	0.0015(3)	0.0043(2)	0.0030(4)	0	-0.0006(9)	0

^{††} Ba10 の(Sr_{0.9}Ba_{0.1})₂Ta₂O₇相の各 Sr サイトの Sr および Ba のサイト占有率には、以下に示す制約条件を課した。SOF(Sr1, Sr) = 1 - SOF(Sr1, Ba), SOF(Sr2, Sr) = 0.8 + SOF(Sr1, Ba), SOF(Sr2, Ba) = 0.2 - SOF(Sr1, Ba), SOF(Sr3, Sr) = 1 - SOF(Sr1, Ba), SOF(Sr3, Ba) = SOF(Sr1, Ba), SOF(Sr4, Sr) = 0.8 + SOF(Sr1, Ba), SOF(Sr4, Ba) = 0.2 - SOF(Sr1, Ba)

Table 2.4	つ	づ	き)
-----------	---	---	---	---

サンプル名	Ba15		Ca60
相の数	2		1 (単相)
化学式	$(Sr_{0.85}Ba_{0.15})_2Ta_2O_7$	$(Sr_{2.205}Ba_{2.795})Ta_4O_{15}$	$(Sr_{0.4}Ca_{0.6})_2Ta_2O_7$
化学式量	664.0435	1540.813	592.081
結晶系	単斜晶	三方晶	単斜晶
空間群	$P2_1$ (unique axis b)	P-3m1 (hexagonal lattice)	$P2_1$ (unique axis b)
格子定数			
<i>a</i> / Å	13.7589(3)	5.7092(7)	13.55242(13)
b / Å	5.72077(6)	= a	5.59534(4)
<i>c</i> / Å	7.92844(18)	11.728(2)	7.77635(9)
α / °	90	90	90
β/°	98.293(6)	90	98.233(2)
γ / °	90	120	90
単位格子体積, V/Å3	617.53(2)	331.04(8)	583.607(11)
単位格子中の化学式単位の数, Z	4	1	4
質量分率	0.9923	0.0077	1
信頼度因子			
R _{wp} / %	6.477		5.707
$S (= R_{\rm wp} / R_{\rm e})$	1.1447		1.1267
R _B / %	4.046	4.887	2.695
R_F / %	2.207	2.572	1.359
構造パラメータ			
Sr1			
サイト多重度 + wycoff letter	2 <i>a</i>	1 <i>a</i>	2 <i>a</i>
サイト占有率, SOF	0.931(3) Sr / 0.069(3) Ba ^{†††}	0.441 Sr / 0.559 Ba [‡]	0.378(3) Sr / 0.622(3) Ca ^{††††}
分率座標, x, y, z	0.1066(5), 0.2721(17), 0.2689(15)	0, 0, 0	0.1039(6), 0.2387(12), 0.273(2)
等方性原子変位パラメータ, U/\AA^2	0.0065(4)	0.00448 ^{‡‡}	0.0095(4)
Sr2			
サイト多重度 + wycoff letter	2 <i>a</i>	2 <i>d</i>	2 a
サイト占有率, SOF	0.769(3) Sr / 0.231(3) Ba ^{†††}	= SOF(Sr1) [‡]	0.422(3) Sr / 0.578(3) Ca ^{††††}
分率座標, x, y, z	0.4111(3), 0.7725(13), 0.3579(19)	1 / 3, 2 / 3, 0.786(4)	0.4289(3), 0.7986(10), 0.354(2)
等方性原子変位パラメータ, U/\AA^2	0.0182(6)	0.00481 ^{‡‡}	0.0170(7)
Sr3			
サイト多重度 + wycoff letter	2 <i>a</i>	2 <i>d</i>	2 a
サイト占有率, SOF	0.931(3) Sr / 0.069(3) Ba ^{†††}	= SOF(Sr1) [‡]	0.378(3) Sr / 0.622(3) Ca ****
分率座標, x, y, z	0.1048(5), 0.2425(17), 0.781(2)	1 / 3, 2 / 3, 0.480(5)	0.1088(6), 0.2540(17), 0.775(2)

等方性原子変位パラメータ, U/Å ²	= U(Sr1)	0.00872 **	= U(Sr1)
Sr4			
サイト多重度 + wycoff letter	2 a		2 <i>a</i>
サイト占有率, SOF	0.769(3) Sr / 0.231(3) Ba ^{†††}		0.422(3) Sr / 0.578(3) Ca ^{††††}
分率座標, x, y, z	0.4263(3), 0.7628(18), 0.855(2)		0.4082(3), 0.7668(14), 0.851(2)
等方性原子変位パラメータ, U/ Å ²	= U(Sr2)		= U(Sr2)
Tal			
サイト多重度 + wycoff letter	2 a	2 <i>c</i>	2 <i>a</i>
サイト占有率, SOF	1.0 Ta	1.0 Ta	1.0 Ta
分率座標, x, y, z	0.1106(3), 0.75, 0.0273(13)	0, 0, 0.698(5)	0.1115(3), 3 / 4, 0.0271(8)
等方性原子変位パラメータ, U/ Å ²	0.00261(14)	0.00477 ‡‡	0.00286(14)
Ta2			
サイト多重度 + wycoff letter	2 <i>a</i>	2 <i>d</i>	2 <i>a</i>
サイト占有率, SOF	1.0 Ta	1.0 Ta	1.0 Ta
分率座標, x, y, z	0.3202(3), 0.2599(10), 0.0811(12)	1 / 3, 2 / 3, 0.068(4)	0.3211(3), 0.2688(7), 0.0774(7)
等方性原子変位パラメータ, U/\AA^2	0.0063(2)	0.00442 **	0.0039(17)
Ta3			
サイト多重度 + wycoff letter	2 a		2 <i>a</i>
サイト占有率, SO F	1.0 Ta		1.0 Ta
分率座標, x, y, z	0.1102(3), 0.7583(10), 0.5290(12)		0.1117(3), 0.7447(8), 0.5268(8)
等方性原子変位パラメータ, U / $Å^2$	= <i>U</i> (Ta1)		= <i>U</i> (Ta1)
Ta4			
サイト多重度 + wycoff letter	2 a		2 <i>a</i>
サイト占有率, SO F	1.0 Ta		1.0 Ta
分率座標, x, y, z	0.3193(3), 0.2644(9), 0.5820(12)		0.3209(3), 0.2567(6), 0.5758(7)
等方性原子変位パラメータ, U/\AA^2	= <i>U</i> (Ta2)		= <i>U</i> (Ta2)
01			
サイト多重度 + wycoff letter	2 a	3 e	2 <i>a</i>
サイト占有率, SOF	1.0 O	1.0 O	1.0 O
分率座標, x, y, z	0.997(3), 0.999(9), 0.999(10)	$1 / 2, 0, 0^{\ddagger}$	0.0139(18), 0.019(7), 0.962(2)
等方性原子変位パラメータ, U/Å ²	0.0083(5)	0.00769 ‡‡	0.0113(6)
02			
サイト多重度 + wycoff letter	2 a	6 i	2 <i>a</i>
サイト占有率, SO F	1.0 O	1.0 O	1.0 O
分率座標, x, y, z	0.0919(15), 0.751(11), 0.274(18)	0.1701, -0.1701, 0.1920 **	0.0996(14), 0.793(6), 0.279(4)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)	0.00873 **	= <i>U</i> (O1)
O3			
サイト多重度 + wycoff letter	2 a	6 i	2 <i>a</i>

	100	100	100
リイト百有半, SOF	1.0 0	1.00	1.0 0
⑦ ᆃ座標, <i>x</i> , <i>y</i> , <i>z</i>	0.2941(15), 0.238(9), 0.326(14)	0.1639, -0.1639, 0.6129 **	0.3053(13), 0.187(5), 0.342(3)
等力性原于変位ハフメータ, U/A	= 0(01)	0.00843 **	= U(01)
サイト多重度 + wycoff letter	2 a		2 a
サイト占有率, SOF	1.0 O		1.0 O
分率座標, x, y, z	0.2028(18), 0.999(8), 0.553(14)		0.2145(19), 0.969(6), 0.595(3)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)		= <i>U</i> (O1)
05			
サイト多重度 + wycoff letter	2 a		2 a
サイト占有率, SOF	1.0 O		1.0 O
分率座標, x, y, z	0.414(2), 0.017(9), 0.605(17)		0.4323(15), 0.063(5), 0.632(3)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)		= <i>U</i> (O1)
O6			
サイト多重度 + wycoff letter	2 <i>a</i>		2 a
サイト占有率, SOF	1.0 O		1.0 O
分率座標, x, y, z	0.2115(17), 0.999(7), 0.049(13)		0.2160(17), 0.975(5), 0.032(4)
等方性原子変位パラメータ, U/ Å ²	= <i>U</i> (O1)		= <i>U</i> (O1)
07			
サイト多重度 + wycoff letter	2 a		2 a
サイト占有率, SOF	1.0 O		1.0 O
分率座標, x, y, z	0.413(2), 0.024(8), 0.099(13)		0.4202(14), 0.049(6), 0.100(5)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)		= <i>U</i> (O1)
08			
サイト多重度 + wycoff letter	2 <i>a</i>		2 <i>a</i>
サイト占有率, SOF	1.0 O		1.0 O
分率座標, x, y, z	0.0974(17), 0.737(7), 0.773(17)		0.0846(14), 0.674(6), 0.774(5)
等方性原子変位パラメータ, U/ Å ²	= <i>U</i> (O1)		= <i>U</i> (O1)
09			
サイト多重度 + wycoff letter	2 a		2 a
サイト占有率, SOF	1.0 O		1.0 O
分率座標, x, y, z	0.193(2), 0.483(9), 0.546(14)		0.1821(17), 0.452(6), 0.524(4)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)		= <i>U</i> (O1)
O10			
サイト多重度 + wycoff letter	2 <i>a</i>		2 a
サイト占有率, SOF	1.0 O		1.0 O
分率座標, x, y, z	0.408(2), 0.500(9), 0.603(14)		0.4009(16), 0.542(6), 0.593(4)
等方性原子変位パラメータ, U/ Å ²	= <i>U</i> (O1)		= <i>U</i> (O1)

011		
サイト多重度 + wycoff letter	2 a	2 <i>a</i>
サイト占有率, SOF	1.0 O	1.0 O
分率座標, x, y, z	0.414(2), 0.491(8), 0.105(14)	0.3997(16), 0.531(5), 0.106(4)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
012		
サイト多重度 + wycoff letter	2 a	2 <i>a</i>
サイト占有率, SOF	1.0 O	1.0 O
分率座標, x, y, z	0.003(3), 0.012(9), 0.508(6)	0.0124(18), 0.022(5), 0.509(4)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
013		
サイト多重度 + wycoff letter	2 a	2 <i>a</i>
サイト占有率, SOF	1.0 O	1.0 O
分率座標, x, y, z	0.3019(14), 0.250(10), 0.824(15)	0.3005(12), 0.283(6), 0.827(5)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
014		
サイト多重度 + wycoff letter	2 a	2 <i>a</i>
サイト占有率, SOF	1.0 O	1.0 O
分率座標, x, y, z	0.190(2), 0.489(7), 0.052(12)	0.1836(16), 0.461(7), 0.058(4)
等方性原子変位パラメータ, U/Å ²	= <i>U</i> (O1)	= <i>U</i> (O1)
^{††} Dalsの(Sr. Da.) Taの 相にないて	には、冬 S- サイトの S- セトバ Do のサイト上方家に開して	カヒテオ組形制約冬卅を運

