学 位 論 文 要 旨

氏名 矢部 滝太郎

題 目：タンパク質脱リン酸化酵素PP2Aを標的とした新規抗がん戦略の基盤的研究

タンパク質の可逆的なリン酸化反応は，リン酸化酵素（キナーゼ）と脱リン酸化酵素（ホスフ アターゼ）が協調して厳密に調節しており，タンパク質リン酸化の異常は，がんや神経変性疾患 をはじめとした様々な疾患の原因となる。がんは，ヒトと伴侶動物双方の臨床で最も重要な疾患 の 1 つであり，その発生や悪性化には細胞内タンパク質の過剰なリン酸化が重要な役割を果たし ている。これまで，キナーゼの異常な活性化がその一因とされ，分子標的抗がん剤の標的として注目されてきた。近年，がんの発生や悪性化には，キナーゼ活性の上昇だけではなくホスファタ ーゼ活性の低下も極めて重要な役割を果たすことが明らかとなってきた。したがって，ホスファ ターゼ活性を回復させる分子機構が，抗がん剤の新たな標的として有効であると考えられる。

Protein phosphatase 2A（PP2A）は，細胞内の主要なセリン・スレオニンタンパク質脱リン酸化酵素の 1 つであり，がん抑制因子として知られている。PP2Aは 3 つのサブユニットにより構成され ており，酵素活性を持つCサブユニット（PP2Ac），足場サブユニットとして機能するAサブユニッ ト（PP2AA），基質特異性を決定する調節サブユニットであるBサブユニットが ABC 三量体を形成 している。多くのがんにおいて，PP2Aが内在性阻害タンパク質による機能抑制を受けていること から，これら阻害タンパク質を標的としてPP2A活性を回復させることが，新たな抗がん戦略とし て有効と考えられる。そこで，PP2Aの内在性阻害タンパク質であるSETとPME－1に着目し，SET を標的としてPP2Aを活性化させる抗がん戦略の獣医領域への応用における問題点の解決と，

PME－1によるPP2A制御の分子機構の解明を通して，PP2Aを標的とした新規抗がん戦略の基盤を形成することを本研究の目的とした。

SETは，急性骨髄性白血病における染色体の転座によって生じたSET－CAN融合遺伝子の構成因子の1つとして発見された。これまでにヒトでは，機能解析がなされているアイソフォーム（SET α とSET β ）を含めて 4 つのアイソフォームが同定されている。ヒトとイヌ双方でSETを標的とした PP2A活性化が抗がん作用を示すとの知見が蓄積されてきたが，その分子機構や効果についての比較生物学的検討は行われていない。そこで第2章では，イヌSETのアイソフォームの同定を行う ことで，SETを標的としてPP2Aを活性化させる抗がん戦略がイヌにおいても有効であるか検討し た。イヌ細胞株のSETタンパク質発現量の解析から，イヌにおいても複数のSETアイソフォームが存在することが明らかになった。そこで，イヌcDNAからクローニングを行ったところ，4つのSET
（別紙樣式第3号）
アイソフォームを同定することに成功し，それぞれSET α ，SET β ，SET $\gamma, ~ S E T \delta$ と名付けた。免疫沈降法を用いた検討から，これらのアイソフォームのうちSET α と β は，PP2Aの酵素サブユニット （PP2Ac）に結合することが明らかとなり，これら2つのアイソフォームがイヌにおいてPP2A活性を抑制すると考えられた。

PP2A複合体の構成は，PP2AcのLeu309残基のメチル化レベルによって変化することが知られて いる