[↑][↑][↑] Ba15 の(Sr_{0.85}Ba_{0.15})₂Ta₂O₇相においては、各 Sr サイトの Sr および Ba のサイト占有率に関して、次に示す線形制約条件を課 した。SOF(Sr1, Sr) = 1 - SOF(Sr1, Ba), SOF(Sr2, Sr) = 0.7 + SOF(Sr1, Ba), SOF(Sr2, Ba) = 0.3 - SOF(Sr1, Ba), SOF(Sr3, Sr) = 1 -SOF(Sr1, Ba), SOF(Sr3, Ba) = SOF(Sr1, Ba), SOF(Sr4, Sr) = 0.7 + SOF(Sr1, Ba), SOF(Sr4, Ba) = 0.3 - SOF(Sr1, Ba). [↑]^{†††} Ca60 の(Sr_{0.4}Ca_{0.6})₂Ta₂O₇相においては、各 Sr サイトの Sr および Ca のサイト占有率に関して、次に示す線形制約条件を課

 $L_{20}^{t} O(Sr_{1.4}Ca_{0.6})_{2} Ia_{2}O_{7}^{t} Hi = SO^{t}(Cl_{x}, Cl_{x}, S) + PO(Sr_{1.5}Cl_{x}, O) + PO(Sr_{1.5}Cl_{x$

* Sr₅Ta₄O₁₅[14]と Ba₅Ta₄O₁₅[15]の格子定数の文献値から(Sr_{1-x}Ba_x)₅Ta₄O₁₅の組成 X と格子体積 V の関係を調べた結果、V(X) = 11.4944 + 0.2556 X の検量線を得た。Ba15 の試料に含まれていた(Sr_{2.205}Ba_{2.795})Ta₄O₁₅の組成は、この検量線と放射光 X 線回折パ ターンから得られた格子定数を用い、決定した。

[#] (Sr_{2.205}Ba_{2.795})Ta₄O₁₅の各原子の分率座標および原子変位パラメータは、文献[16]の Ba₅Nb₄O₁₅の値で固定した。

Fig. 2.17 リートベルト解析によって得られた結晶構造。Sr₂Ta₂O₇は空間群 *P*2₁/*m*、Ba10 すなわち(Sr_{0.90}Ba_{0.10})₂Ta₂O₇、Ba15 すなわち(Sr_{0.85}Ba_{0.15})₂Ta₂O₇ および Ca60 す なわち(Sr_{0.40}Ca_{0.60})₂Ta₂O₇は空間群 *P*2₁で解析した。黄緑色は Sr サイト、黄土 色は Ta サイト、赤色は O サイトを表し、異方性原子変位パラメータ *U_j*および 等方性原子変位パラメータ *U*の大きさで楕円体および球を表している。

Fig. 2.18 TaO₆八面体の回転角。(a) **c** 軸周りの回転角、(b) **b**-**c** 面内(**a**^{*}軸周り)の 回転角。ペロブスカイト層の内側 TaO₆は○、外側 TaO₆は□で示す。

Fig. 2.19 ペロブスカイト層の内側 Sr サイトおよび外側 Sr サイトにおける Ba 原子の占有率および Ca 原子の占有率。ペロブスカイト層の内側 Sr サイ トは〇、外側 Sr サイトは□で示す。

2.3.4 リートベルト法により求めた結晶構造の妥当性の評価

2.3.4.1 Bond Valence Sum (BVS)

Sr₂Ta₂O₇、Ba10、Ba15 および Ca60 の各カチオンサイトに関して、隣接アニオンとの結合距離からカチオンの酸化数を見積もることができる Bond Valence Sum (BVS)を計算した結果を Table 2.5~Table 2.8 に示す。各 Sr サイトおよび各 Ta サイトの BVS は、それぞれの形式電荷である+2 および+5 とよく一致しており、各 Sr-O 距離および各 Ta-O 距離が妥当な値であることが示唆された。

サイ	\vdash	サイト占有率, SO F	Bond Valence Parameter, <i>R</i> ₀ [17]	BVS
	Sr1	1.0 Sr	2.118	2.069
FJ1則 SI	Sr3	1.0 Sr	2.118	2.159
外側 Sr 外側 Sr	Sr2	1.0 Sr	2.118	2.194
	Sr4	1.0 Sr	2.118	1.952
内側 Ta	Ta1	1.0 Ta	1.92	5.176
内側 Ta	Ta3	1.0 Ta	1.92	5.17
	Ta2	1.0 Ta	1.92	5.022
フト1月 18	Ta4	1.0 Ta	1.92	5.201

Table 2.5 Sr₂Ta₂O₇の各カチオンサイトの Bond Valence Sum (BVS)。

Table 2.6 Ba10 の各カチオンサイトの Bond Valence Sum (BVS)。

サイ	\vdash	サイト占有率, SOF	Average Bond Valence Parameter, $R_0^{av \dagger}$	BVS
Sr1	0.059(2) Sr / $0.042(2)$ Do	2 1250/41	2.237	
P1則 Sr	Sr3	0.958(2) Sr / 0.042(2) Ba	2.1250(4)	2.092
从周日。	Sr2 0.842(2) $Sr = (0.158(2)) Pc$ 2.1444(4)	2 1 4 4 4 (4)	1.96	
外側 Sr Si	Sr4	0.842(2) Sr / 0.158(2) Ba	2.1444(4)	2.288
内側 工-	Ta1	1.0 Ta	1.920	5.184
内側 Ta	Ta3	1.0 Ta	1.920	5.024
外側 Ta	Ta2	1.0 Ta	1.920	5.107
	Ta4	1.0 Ta	1.920	4.892

[†] Sr サイトの Bond Valence Parameter R_0 は、Sr²⁺-O²の組および Ba²⁺-O²⁺の組に対してそれぞれ報告されている 値である 2.118 および 2.285 [17]を Sr および Ba の占有率で比例配分した値(Average Bond Balance Parameter) を用いた。また、Ta サイトの Bond Valence Parameter R_0 は、Ta²⁺-O²⁻の組の値[17]である 1.920 を用いた。

サイ	\vdash	サイト占有率, SOF	Average Bond Valence Parameter, $R_0^{av^{\dagger}}$	BVS
内側 Sr 1 Sr3	0.021(2) 8 / 0.0(0(2) D.		2.219	
	Sr3	0.931(3) Sr / 0.069(3) Ba	2.1296(5)	2.104
	Sr2	0.769(3) Sr / 0.231(3) Ba 2.1565(5)	1.977	
外側 Sr Sr	Sr4		2.1565(5)	2.332
	Ta1	1.0 Ta	1.920	5.002
内側 Ta	Ta3	1.0 Ta	1.920	5.102
外側 Ta	Ta2	1.0 Ta	1.920	5.029
	Ta4	1.0 Ta	1.920	5.059

Table 2.7 Ba15 の(Sr_{0.85}Ba_{0.15})₂Ta₂O₇相の各カチオンサイトの Bond Valence Sum (BVS)。

[†] Sr サイトの Bond Valence Parameter R_0 は、Sr²⁺-O²⁻の組および Ba²⁺-O²⁺の組に対してそれぞれ報告されている値 である 2.118 および 2.285 [17]を Sr および Ba の占有率で比例配分した値(Average Bond Balance Parameter)を 用いた。また、Ta サイトの Bond Valence Parameter R_0 は、Ta²⁺-O²⁻の組の値[17]である 1.920 を用いた。

サイト		サイト占有率, SOF	Average Bond Valence Parameter, $R_0^{av \dagger}$	BVS
内側 Sr	Sr1	0.378(3) Sr / 0.622(3) Ca	2.0240(4)	1.947
	Sr3			2.093
外側 Sr	Sr2	0.422(3) Sr / 0.578(3) Ca	2.0308(4)	2.086
	Sr4			1.732
内側 Ta	Ta1	1.0 Ta	1.92	5.091
	Ta3	1.0 Ta	1.92	5.184
 外側 Ta	Ta2	1.0 Ta	1.92	5.286
	Ta4	1.0 Ta	1.92	5.176

Table 2.8 Ca60 の各カチオンサイトの Bond Valence Sum (BVS)。

[†] Sr サイトの Bond Valence Parameter R_0 は、Sr²⁺-O²⁻の組および Ca²⁺-O²⁺の組に対してそれぞれ報告されている値 である 2.118 および 1.967 [17]を Sr および Ba の占有率で比例配分した値(Average Bond Balance Parameter)を用 いた。また、Ta サイトの Bond Valence Parameter R_0 は、Ta²⁺-O²⁻の組の値[17]である 1.920 を用いた。

2.3.4.2 TaO₆八面体の回転の向きと Sr サイトの微小変位と の関係

Ba10、Ba15 および Ca60 に関して、a^{*}軸方向から見たペロブスカイト層を Fig. 2.20 に示す。Fig. 2.20 では、外側 Sr サイトが b 軸方向に沿って+方向もしくは一方向の どちらに微小変位しているかを左右方向の矢印で示してある。また同図内では、b-c 面内(a^{*}軸まわり)の TaO₆ 八面体の回転の向きを曲がった矢印で示し、それに伴い ペロブスカイト層の境界に面した O サイトが c 軸方向に沿って+方向もしくは一方 向のどちらに微小変位しているかを上下方向の矢印で示している。O サイトの c 軸方 向の微小変位により、O-O 間距離が開いている(長くなっている)ところと閉じてい る(短くなっている)ところが見受けられる。外側 Sr サイトの b 軸方向に沿った微 小変位の向きとこれらの O-O 間距離との関係を調べてみると、外側 Sr サイトは O-O 間距離が閉じている方ではなく開いている方へ向かって微小変位をしていることが わかった。Sr に対してイオンサイズの異なる Ba もしくは Ca を置換することで、TaO₆ 八面体の回転が起こるが、以上のように、TaO₆ 八面体の b-c 面内(a^{*}軸まわり)の回

Fig. 2.20 TaO₆ 八面体の *b-c* 面内(*a*^{*}軸まわり)の回転の向きと外側 Sr サイトの *b* 軸方 向の微小変位の向きとの関係。ペロブスカイト層を *a*^{*}軸方向から見ている。

第2章 放射光X線回折および中性子回折のリートベルト法による結晶構造解析 転の向きと外側 Sr サイトの b 軸方向の微小変位の向きには対応関係があり、TaO₆ 八 面体は Sr サイトと O サイト間の距離が大きく変わらないような回転の仕方をしてい ることが確認された。さらに、Table 2.4 で示したリートベルト解析の信頼度因子は十 分低い値をとっており、2.3.4.1 目で示したように各 Sr サイトおよび各 Ta サイトの Bond Valence Sum (BVS) はそれぞれ形式電荷である+2 および+5 とよく一致してお り、本論文によって行われた結晶構造解析の結果は妥当性の高いものであると判断を した。

2.3.5 光触媒活性への結晶構造の影響

得られた結晶構造から、光触媒の結晶構造の変化が光触媒活性に及ぼす影響について考える(Fig. 2.21 参照)。

まず、励起電子および正孔の再結合の確率について考える。Sr₂Ta₂O₇は TaO₆ 八面 体の O の重心と Ta の原子座標が等しくないため、TaO₆ 八面体内に双極子モーメント が存在する。また、Sr₂Ta₂O₇ は対称中心を持つため自発分極を持たないが、Ba10、Ba15 および Ca60 は対称中心を持たず、自発分極を有する。この2 種類の分極(電場)す なわち Ta 周辺の分極である「TaO₆ 八面体内の双極子モーメント」と結晶全体の分極 (電場)である「自発分極」は励起電子および正孔の再結合を抑制する効果があると 考えられる。

次に、励起電子の移動度について考える。Sr₂Ta₂O₇においては、伝導帯の下部は Ta5d-t_{2g}軌道および O2p 軌道で構成されている。したがって、Ta5d-t_{2g}軌道と O2p 軌 道間の重なりが大きいならば、励起電子の移動度は大きいと考えられる。結晶構造に おいて、Ta5d-t_{2g}軌道と O2p 軌道間の重なりを決めるのは、Ta-O-Ta 結合角である。 2.3.5.1 目および 2.3.5.2 目において、実際にリートベルト解析で求めた結晶構造を用 いて、TaO₆八面体内の双極子モーメント、自発分極および Ta-O-Ta 結合角を計算し、 光触媒活性への影響を調べる。

Fig. 2.21 結晶構造が光触媒活性に与えると思われる影響。

2.3.5.1 励起電子と正孔の再結合の確率への結晶構造の影響

·Ig. 2.22 結晶構造が光触媒活性に与える影響。(I) 局所的な分極(電場) である双極子モーメントおよび (ii) 結晶全体にわたる分極(電 場)である自発分極は、励起電子と正孔の再結合を抑制する効果 をもつ。

Fig. 2.22 に示すように、分極(電場)は励起電子と正孔の再結合を抑制する働きが あると考えられる。

まず、リートベルト解析から得られた結晶構造を用いて、TaO₆八面体内の双極子 モーメントを計算した / Debve 結果を Fig. 2.23 に示す。 6 Tao。八面体内の双極子モーメント/D Sr の一部を Ba 置換した 外側TaO6 5 Ba10 および Ba15 は、 Sr₂Ta₂O₇と比べ、内側 内側TaO。 4 TaO₆ 八面体内の双極子 モーメントはほとんど Ca60 Sr₂Ta₂O₇ Ba10 Ba15 大きさに違いがないが、 Fig. 2.23 TaO₆ 八面体内の双極子モーメント。Ta 周辺の局

外側 TaO₆八面体内の双

第2章 放射光X線回折および中性子回折のリートベルト法による結晶構造解析 極子モーメントが増大している。これは、Ba がペロブスカイト層の内側 Sr サイトよ りもむしろ外側 Sr サイトに多く占有することを反映していると考えられる。Sr の一 部を Ca 置換した Ca60 は、Sr₂Ta₂O₇と比べ、内側 TaO₆ 八面体内および外側 TaO₆ 八面 体内の双極子モーメントの両方が増大している。これは、Ca がペロブスカイト層の 内側 Sr サイトおよび外側 Sr サイトの両方にほぼ均一に占有することを反映している と考えられる。Ba 置換および Ca 置換の両方が、Ta 周辺の局所的な分極を増加させ る効果をもつことがわかった。

次に、得られた結晶構造を用いて、自発分極を計算した結果を Fig. 2.24 に示す。 Sr₂Ta₂O₇では存在していなかった自発分極は、Ba10、Ba15 および Ca60 の全ての場合 において生じていた。Ba 置換および Ca 置換の両方が結晶全体の分極を生じさせる効 果を持ち、その効果は Ca および Ba のどちらの場合もさほど違いがないことがわか った。

以上より、Ba 置換と Ca 置換の両方が、Ta 周辺の分極および結晶全体の分極を増 加させ、励起電子と正孔の再結合を抑制する効果を有することがわかった。このこと はつまり、Sr の一部を Ba および Ca に置換することに伴い光触媒活性が、それぞれ 増加および減少することを、励起電子と正孔の再結合のしにくさでは、説明すること ができないことを意味する。

Fig. 2.24 自発分極。結晶全体の分極を表す。

2.3.5.2 励起電子の移動度への結晶構造の影響

Fig. 2.25 に Ta-O-Ta 結合角の大きさと励起電子の移動度の関係を示す。Ta-O-Ta 結 合角は、励起電子の伝導経路である伝導帯下部を構成する Ta5d-t_{2g}軌道と O2p 軌道の 重なりの大きさを変化させ、励起電子の移動度に影響を与えると思われる。Ta-O-Ta 結合角が 180°に近い場合は、Ta5d-t_{2g}軌道と O2p 軌道の重なりが大きく、励起電子の 移動度が高いことが予想される。一方、Ta-O-Ta 結合角が小さくなり、180°から大き く乖離すると、Ta5d-t_{2g}軌道と O2p 軌道の重なりが小さくなり、励起電子の移動度が 低くなることが予想される。

Fig. 2.25 結晶構造が光触媒活性に与える影響。(iii) Ta-O-Ta 結合角と励起電子の移動度の関係。

リートベルト解析から求めた結晶構造を用いて、Ta-O-Ta 結合角を調べた。Ta-O-Ta 結合は、単位格子中に 20 本存在する。各試料に関して、単位格子中にある Ta-O-Ta 結合の結合角の平均値を計算した結果を Fig. 2.26 に示す。Fig. 2.26 中のエラーバーは、 単位格子内に 20 本ある Ta-O-Ta 結合の結合角の標準偏差を表す。エラーバーが小さ いほど、角度にばらつきがなく、励起電子の移動度の差が小さいと考えられるが、ど の試料も、エラーバーの大きさはほとんど等しい。したがって、励起電子の移動度は、 Sr₂Ta₂O₇、Ba10、Ba15 および Ca60 のそれぞれの単位胞内において同程度に差がない と考えられる。平均した Ta-O-Ta 結合角の大きさをみてみると、Sr を一部 Ba に置換 した Ba10 および Ba15 では、Sr₂Ta₂O₇ と比べほとんど変化がない。一方、Sr の一部を Ca に置換した Ca60 では、Sr₂Ta₂O₇ に比べ 10° ほど Ta-O-Ta 結合角が低下している。 このことは、Ca 置換によって、伝導帯下部を構成する Ta5d-t_{2g}軌道および O2p 軌道 の重なりが小さくなり、励起電子の移動度が低下することを意味する。Ta-O-Ta 結合 角を調べることで、Sr₂Ta₂O₇ の Sr の一部を Ba に置換しても励起電子の移動度にほと んど影響がない一方、Sr の一部を Ca に置換すると励起電子の移動度を低下させてし まうということが示唆された。

Fig. 2.26 単位格子中に 20 本ある Ta-O-Ta 結合の結合角の平均値。エラーバーは 20 本の Ta-O-Ta 結合の結合角の標準偏差を表している。

2.4 結論(まとめ)

本章の結晶構造解析において明らかとなった Sr₂Ta₂O₇の Ba および Ca 置換による 結晶構造の変化とそれに伴い変化する励起電子および正孔の性質と光触媒活性との 関係を Table 2.9 に示す。Sr₂Ta₂O₇の Sr の一部を Ba あるいは Ca に置換することによ り、TaO₆ 八面体内の歪みが増加し、TaO₆ 八面体内の双極子モーメントと結晶全体の 自発分極が誘起された。結晶全体および Ta 周辺の局所的な分極が増加すると、励起 電子と正孔の再結合が抑制され、光触媒活性が増加すると考えられる。しかし、この ことにより Ba 置換に伴う光触媒活性の向上と、Ca 置換による光触媒活性の低下の違 いを説明することはできない。TaO₆ 八面体中の歪みと TaO₆ 八面体の回転の両方の効 果により、Ta-O-Ta 結合角は変化する。Ba 置換により Ta-O-Ta 結合角は変化しなかっ たのに対して、Ca 置換の場合では Ta-O-Ta 結合角が 180°から大きく離れていること がわかった。Ta-O-Ta 結合角の 180°からの乖離は、励起電子の伝導経路である伝導帯 下部を構成する電子軌道の Ta5d-t_{2g}と O2p 間の重なりが小さくなることを意味してお り、このことにより光触媒活性を決定づける励起電子の移動度が低下したと考えられ

Table 2.9 Sr₂Ta₂O₇の Ba および Ca 置換による結晶構造の変化とそれによって変化する 励起電子 (e^-) および正孔 (h^+)の性質の変化と光触媒活性との関係。

る。これらの結果から、光触媒活性を向上させるためには、Ta-O-Ta 結合角を 180°か ら大きく乖離させることなく、結晶構造中に分極を誘起できる元素置換が有効に働く ことが、実験的に明らかとなった。

参考文献

- [1] N. Ishizawa, F. Marumo, T. Kawamura, M. Kimura, *Acta Cryst.* B32 [9], 2564-66 (1976)
- [2] N. Yamamoto, K. Yagi, G. Honjyo, M. Kimura, T. Kawamura, J. Phys. Soc. Jpn., 48 [1], 185-91 (1980)
- [3] M. Gasperin, Acta Cryst., **B31** [8], 2129-30 (1975)
- [4] K. Scheunemann and Hk. Muller-Buschbaum, J. Inorg. Nucl. Chem., 36, 1965-70 (1974)
- [5] K. Scheunemann and Hk. Muller-Buschbaum, J. Inorg. Nucl. Chem., 37, 1679-80 (1975)
- [6] K. Scheunemann and Hk. Muller-Buschbaum, J. Inorg. Nucl. Chem., 37, 2261-63 (1975)
- [7] 中井泉,泉富士夫,「粉末X線解析の実際 第2版」,朝倉書店 (2009)
- [8] M. Kakihana, J. Sol-Gel Sci. Technol., 6 [1], 7-55 (1996)
- [9] S. K. Kurtz and T. T. Perry, J. Appl. Phys., **39**, 3798-3813 (1968)
- [10] H. Toraya, T. C. Huang and Y. Wu, J. Appl. Cryst., 26 [6], 774-77 (1993)
- [11] F. Izumi and K. Momma, *Solid State Phenom.*, **130**, 15-20 (2007)
- [12] S. Sasaki, *KEK Rep.*, 88-14 (139 pages) (1989)
- [13] N. Ishizawa, F. Marumo, S. Iwai, M. Kimura and T. Kawamura, *Acta Cryst.*, B36 [4], 763-66 (1980)
- [14] K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato and A. Kudo, J. Catal., 232, 102-7 (2005)

- [15] F. Galasso and L. Katz, Acta Cryst., 14, 647-50 (1961)
- [16] J.M. De Paoli, J.A. Alonso and R.E. Carbonio, J. Phys. Chem. Solids, 67, 1558-66 (2006)
- [17] I. D. Brown and D. Altermatt, Acta Cryst. B41, 244-47 (1985)

第3章 高温紫外ラマン分光による化学結合の性質の 評価

3.1 諸言

3.1.1 目的

光触媒活性は、加えた微量の添加物や、それに伴い変化する構成原子の配列様式に よって特性が大きく変化する。構成原子の配列様式は、化学結合の性質の影響を強く 受ける。したがって、光触媒物質の化学結合の性質を調べることは重要だと考えられ る。本章では、光触媒活性が高い Sr₂Ta₂O₇、(Sr_{0.85}Ba_{0.15})₂Ta₂O₇(Ba15)および光触媒 活性が低い Sr₂Nb₂O₇ について、高温紫外ラマン散乱測定を行い、化学結合の評価を 行う。

3.1.2 高温その場測定による化学結合の評価~isobaric mode

Gruneisen parameter, $\gamma_{iP} \sim$

準調和振動子において、グリュナイゼンパラメータ y_{iT} とそれに類似のパラメータ y_{iP} が次の式で定義されている[1][2]。

$$\gamma_{iT} \equiv \left(\frac{\partial \ln \omega_i}{\partial \ln \rho}\right)_T = \frac{K_T}{\omega_i} \cdot \left(\frac{\partial \omega_i}{\partial P}\right)_T \propto K_T r_i^3$$
(3.1)

$$\gamma_{iP} \equiv \left(\frac{\partial \ln \omega_i}{\partial \ln \rho}\right)_P = -\frac{1}{\alpha \cdot \omega_i} \cdot \left(\frac{\partial \omega_i}{\partial T}\right)_P \propto \frac{\alpha_i}{\alpha}$$
(3.2)

ここで、 ω_i は*i*番目のバンドのラマンシフト、 ρ はモル密度、 K_T は体積弾性率(等 温非圧縮率)、 a_i は距離 r_i の*i*番目のラマンバンドの結合の線熱膨張係数、aは結晶の 体積膨張係数である。 γ_{iP} は*i*番目のラマンバンドに関係する結合の線熱膨張係数 a_i に比例することがわかっている[2]。したがって、バンド*i*の γ_{iP} が小さければ、その 第3章 高温紫外ラマン分光による振動および化学結合の性質の評価

ラマンバンドに関係する結合の線熱膨張係数が小さい、すなわちそのラマンバンドに 関係する結合が強いということを意味する。温度変化に伴いラマンシフト *ωi* が

$$\omega_i = \omega_{i0} + (\partial \omega_i / \partial T)_P (T - T_0)$$
(3.3)

のように直線的に変化すると近似できるならば、 γ_{iP} の値を計算することができる。 ここで、 ω_{i0} は $T = T_0 = 298$ K に外挿した ω_i の値を示す。本論文では、(3.2)式中の第3 項の分母にある ω_i の値を ω_{i0} として γ_{iP} を求めた。

3.1.3 紫外ラマン分光法の長所

一般にラマン散乱測定では、励起光として可視レーザーを用いることが多い。その 場合、高温でのその場測定では熱輻射の影響を受け、微弱なラマン散乱光を検出する ことが非常に困難である。一方、励起光に紫外レーザーを用いると、熱輻射の影響を 軽減させることができ、1273 K ~ 1773 K程度の超高温域においてもラマン散乱光 を検出することができる。励起光を照射しない状態で、炉の温度を 298 K から 1773 K

へ上昇していった場合の炉と 試料(ZrO₂)からの熱輻射の 強度を Fig. 3.1 に示す[3]。Fig. 3.1 中の熱輻射の強度がそれ ぞれの温度におけるラマンス ペクトルのバックグラウンド となる。測定温度の上昇に伴 い、波長の長い可視光の波長 領域ではバックグラウンドの 上昇の仕方が急激であるのに 対して、波長の短い紫外光の

Fig. 3.1 励起光を照射しない状態で、炉の温度を 298 ~ 1773 K ヘ上昇していったときの炉と試料 (ZrO₂)からの熱輻射の強度[3]。

第3章 高温紫外ラマン分光による振動および化学結合の性質の評価

波長領域ではバックグラウンドの上昇が緩やかであることがわかる。このことから、 励起光に可視レーザーを用いた高温ラマン散乱実験ではバックグラウンドが高くな ってしまうのに対して、励起光に紫外レーザーを用いた高温ラマン散乱実験ではバッ クグラウンドが低く、微弱なラマン散乱光を検出するのに有利であることがわかる。 測定例として、1473 K のその場において測定した ZrO₂のラマンスペクトルを Fig. 3.2 に示す[4]。励起光が可視レーザーの場合とは異なり、紫外レーザーの場合には良質 なスペクトルが得られている。従って、本研究では励起光に紫外レーザーを用いてラ マンスペクトルの温度変化を調べた。

Fig. 3.2 可視レーザー(488.0 nm)および紫外レーザー (363.8 nm)励起により1473 Kにおいて測定した ZrO₂のラマンスペクトル。紫外レーザー励起では、可 視レーザー励起の場合とは異なり、良質なラマンスペ クトルを観測することができる[4]。

3.2 実験方法

3.2.1 試料の合成

Sr₂Ta₂O₇および(Sr_{0.85}Ba_{0.15})₂Ta₂O₇(Ba15)は、第2章の放射光X線回折および中性 子回折で使用したものを用いた。Sr₂Nb₂O₇も同様の合成法である錯体重合法により合 成した。

3.2.2 高温紫外ラマン分光

ラマン散乱スペクトルは高温その場観察用に開発された紫外ラマン分光装置 T64000 (Atago Bussan Co., Ltd., Japan)を用いて測定した。紫外ラマン分光装置の光 学系を Fig. 3.3 に示す。光学系は主に、紫外アルゴンレーザー(363.8 nm)、加熱炉を 内蔵した試料室、空間フィルター、トリプルモノクロメータ、CCD 検出器により構

ルターは試料の加熱によ る輻射光をできるだけモ ノクロメータ側へ通さな いように、光路を絞る役 割をしている。CCD 検出 器は量子効率が良くラマ ン光をとらえるのに適し ているが、強度が強いレ イリー光が入射すると壊 れてしまう。また、高温

成されている。空間フィ

Fig. 3.3 紫外ラマン分光装置 T64000 (Atago Bussan Co., Ltd., Japan)の光学系。

での測定において、各ラマンピークの高さは減少するためレイリー光が多少なりとも 検出器に入ると、低周波数のラマン散乱光を検出することが困難となることがある。 それらの影響を軽減するために、本研究で用いた装置はトリプルモノクロメータを備 えている。トリプルモノクロメータのグレーティング G1 において、スリット S1 か 第3章 高温紫外ラマン分光による振動および化学結合の性質の評価

ら入ってきた光を分光し、スリット S2 でレイリー光を除去する。ただし、ここでは レイリー光がわずかに迷光としてスリット S2 を通過してしまう。グレーティング G2 は G1 と共役な関係となっており、グレーティング G1 で分光した光を集光する。ス リット S2 で除去することができなかったレイリー光の迷光は、スリット S3 で除去す る。その後、グレーティング G3 において、測定のための分光を行う仕組みとなって いる。試料は 10 K / min. の速度で加熱し、各測定温度において±1 K に 10 分間保持 後、測定を行った。

3.3 結果

3.3.1 Sr₂Ta₂O7の高温その場測定

3.3.1.1 Sr₂Ta₂O₇のラマンバンドの温度依存性

紫外ラマン散乱を用いることによって得た室温 298 K から 1673 K その場における

 $Sr_2Ta_2O_7$ のラマンスペクトルを Fig. 3.4 に示す。各スペクトルは ピーク位置を Hg 線で補正して いる。室温において、22 本のラ マンバンドが観測された (i =*, 1 ~ 20)。それらのラマンバ ンドのラマンシフトは、Ito 氏ら [5] が報告している単結晶 $Sr_2Ta_2O_7$ の473 Kにおける実測 のラマンバンドのラマンシフト にほぼ一致していた。

温度変化に伴いスペクトルの 形状に極端な変化は見られなか

*は主なラマンバンドの番号 i を示す。

第3章 高温紫外ラマン分光による振動および化学結合の性質の評価

った。ただし、*i*= *の2本のバンドは室温 298 K の時点で強度が低い上に半値幅が 広く、473 K 以上ではさらに半値幅が広がり、773 K 以上の温度ではバンドのラマン シフトの位置を確認することは不可能であった。グラフソフト Origin 6.1 の PFM(ピ ークフィッティングモジュール)機能により、各温度のスペクトルを*i* = *,1~20 のラマンバンドにローレンツ関数を用いてピーク分離した。Fig. 3.5 にその結果を示 す。第2章より、Sr₂Ta₂O₇ は室温において *P*2₁/*m* 相であることがわかっており、Sr₂Ta₂O₇ のこの相は約 443 K で *Cmcm* 相へ相転移すると報告されている[6]-[9]。Fig. 3.5 を見て みると、各ラマンバンドのラマンシフトは温度に対して比較的滑らかに変化しており、 473 K 以上では直線的に低下していることがわかった。

Fig. 3.5 温度変化に伴う Sr₂Ta₂O₇の各ラマンバンドのラマン シフトω_iの変化。1~20の数字および*はラマンバ ンドの番号 i を示す。室温における空間群は第2章より P2₁/m とわかっており、約443 K で Cmcm へ相転 移すると報告されている[6]-[9]。

3.3.1.2 Sr₂Ta₂O₇ Ø Isobaric mode Gruneisen parameter

i = 1 ~ 20 の各ラマンバンドの 473 K 以上の温度における温度依存性を(3.3)式 $\omega_i = \omega_{i0} + (\partial \omega_i / \partial T)_P (T - T_0)$ から求めた。得られた ω_{i0} および $(\partial \omega_i / \partial T)_P$ を用いて(3.2)式より、 isobaric mode Gruneisen parameter γ_{iP} を計算した結果を Table 3.1 および Fig. 3.6 に示す。 Sr₂Ta₂O₇の体積膨張率 α の値には、(1 / V_0) ($\partial V / \partial T$)_P = 1.83 × 10⁻⁵ K⁻¹ [10]を用いた。

·			
i	$\omega_{i0} \left(\mathrm{cm}^{-1} \right)^{\dagger}$	$\left(\frac{\partial \omega_i}{\partial T}\right)_P$ (cm ⁻¹ /K)	$\gamma_{iP}\left(- ight)$
1	61.2(2)	-0.00321(15)	2.87(14)
2	89.3(19)	-0.0080(17)	4.9(11)
3	95(2)	-0.008(2)	4.4(12)
4	125.4(4)	-0.0089(3)	3.88(13)
5	141.4(4)	-0.0093(3)	3.61(13)
6	198.7(17)	-0.0125(12)	3.4(4)
7	247.6(4)	-0.0062(4)	1.36(10)
8	285(3)	-0.010(3)	1.9(7)
9	298(4)	-0.005(4)	0.9(7)
10	326.7(15)	-0.0083(18)	1.4(3)
11	352(3)	-0.016(3)	2.4(6)
12	362(4)	-0.009(4)	1.3(7)
13	431(2)	-0.0066(19)	0.8(2)
14	446(3)	-0.007(3)	0.9(4)
15	459(4)	-0.003(3)	0.4(3)
16	581(3)	-0.019(3)	1.8(3)
17	630.1(7)	-0.0186(7)	1.61(6)
18	790(5)	-0.002(5)	0.2(3)
19	840.59(12)	-0.01207(9)	0.785(6)
20	884(3)	-0.003(3)	0.16(18)

Table 3.1 Sr₂Ta₂O₇の各ラマンバンドラマンシフトの温度依存性を 直線近似することにより求めた ω_{i0}、(∂ω_i / ∂T)_Pおよび γ_{iP} の値。

括弧内の数字は、各パラメータの数値の最終桁における標準偏差を 示している。

[†] ω_{i0} は、473 K 以上の温度領域のラマンシフトを外挿して得られた $T = T_0 = 298$ K における値。

Fig. 3.6 Sr₂Ta₂O₇の各ラマンバンドの γ_{iP} の値。横軸は(3.3)式における T = T₀ = 298 K の ω_i の値である ω_{i0} 。1~20の数字と*はラマンバンドの番号 *i* を示す。

Table 3.1 および Fig. 3.6 に示されるように、i=7~20 のラマンバンドは、それより低 周波数の $i=1\sim6$ のラマンバンドと比較して γ_{iP} の値が低いことがわかった。 γ_{iP} は(3.2) 式で示されるように、ラマンバンド i に関係する結合の線熱膨張率に比例するため、 yipの値が小さいほどそのラマンバンドiに関係する結合は強いということになる。し たがって、_{YiP}の値が小さい i=7~20 のバンドに関係する結合は、それより低周波数 の y_{iP} の値が大きい $i=1 \sim 6$ のバンドに関係する結合と比較して、強いことを意味す る。Sr₂Ta₂O₇(A サイト: Sr、B サイト: Ta)のようなペロブスカイト型の化合物におい ては、振動モードは、①BO6八面体内部の振動である「内部モード」と、②BO6八面 体ユニットの並進、BO6八面体ユニットの回転およびAカチオンの並進が関係する結 晶全体を伝播する「外部格子モード」に分類することができる。Sr₂Ta₂O₇に関しては、 電荷と配位数の関係より、内部モードに関係する Ta-O 間の結合が、外部格子モード に関係する Sr-O 間の結合よりも強い。従って、内部モードの yip の方が外部格子モー ドの y_{iP} より小さいと考えられる。以上のことから、 $i = 1 \sim 6$ のバンドは、 y_{iP} の値が 比較的大きいため、関係する結合が比較的弱いと考えられ、外部格子モードであると 思われる。また、i=7~20のバンドは、yipの値が比較的小さいため、関係する結合 が比較的強いと考えられ、内部モードであると思われる。

3.3.1.3 Ito 氏らによる Sr₂Ta₂O₇の振動シミュレーションと 本研究との比較

Ito 氏ら[5]はシェルモデルによる Sr₂Ta₂O₇の振動シミュレーションを行った。その シミュレーションにより観測された振動モードの周波数は、473 K において同氏らが 測定した単結晶のラマンスペクトルのラマンバンドの周波数とよく一致していた。同 氏らはその結果から、200 cm⁻¹未満のラマンバンドは外部格子モードであり、200 cm⁻¹ 以上のラマンバンドは内部モードであるとしている。Fig. 3.7 に、Sr₂Ta₂O₇のラマンバ ンドの本研究における γ_{iP} による帰属と Ito 氏らの Shell モデルによるシミュレーショ ンによる帰属を比較して示す。Fig. 3.7 にある v₁ like ~ v₆ like は、Ito 氏らの報告した ラマンバンドの帰属が、Herzberg 氏[11]の報告した *XY*₆ 正八面体(点群 *O_h*)の基準振

Fig. 3.7 Sr₂Ta₂O₇のラマンバンドの本研究における γ_{iP} による帰属と Ito 氏らのシミュレーションを参考にした帰属との比較。Ito 氏ら[5]のシミュレーションによる帰属 の v₁ like ~ v₆ like は、Herzberg 氏[11]が報告した XY₆ 正八面体の基準振動である v₁ ~ v₆ のどれから起因した振動モードであるかを筆者が判断したものである。

動である $v_1 \sim v_6$ のどれから起因したものかを筆者が判断したものである。Fig. 3.8 で 示すように、Herzberg 氏[11]が報告した v_1 , v_2 は対称伸縮振動、 v_3 , v_4 は伸縮振動+変 角振動、 v_5 , v_6 は変角振動の振動モードである。Fig. 3.7 をみてわかるように、Ito 氏ら のシミュレーションによるラマンバンドの帰属結果では 200 cm⁻¹ を境として外部格

Fig. 3.8 Herzberg 氏[11]が報告した XY₆ 正八面体(点群 O_h)の基準振動(v₁~v₆)。
 v₁, v₂ は対称伸縮振動、v₃, v₄ は伸縮振動+変角振動、v₅, v₆ は変角振動の振動モードである。各基準振動の片方の振動方向成分を矢印で示している。

子モードと内部モードを区別したのに対して、本研究における yip によるラマンバンドの帰属結果では、220 cm⁻¹を境として外部格子モードと内部モードを区別しており、両者はおおむね良い一致を示した。したがって、本論文の yip によるラマンバンドの帰属は信頼できるものであると考える。

3.3.2 (Sr_{0.85}Ba_{0.15})₂Ta₂O₇の高温その場測定

3.3.2.1 (Sr_{0.85}Ba_{0.15})₂Ta₂O₇のラマンバンドの温度依存性

紫外ラマン散乱を用いることによって得た室温 298 K から 1773 K その場における (Sr_{0.85}Ba_{0.15})₂Ta₂O₇(Ba15)のラマンスペクトルを Fig. 3.9 に示す。各スペクトルのラ マンシフトは Hg 線で補正している。室温においては、22 本のラマンバンドが観測さ

れた(i=*,1~20)。第2章 の放射光X線回折および中性 子回折により (Sr_{0.85}Ba_{0.15})₂Ta₂O₇ は室温にお いて、空間群 P21 に属する *A*₂*B*₂O₇ 層状ペロブスカイト構 造をもつ相であり、また、ご く微量の $(Sr_{1-X}Ba_X)_5Ta_4O_{15}$ 相 を含んでいることがわかった。 しかし、室温におけるラマン スペクトルは、室温における 空間群 P21/m の Sr2Ta2O7 のラ マンスペクトルと比べると、 ピーク位置の違いは多少ある もののスペクトルの形状は非 常に類似しており、ピーク本 数は同じであると判断された。 このとからも、この試料に含

Fig. 3.9 室温 298 K から 1673 K において測定した (Sr_{0.85}Ba_{0.15})₂Ta₂O₇のラマンスペクトル。Hg 線によりピーク位置を補正している。298 K と 373 K のラマンスペクトルには括弧書き で尺度因子を示してある。1~20 の数字と* は主なラマンバンドの番号 *i* を示す。

まれている($Sr_{1-x}Ba_x$) $_5Ta_4O_{15}$ 相は無視できるほどに微量であるといえる。 温度変化に伴いスペクトルの形状に極端な変化は見られなかった。ただし、i=* 第3章 高温紫外ラマン分光による振動および化学結合の性質の評価

のバンドは室温 298 K の時点で強度が低い上に半値幅が広く、373 K 以上の温度では ラマンシフトの位置を確認することは不可能であった。 $Sr_2Ta_2O_7$ の場合と同様に、各 温度のスペクトルを、ローレンツ関数を用いて $i = *, 1 \sim 20$ のラマンバンドにピー ク分離した。Fig. 3.10 にローレンツ関数によってピーク分離した結果の温度依存性を 示す。Fig. 3.10 を見てみると、各ラマンバンドのラマンシフトは温度に対して比較的 滑らかに変化しており、およそ 573 K 以上で温度に対して線形に変化していることが わかった。 $Sr_2Ta_2O_7$ の $P2_1/m$ 相が約 443 K で Cmcm 相へ相転移すること (Refs. [6]-[9]) を考えると、Ba15 は室温よりも高いある温度で $P2_1$ 相から Cmcm 相へ相転移すると 考えられる。

Fig. 3.10 温度変化に伴う(Sr_{0.85}Ba_{0.15})₂Ta₂O₇の各ラマンバンドのラマ ンシフト ω_iの変化。1~20の数字および*はラマンバンドの 番号 *i* を示す。

3.3.2.2 $(Sr_{0.85}Ba_{0.15})_2Ta_2O_7 \mathcal{O}$ Isobaric mode Gruneisen

parameter

573 K 以上のスペクトルに対して、各ラマンバンドの温度依存性を(3.3)式を用いて 調べ、(3.2)式により isobaric mode Gruneisen parameter γ_{iP} を計算し、Table 3.2 および Fig. 3.11 に示した。(Sr_{0.85}Ba_{0.15})₂Ta₂O₇ に関しては、結晶の体積膨張率αは報告されていな いため、Sr₂Ta₂O₇のα(1.83×10⁻⁵ K⁻¹) [10]を代用した。

i	$\omega_{i0} \left(\mathrm{cm}^{-1} \right)^{\dagger}$	$\left(\frac{\partial \omega_i}{\partial T}\right)_p$ (cm ⁻¹ /K)	$\gamma_{iP}(-)$			
1	60.4(2)	-0.00495(16)	4.48(16)			
2	87(2)	-0.006(2)	4.0(14)			
3	91.3(18)	-0.0058(16)	3.5(10)			
4	126.1(5)	-0.0105(3)	4.55(17)			
5	138.1(7)	-0.0101(5)	4.0(2)			
6	201.2(10)	-0.0139(7)	3.8(2)			
7	244.5(3)	-0.0052(3)	1.16(7)			
8	286(2)	-0.008(3)	1.6(5)			
9	298(3)	-0.004(3)	0.7(6)			
10	327.6(14)	-0.0096(14)	1.6(2)			
11	354(5)	-0.016(4)	2.4(6)			
12	360(6)	-0.006(5)	0.8(8)			
13	432(3)	-0.008(3)	1.0(4)			
14	447(3)	-0.011(3)	1.4(3)			
15	465(3)	-0.008(2)	0.9(3)			
16	571(5)	-0.012(5)	1.1(5)			
17	629.0(12)	-0.0167(10)	1.45(9)			
18	793(13)	-0.003(13)	0.2(9)			
19	843.14(15)	-0.01591(11)	1.031(7)			
20	880(11)	-0.009(11)	0.5(7)			

Table 3.2 (Sr_{0.85}Ba_{0.15})₂Ta₂O₇の各ラマンバンドラマンシフトの温 度依存性を直線近似することにより求めた ω_{i0}、(∂ω_i / ∂T)_F および v_{iP}の値。

括弧内の数字は、各パラメータの数値の最終桁における標準偏差を 示している。

[†] ω_{i0} は、473 K 以上の温度領域のラマンシフトを外挿して得られた $T = T_0 = 298$ K における値。

Fig. 3.11 (Sr_{0.85}Ba_{0.15})₂Ta₂O₇の各ラマンバンドの γ_{iP} の値。横軸は(3.3)式における T = T₀ = 298 K の ω_i の値である ω_{i0} 。1~20 の数字と*はラマンバンドの番号 *i* を示す。

 $(Sr_{0.85}Ba_{0.15})_2Ta_2O_7 の \gamma_{iP}$ は $Sr_2Ta_2O_7 の 場合と同様に、およそ 220 cm⁻¹ を境として高周$ 波数側は小さな値を、低周波数側は大きな値をとっている。したがって、220 cm⁻¹よ $り高周波数である <math>i = 7 \sim 20$ のラマンバンドに関係する結合は強いため、TaO₆内部モ ードであると帰属した。一方、220 cm⁻¹より低周波数である $i = 1 \sim 6$ のラマンバンド に関係する結合は弱いため、TaO₆ 八面体の並進振動や回転振動および Sr/Ba や Ta の 並進に関係する外部格子モードであると帰属した。

3.3.3 Sr₂Nb₂O₇の高温その場測定

3.3.3.1 Sr₂Nb₂O₇のラマンバンドの温度依存性

紫外ラマン散乱を用いることによって得た室温 298 K から 1643 K その場における Sr₂Nb₂O₇のラマンスペクトルを Fig. 3.12 に示す。各スペクトルのラマンシフトは Hg 線で補正してある。室温においては、典型的な Sr₂Nb₂O₇のラマンスペクトル[12]が観 測された。Yamamoto 氏ら[13]は、不整合(IC)相から *Cmc*2₁への相転移が 493 K で

したがって、573 K におい ては空間群 Cmc2₁の Sr₂Nb₂O₇のスペクトルが 観測されていると思われ る。573 K においては、i= 1~26の26本のラマンバ ンドに加え、2本の付加的 なラマンバンド(*)が観 測された。その付加的な ラマンバンドは強度が非 常に弱く、673 K を超える 温度ではピーク位置を求 めることが困難であった。 573 Kから1473 Kへ試料 温度の上昇にともない、 ピーク形状に不連続な変 化は見られず、全てのラ マンバンドは連続的にピ

起こると報告している。

Fig. 3.12 298 Kから 1643 Kにおいて測定した Sr₂Nb₂O₇ のラマンスペクトル。ピーク位置は Hg 線で補 正した。298 K から 1073 K の温度範囲におい ては、尺度因子を括弧書きで示してある。空間 群 Cmc2₁のスペクトルでは *i* = 1 ~ 26 の 26 本 に加え、*で示したラマンバンドが観測され た。不整合(IC)相であると思われる 298 K か ら 473 K の温度範囲では、不整合に変調された 構造に由来する Cmc2₁に対する付加的なピー クを●で示す。
ークシフトした。1643 K においては、Sr₂Ta₂O₇の443 K 以上における空間群 Cmcm の
 スペクトルと類似したスペクトルであった([5]および本論文 3.3.1.1 目参照)。
 Nanamatsu 氏ら[14]は、Sr₂Nb₂O₇の強誘電相 Cmc2₁から常誘電相 Cmcm への相転移が
 1615 K で起こると報告している。

ラマンスペクトルのピーク分離を行い、573 K~1473 K の温度範囲において、各ラ マンバンドの温度依存性を (3.3)式により調べた結果を Fig. 3.13 に示す。*i*=2 を除く 全てのラマンバンドは、温度上昇に伴い直線的に低周波数側へシフトしたが、*i*=2 のラマンバンドは非直線的にシフトした。Ohi 氏ら[12]は、*i*=2 のラマンバンドが強 誘電相 *Cmc2*1 から常誘電相 *Cmcm* への相転移に寄与するソフトモードであると報告

Fig. 3.13 温度変化に伴う Sr₂Nb₂O₇の各ラマンバンドのラマンシフトω_iの変化。 1643 Kにおける空間群 Cmcmのラマンバンドの番号(i)は Sr₂Ta₂O₇に対応している。

している。一般的に、ソフトモードは相転移 温度付近において、急激に周波数が変化する。 Fig. 3.14 に示されるように、i = 2のラマンバ ンドは相転移温度に近づくにつれ、急激な周 波数の変化とピーク幅の増大が起こった。Fig. 3.15 にi = 2のラマンシフトの値を二乗した $\omega_{i=2}^{2}$ の温度依存性を示す。 $\omega_{i=2}^{2}$ は温度上昇 に伴い直線的に減少し、外挿すると1634 K に おいて 0 cm⁻² になる。この温度は Cmc2₁ から 常誘電相 Cmcm への相転移温度であると報告 されている 1615 K[14]におおむね一致してい る。この Cmc2₁ から Cmcm への相転移は、NbO₆ 八面体の回転によって引き起こされる相転移 であると言われている[15]。

Fig. 3.14 *i* = 2 のラマンバンドの温 度依存性。573 K ~ 1073 K の温度範囲のスペクトル は、括弧書きで尺度因子を 示す。

Fig. 3.15 i = 2 のラマンシフトの値を二乗した $\omega_{i=2}^2$ の温度依存性。

3.3.3.2 $Sr_2Nb_2O_7 \mathcal{O}$ Isobaric mode Gruneisen parameter

Sr₂Nb₂O₇の各ラマンバンドが温度上昇に伴い直線的に変化した 573 K ~ 1473 K の 温度範囲に対して、(3.3)式を用いて求めたラマンシフトの温度依存性を用い、(3.2) 式により isobaric mode Gruneisen parameter γ_{iP} を計算し、Fig. 3.16 に示した。結晶の体 積膨張率 a には、 $(1 / V_0) (\partial V / \partial T)_P = 3.31 \times 10^{-5} \text{ K}^{-1}$ を用いた[16]。

Fig. 3.16 Sr₂Nb₂O₇の各ラマンバンドの γ_{iP}の値。横軸は(3.3)式における T = T₀ = 298 Kの ω_iの値である ω_{i0}。1 および 3 ~ 26 の数字と*は 1634 K 未満の Cmc2₁相におけるラマンバンドの番号 i を表す。i = 2 に対する γ_{iP}の値は 13.9±0.03 であった。外部格子モードおよび NbO₆内部モードへの帰属は、 Fig. 3.13 および Fig. 3.17 における Sr₂Nb₂O₇のラマンバンドと Sr₂Ta₂O₇のラマンバンドとの対応関係から判断した。

本論文の 3.3.1.2 目および 3.3.2.2 目で述べたとおり、 $Sr_2Ta_2O_7$ および ($Sr_{0.85}Ba_{0.15}$) $_2Ta_2O_7$ では γ_{iP} の大きさにより、220 cm⁻¹未満および 220 cm⁻¹以上のラマン バンドをそれぞれ外部格子モードおよび TaO_6 八面体内部モードに帰属することがで きた。しかしながら、 $Sr_2Nb_2O_7$ の場合、Fig. 3.16 を見て分かるように、全ての周波数 域のラマンバンドの γ_{iP} が同程度の値を示しており、 γ_{iP} の値からそれぞれのラマンバ ンドが外部格子モードであるのかそれとも内部モードであるのか判断をすることが できない。本論文では、 $Sr_2Nb_2O_7$ のラマンバンドと $Sr_2Ta_2O_7$ のラマンバンド(本論文 3.3.1 項)との対応関係を調べ、 $Sr_2Ta_2O_7$ のラマンバンドの帰属(本論文 3.3.1.2 目お よび 3.3.1.3 目、[5])を利用することにより、 $Sr_2Nb_2O_7$ のラマンバンドの帰属を行っ

た。 $Sr_2Nb_2O_7$ のラマンバンドと $Sr_2Ta_2O_7$ のラマンバンドとの対応関係をFig. 3.17 に示 す。1643 K において $Sr_2Nb_2O_7$ は、473 K における $Sr_2Ta_2O_7$ と同じ空間群*Cmcm* に属 する[14][17]。1643 K において $Sr_2Nb_2O_7$ は21本のラマンバンド($i=1\sim20$, *)を持 ち、ラマンバンドの本数が $Sr_2Ta_2O_7$ と一致し。ラマンスペクトルの形状も良く似てい る。 $Sr_2Ta_2O_7$ では、 $i=7\sim20$ のラマンバンドは TaO_6 八面体の内部モードである。今、

Fig. 3.17 と Fig. 3.13 に示 されるように、空間群 *Cmcm* の $Sr_2Nb_2O_7$ のスペ クトルのラマンバンドの 番号(*i*)を、空間群 Cmcm の $Sr_2Ta_2O_7$ のラマンバン ドの番号(i)に一致させる と、Cmcm 相における $Sr_2Nb_2O_7 \mathcal{O} i = 7 \sim 20 \mathcal{O} \overline{\mathcal{P}}$ マンバンドも NbO₆ 八面 体の内部モードと考えら れる。 $Sr_2Nb_2O_7 \mathcal{O}$ Cmcm 相と Cmc21 相の間のラマ ンバンドの対応関係に基 づくと、210 cm⁻¹より高周 波数のラマンバンド (*Cmc*2₁相における *i* = 10

~ 26, *)は NbO₆ 八面体

NbO₆ or TaO₆ External Lattice Modes Internal Modes Sr₂Ta₂O₇ at 473 K (Cmcm) Intensity / a.u Sr_Nb_O at 1643 K 1634 K 23 Sr_Nb_O_ 21at 1473 K $\overline{Cmc2}$ Sr_Nb_O_ at 573 K 200 400 600 800 1000 Raman shift / cm⁻ Fig. 3.17 $Sr_2Nb_2O_7$ のラマンバンドと $Sr_2Ta_2O_7$ のラマンバ

ンド(本論文 3.3.1 項参照)との対応関係。1643 K において Sr₂Nb₂O₇ は 473 K における Sr₂Ta₂O₇ と 同じ空間群 *Cmcm* に属す[14][17]ため、この両者 のスペクトルにおいてはラマンバンドの番号(*i*)を 統一させている。Fig. 3.13 においても同様に、 1643 K における Sr₂Nb₂O₇のラマンバンドの番号 (*i*)は空間群 *Cmcm* の Sr₂Ta₂O₇の番号(*i*)と一致さ せている。

の内部モード、 $i = 1 \sim 9$ は外部格子モードに帰属される。Fig. 3.16 に示されるように、 空間群 $Cmc2_1$ の Sr₂Nb₂O₇において、内部モード($i = 10 \sim 26$)の γ_{iP} のほとんどは、外 部格子モード($i = 1 \sim 9$)の γ_{iP} と同程度の大きさである。この結果は NbO₆ 八面体内 第3章 高温紫外ラマン分光による振動および化学結合の性質の評価 部の Nb-O 結合の強度が外部結合と同じくらい弱いことを意味している。

 $Sr_2Nb_2O_7$ のこのように弱い Nb-O 結合は、NbO₆ 八面体に大きな歪みを生じさせ、 NbO₆ 八面体の O₆ の重心からの Nb の大きな静的変位を誘発させると思われる。この 静的変位は、NbO₆ 八面体内の双極子モーメントを誘発させると同時に Nb-O-Nb 結合 角を 180° から遠ざける効果を持つ。さらに、 $Sr_2Nb_2O_7$ は NbO₆ 八面体の回転の原因と なるソフトモードを有しており、NbO₆ 八面体が大きく静的に回転した構造をもち、 このことも相まって、 $Sr_2Nb_2O_7$ は Nb-O-Nb 結合角が 180° から乖離している。この Nb-O-Nb 結合角の 180° から乖離は励起電子の移動度が低いことを示唆しており、光 触媒反応に不向きな特徴であると考えられる。

3.4 考察

高温ラマン散乱実験により γ_{PP} を計算し化学結合の強さを評価した結果、Sr₂Ta₂O₇ は TaO₆ 八面体の Ta-O 内部結合は外部結合に比べ強いことが明らかとなった。このた め、Sr₂Ta₂O₇ は TaO₆ 八面体の歪みが小さく、Ta-O-Ta 結合角が 180° から乖離しておら ず、励起電子の移動度が高いことが示唆される。(Sr_{0.85}Ba_{0.15})₂Ta₂O₇においても同様に、 TaO₆ 八面体の Ta-O 内部結合は外部結合に比べ強いことが明らかとなった。このため、 Sr₂Ta₂O₇ は Ba 置換により TaO₆ 八面体に歪みが生じにくく、Ta-O-Ta 結合角を 180° か ら大きく乖離させず結晶構造中に分極を生じさせることができ、励起電子の移動度は 高い状態で、励起電子と正孔の再結合の確率を下げることができると示唆される。 一方、Sr₂Nb₂O₇ においては、NbO₆ 八面体の Nb-O 内部結合は外部結合と同程度に弱 いことがわかった。この弱い Nb-O 結合は NbO₆ 八面体を大きく歪ませ、NbO₆ 八面体 の O の重心からの Nb の大きな静的変位を誘発すると思われる。この静的変位は、 NbO₆ 八面体の回転と同様に Nb-O-Nb 結合角の 180° からの乖離に寄与すると思われる。 そのため、Sr₂Nb₂O₇ は励起電子と正孔の再結合確率は低いものの励起電子の移動度が 低いと示唆される。

3.5 結論(まとめ)

紫外レーザーを用いたラマン散乱装置により、Sr₂Ta₂O₇、(Sr_{0.85}Ba_{0.15})₂Ta₂O₇および Sr₂Nb₂O₇の高温その場ラマン散乱実験を行い、化学結合性質の評価を行った。Sr₂Ta₂O₇ と(Sr_{0.85}Ba_{0.15})₂Ta₂O₇では、TaO₆八面体の Ta-O 内部結合が外部結合に比べて強いこと がわかった。このことは、Sr₂Ta₂O₇のSrの一部をBa置換した場合、TaO₆八面体は大 きくは歪まず、Ta-O-Ta 結合角を 180^oから乖離させることなく分極を導入できること を示唆している。このため、(Sr_{0.85}Ba_{0.15})₂Ta₂O₇は Sr₂Ta₂O₇と比較して、励起電子の移 動度は高い状態で励起電子と正孔の再結合確率が低く、光触媒活性が高いと考えられ る。一方、Sr₂Nb₂O₇は NbO₆八面体の Nb-O 内部結合が外部結合と同程度に弱いこと が明らかとなった。Sr₂Nb₂O₇はNbO₆八面体の Nb-O 内部結合が弱く、NbO₆八面体の静的回転を有 している。Sr₂Nb₂O₇は NbO₆八面体の Nb-O 内部結合が弱く、NbO₆八面体の静的回転 と相まって、Nb-O-Nb 結合角が 180^oから大きく乖離することが示唆された。このた め Sr₂Nb₂O₇は励起電子の移動度が低く、光触媒活性が低いと思われる。

参考文献

- [1] P. S. Peercy, B. Morosin, *Phys. Rev. B*, **7** [6], 2779-86 (1973)
- [2] P. Gillet, F. Guyot, J.-M. Malezieux, Phys. Earth Planet. In., 58 [2-3], 141-54 (1989)
- [3] M. Yashima, M. Kakihana, R. Shimidzu, H. Fujimori, M. Yoshimura, *Appl. Spectrosc.*, 51 [8], 1224-28 (1997)
- [4] H. Fujimori, M. Kakihana, K. Ioku, S. Goto, M. Yoshimura, *Appl. Phys. Lett.*, **79** [7], 937-39 (2001)
- [5] K. Ito, K. Ohi, J. Kor. Phys. Soc., **32**, 8545-8547 (1998)
- [6] N. Yamamoto, M. Nakamura, K. Yagi and K. Ohi, J. Phys. Soc. Jpn., 49, Suppl. B, 95-97 (1980)
- [7] N. Yamamoto, K. Yagi, G. Honjyo, M. Kimura and T. Kawamura, J. Phys. Soc. Jpn., 48

第3章 高温紫外ラマン分光による振動および化学結合の性質の評価 [1], 185-91 (1980)

- [8] S. Kojima, K. Ohi and T. Nakamura, Solid State Commun., 35 [1], 79-81 (1980)
- [9] Y. Akishige and K. Ohi, J. Phys. Soc. Jpn., 61 [4], 1351-56 (1992)
- [10] V. V. Kochetkov, N. A. Zakharov, S. Yu. Stefanovich, Yu. N. Venevtsev, Sov. Phys. Crystallogr., 24 [5], 610-13 (1979)
- [11] Herzberg G, "Infrared and Raman Spectra of Polyatomic Molecules", New York: Van Nostrand (1975)
- [12] K. Ohi and S. Kojima, Jpn. J. Appl. Phys., 24, Suppl. 24-2, 817-19 (1985)
- [13] N. Yamamoto, K. Yagi, G. Honjyo, M. Kimura, T. Kawamura, J. Phys. Soc. Jpn., 48 [1], 185-191 (1980)
- [14] S. Nanamatsu, M. Kimura, T. Kawamura, J. Phys. Soc. Jpn., 38 [3], 817-24 (1975)
- [15] N. Ishizawa, F. Marumo, S. Iwai, Acta Cryst., B37 [1], 26-31 (1981)
- [16] M. Fukuhara, C.-Y. Huang, A. S. Bhalla, R. E. Newnham, J. Mater. Sci., 26 [1], 61-66 (1991)
- [17] N. Yamamoto, K. Yagi, G. Honjyo, M. Kimura, T. Kawamura, J. Phys. Soc. Jpn., 48 [1], 185-191(1980)

第4章 総合考察

本論文では、光触媒に微量元素置換を行うことで、結晶内の分極や伝導帯下部を構 成する電子軌道の重なりを制御して光触媒活性を向上させるという指針を実験的に 立証するために、放射光X線回折および中性子回折を用いた精密な結晶構造解析に加 え、高温紫外ラマン散乱による化学結合の性質の評価を行った。結晶構造解析では、 原子位置を精密化し、結晶内の分極や結合角の変化を求めた。結晶構造解析により結 合の強さを評価する場合には、イオン結合性を 100%と仮定した場合、原子間距離か ら原子間の結合の強さを予想することになる。共有結合性も考慮する場合には、結合 電子の密度にも着目する必要がある。イオン結合性が高い場合および共有結合性が高 い場合のいずれの場合においても、結晶構造解析から得られる原子の振動の振幅(原 子変位パラメータ、温度因子)も結合の強さを反映していると思われる。また、紫外 レーザーを用いた高温紫外ラマン散乱の研究では、原子間の振動の周波数の温度変化 を精密に観察することで、実験から直接的に化学結合の強さを評価することができた。

本論文では、*A*2*B*2O7型層状ペロブスカイト構造を有する光触媒である Sr₂Ta₂O7に注 目した。助触媒 NiO_xを担持した光触媒 Sr₂Ta₂O7 は高い水分解特性を有するが、母体 の光触媒である Sr₂Ta₂O7 の Sr の一部を Ba で置換すると水分解特性がさらに高まる一 方、Sr の一部を Ca で置換すると水分解特性が低下する。しかしながら、このように 光触媒活性が変化するメカニズムは明らかとなっていなかった。放射光 X 線回折お よび中性子回折を用いたリートベルト法による精密な結晶構造解析ならびに紫外レ ーザーを用いた高温ラマン散乱実験による化学結合の評価を行うことで、分極や Ta-O-Ta 結合角が光触媒活性に与える影響を以下のように総合的に考察した。

本論文では、まず、局所的な分極(電場)である双極子モーメントや結晶全体に渡って生じる分極(電場)である自発分極が光触媒活性を向上させる働きを持つことを明らかにした。双極子モーメントが光触媒反応に与える影響に関しては、Inoue 氏ら [1]も言及しており、酸素多面体内の双極子モーメントの大きな光触媒は、双極子モ

ーメントが生じていない光触媒に比べ、光触媒活性が高いと報告している。Kudo 氏 ら[2]や Ikeue 氏ら[3]も Inoue 氏ら[1]の意見に同意している。また、自発分極の光触媒 反応への影響を調べるために、Giocondi 氏ら[4]は強誘電体である BaTiO₃ および Sr₂Nb₂O₇の微結晶を用いた Ag の光析出の研究を行った。同氏らは、ドメインの分極 方向を向いた面に Ag が光析出されることを確認し、強誘電性の微結晶の自発分極は、 励起電子と正孔を粒子の反対方向へ向かわせる効果を持つと考えた。これにより、励 起電子による水の還元反応と正孔による水の酸化反応は強誘電性微粒子の反対方向 の表面でおこると考察している。Park 氏ら[5]は、コロナポーリング法により分極処 理を行うことにより、K_{0.5}Na_{0.5}NbO₃の光触媒活性が向上することを示した。

本研究では、Ta-O-Ta 結合角が 180° から乖離すると、光触媒活性を低下させる働き があることも明らかにした。Ta-O-Ta 結合角の物性に与える影響については、Blasse 氏ら[6]も研究を行っている。同氏らは Ta 系複合酸化物のフォトルミネッセンス測定 を行い、その結果を結晶構造と比較した。その結果、Ta-O-Ta 結合角が 180° に近い場 合には、励起準位が非局在化し、それにより伝導帯の分散が大きくなることが示唆さ れ、励起電子はトラップ準位に捕獲されづらくなり、移動度は高くなると考えられた。 同氏らは、伝導帯の分散が大きくなる結果、バンドギャップが減少することについて も言及している。Srivastava 氏ら[7] や Kudo 氏ら[2]は、Blasse 氏ら[6]の意見に同意し ている。Kudo 氏ら[2]は、Ta-O-Ta 結合角が 180° に近い場合には、励起電子の移動度 が高く、その結果、光触媒活性が高くなると述べている。

本論文では扱わなかったが、Kudo 氏ら[2]は、電子が励起される伝導帯の底のエネ ルギー準位の高さについて言及している。同氏らは Sr₂Ta₂O₇ および Sr₂Nb₂O₇ につい てバンドギャップを測定し、その結果から各試料の伝導帯の底のエネルギー準位の高 さを計算した。また、Sr₂Ta₂O₇ は助触媒として NiO を担持すると光触媒活性が向上す るが、Sr₂Nb₂O₇ は NiO を担持しても光触媒活性がほとんど向上しないことを示して いる。バンドギャップを測定した結果、Sr₂Ta₂O₇ の伝導帯の底のエネルギー準位は、 NiO の伝導帯のエネルギー準位よりも 1 eV ほど高いことがわかった。一方で、

Sr₂Nb₂O₇の伝導帯の底のエネルギー準位は、NiOの伝導帯のエネルギー準位よりも 0.3 eV 高いだけであることがわかった。以上の結果から Kudo 氏ら[2]は、伝導帯の底 のエネルギー準位が高い場合、光触媒粒子表面から助触媒へ電子が移るために必要な 障壁を乗り越えやすいと考察している。本論文で扱った Sr₂Ta₂O₇は Sr の一部を Ba 置換した場合、15mol%程度の置換量ではバンドギャップは変化しない。一方、Ca置 換では、10 mol%程度の置換量でもバンドギャップの増加がみられる。Caを 60 mol% 置換した試料では、明らかなバンドギャップの増加がみられる。つまり、Sr の一部 を Ba 置換した(Sr_{0.9}Ba_{0.1})₂Ta₂O₇ すなわち Ba10 および(Sr_{0.85}Ba_{0.15})₂Ta₂O₇ すなわち Ba15 は、電子が励起される伝導帯の底のエネルギー準位の高さが Sr₂Ta₂O₇と同程度であり、 +分に光触媒表面から助触媒 NiO へ移るだけのポテンシャルを持っているというこ とができると考えられる。一方、Sr の一部を Ca 置換した(Sr_{0.4}Ca_{0.6})₂Ta₂O₇ すなわち Ca60 では、Sr₂Ta₂O₇よりもむしろ電子が励起される伝導帯の底のエネルギー準位が高 く、試料表面から助触媒 NiO へ励起電子が移るためのより高いポテンシャルを持っ ていることが示唆される。したがって、光触媒本体の表面から助触媒 NiO への励起 電子の移りやすさだけを考えるならば、Sr₂Ta₂O7の Sr の一部を Ba で置換するよりも Ca で置換した方が、光触媒活性が高くなるということになってしまう。Sr₂Ta₂O₇の Sr の一部を Ba で置換すると光触媒活性が向上し、Ca で置換すると光触媒活性が低下 する要因は、電子が励起される伝導帯の底のエネルギー準位の高さの変化では説明す ることができず、結晶内の分極(電場)やTa-O-Ta 結合角が影響を及ぼす伝導帯下部 を構成する電子軌道の重なりの大きさを考慮する必要があると思われ、本論文ではそ れを主に議論した。

本論文の放射光 X 線回折および中性子回折を用いたリートベルト法による精密な 結晶構造解析の結果ならびに紫外レーザーを用いた高温ラマン散乱実験により化学 結合を評価した結果を総合し、光触媒活性を向上させるための方法を以下のように考 察した。Sr₂Ta₂O₇の TaO₆ 八面体内の歪みは、分極を誘起するという観点では光触媒 活性を向上させる効果を持つと考えられる。しかしながら、TaO₆ 八面体の歪みが大

き過ぎ Ta-O-Ta 結合角の 180° からの乖離を引き起こしてしまうと、励起電子の移動度 が低下してしまう。したがって、TaO₆ 八面体の内部結合を弱め、TaO₆ の歪みを増加 させ過ぎることも光触媒特性に対しては悪い影響を及ぼすと考えられる。TaO₆ 八面 体の静的な回転が大き過ぎることも、Ta-O-Ta 結合角を 180° から遠ざけるため問題で あるだろう。以上のように本論文において回折実験とラマン分光実験のいずれの結果 においても、助触媒 NiO_x を担持した Sr₂Ta₂O₇ 系光触媒の光触媒活性を向上させるた めには、Ta-O-Ta 結合角を 180° から大きく乖離させることなく、結晶構造中に分極を 誘起する元素置換を行うことが有効であることが示された。このような元素置換効果 は、Sr₂Ta₂O₇ の Sr の一部を Ba に置換をすることで引き起こすことができることを明 らかにした。

このようにして本論文は、元素置換による結晶構造への歪みの導入により、伝導帯 下部を構成する電子軌道の重なりを制御し励起電子の移動度を低下させずに、結晶中 に分極を導入することにより励起電子と正孔の再結合を抑制し、光触媒活性を向上さ せる指針を実験的に示すものである。この指針は可視光で応答する光触媒にも応用す ることが可能であるため、この分野に大きく貢献しうると期待される。

参考文献

- M. Kohno, S. Ogura, K. Sato and Y. Inoue, *Chem. Phys. Lett.*, **267**, 72-6 (1997); J. Sato,
 N. Saito, H. Nishiyama and Y. Inoue, *J. Photochem. Photobio. A*, **148**, 85-9 (2002); J.
 Sato, H. Kobayashi and Y. Inoue, *J. Phys. Chem. B*, **107**, 7970-5 (2003); J. Sato, H.
 Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama and Y. Inoue, *J. Phys. Chem. B*, **108**, 4369-75 (2004); H. Kadowaki, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, Y.
 Simodaira and Y. Inoue, *J. Phys. Chem. B*, **109**, 22995-23000 (2005)
- [2] A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B, 571-5, 104 (2000); H. Kato and A. Kudo, J. Photochem. Photobio. A, 145, 129-33 (2001)

- [3] K. Ikeue, T. Mitsuyama, K. Arayama, A. Tsutsumi and M. Machida, J. Ceram. Soc. Jpn., 117 [11] 1161-5 (2009)
- [4] J. L. Giocondi and G. S. Rohrer, Top Catal, 49, 18-23 (2008)
- [5] S. Park, C. W. Lee, M.-G. Kang, S. Kim, H. J. Kim, J. E. Kwon, S. Y. Park, C.-Y. Kang,
 K. S. Hong and K. T. Nam, *Phys. Chem. Chem. Phys.*, 16, 10408-13 (2014)
- [6] G. Blasse, J. Solid State Chem., 72, 72-79 (1988); G. Blasse and L. H. Brixner, Mat. Res.
 Bull., 24, 363-6 (1989)
- [7] A. M. Srivastava, J. F. Ackerman and W. W. Beers, J. Solid State Chem., 134, 187-91 (1997)

謝辞

まず、学部4年生の頃から現在まで長期にわたり、終始適切なご指導ならびにご鞭 撻を賜りました山口大学大学院理工学研究科および創成科学研究科の藤森宏高准教 授に深く感謝いたします。研究以外のことに関しても、多くのことを教えていただき、 そのことに関しても深く感謝いたします。また、貴重なお時間を割いていただき、本 博士論文の副査として有益なご指導とご助言をいただきました山口大学理工学研究 科および創成科学研究科の酒多喜久教授、山本節夫教授、吉本信子教授、中塚晃彦准 教授に深く感謝いたします。

本研究で用いた試料の一部を合成して頂きました本研究室で修士課程を修了され た森田健介氏に深く感謝いたします。放射光X線回折測定でお世話になりました、東 京工業大学理学院の八島正知教授、本研究室で修士課程を修了された私の直属の先輩 にあたる北林久典氏、中島雅士氏に深く感謝いたします。中性子回折測定の際にお世 話になりました東京工業大学理学院の八島正知教授、茨城大学理工学研究科の大山研 司教授、本研究室で修士課程を修了された森田健介氏、岡西計典氏に深く感謝いたし ます。また、そのリートベルト解析でお世話になりました、本研究室で修士課程を修 了された岡西計典氏、卒論生の高橋宣博氏に深く感謝いたします。ラマン散乱測定で お世話になりました東京工業大学物質理工学院の松下伸広准教授に深く感謝いたし ます。第二高調波測定でお世話になりました山口大学大学院理工学研究科および創成 科学研究科の笠谷和男教授に深く感謝いたします。

北林久典氏、中島雅士氏、博士課程を共に過ごした山藤知徳博士、宇部工業高等専 門学校物質工学科 准教授の茂野交市博士をはじめとして、本研究室でお世話になっ たみなさまに深く感謝いたします。

> 平成 30 年 3 月 山口大学大学院理工学研究科 物質工学系専攻 セラミックス工学研究室 川西一平

Appendix 第2章の付録

A.1 A2B2O7 層状ペロブスカイト構造の I1 型、I2 型および II 型

の単位格子の対応関係

 BO_6 八面体の回転がなく、対称中心のある I 型は、I₁型(空間群 *Cmcm*, Z = 4)および I₂型(空間群 $P2_1/m$, Z = 4)の 2 種類ある。一方、 BO_6 八面体の回転が一つの軸周 りにあり、対称中心のない II 型は空間群 *Cmc2*₁, Z = 4 の 1 種類が報告されている。I 型である I₁型および I₂型ならびに II 型の単位格子の対応関係を Fig. A-1 に示す。

Fig. A-1. A₂B₂O₇ 層状ペロブスカイト構造の | 型である |₁ 型および |₂ 型ならびに || 型の単 位格子の対応関係。

Zは化学式 $A_2B_2O_7$ 単位が単位格子中に何組あるかを表している。Z=4であれば、単位格子中に、 $A_2B_2O_7$ が4組、つまり、単位格子中にAが8個、Bが8個、Oが28個存在することを意味する。

A.2 本論文で得られた I₂型の Sr₂Ta₂O₇ 層状ペロブスカイト構造の特徴

 I_2 型 ($P2_1/m$, Z = 4) については、 I_1 型 (Cmcm, Z = 4) との単位格子の対応関係が Appendix A.1 で示したように報告されていたが、原子の位置情報に関しては、報告が なかった。本論文の 2 章で得られた I_2 型を有する $Sr_2Ta_2O_7$ の結晶構造を Fig. A-2 に示 す。この構造には、 TaO_6 八面体の回転はないが、ペロブスカイト欠損層に面した稜 がわずかに短い外側 TaO_6 八面体と稜がわずかに長い外側 TaO_6 八面体が c 軸方向に交 互に積み重なっている。また、Srの a 軸方向への微小変位が見られる。

Fig. A-2. 本論文2章で得られた12型のSr₂Ta₂O₇の結晶構造とその考察。

ここで、隣のペロブスカイト層へ向かって *a* 軸方向に微小変位している外側 Sr に 注目する(Fig. A-2 参照)。その Sr の微小変位の延長線上には、隣のペロブスカイト 層の外側 TaO₆ 八面体の稜があり、さらに延長線上には外側 Ta がある。このような外

Appendix

側 Sr の隣のペロブスカイト層の外側 TaO₆への接近は、今注目している外側 Sr と外 側 Ta の間に働く陽イオン間斥力を増加させると考えられる。この陽イオン間斥力を 低減させるために、注目している外側 TaO₆ 八面体のペロブスカイト層に面した稜は、 *c* 軸方向に隣り合う外側 TaO₆ 八面体のそれに比べ、わずかに短いと考えられる。一 方、ペロブスカイト層に面した稜がわずかに長い方の外側 TaO₆ 八面体においては、 その Ta に対して隣のペロブスカイト層の外側 Sr は離れるように微小変位をしており、 Sr-Ta の陽イオン間斥力を弱めていることが確認できる。

内側 Sr の微小変位方向には、外側 TaO₆ 八面体の頂点の O があり、Sr-Ta 間の陽イ オン間斥力には関与しないと思われる。

A.3 A2B2O7 層状ペロブスカイト構造の4種類のIII 型の特徴

III 型では、 BO_6 八面体の二つの軸周りの回転とそれに伴う A カチオンの微小変位 がみられる。Fig. A-3 に III1, III2, III3 および III4 の結晶構造を示す[1]-[4]。Fig. A-3 にお いて、A カチオンの紙面左右方向の微小変位に注目すると、その微小変位の方向の規 則性は、図中のラベル A, B, C および D で示した 4 種類に分類することができる。A および B は、A カチオンの微小変位の向きが「 $\leftarrow \rightarrow \rightarrow \leftarrow$ 」および「 $\rightarrow \leftarrow \leftarrow \rightarrow$ 」のよう に、一つの方向には揃っていないのに対して、C および D では、「 $\leftarrow \leftarrow \leftarrow \leftarrow$ 」および 「 $\rightarrow \rightarrow \rightarrow \rightarrow$ 」のように揃っている。図で示されるように、III1 型は、A カチオンの微 小変位の向きが一つの方向に揃っていない A および B が AABB という順番で配列し ている構造である。III2 は、ABAB と配列している。III3 では、A カチオンの微小変位 の向きが一つの方向に揃った C および D が、CDCD と配列している。また、III3 では C および D における一方向に揃った A カチオンの微小変位の向きに合わせて、TaO₆ 八面体も A カチオンの微小変位と同じ向きに微小変位した構造をとっていることが 特徴である。III4 型では、A と II 型のような構造が積み重なった構造をとっている。

Appendix

これらの4種類のどの相が出現するかは、試料の冷却速度にもよると考えられており、 これらの不整合相(IC相)が出現する場合もある。

Fig. A-3 A₂B₂O₇層状ペロブスカイト構造の III 型である III₁, III₂, III₃ および III₄ [1]-[4]の特徴。

参考文献

- [1] M. Gasperin, Acta Cryst., B31 [8], 2129-30 (1975)
- [2] K. Scheunemann and Hk. Muller-Buschbaum, J. Inorg. Nucl. Chem., 36, 1965-70 (1974)
- [3] K. Scheunemann and Hk. Muller-Buschbaum, J. Inorg. Nucl. Chem., 37, 1679-80 (1975)
- [4] K. Scheunemann and Hk. Muller-Buschbaum, J. Inorg. Nucl. Chem., 37, 2261-63 (1975)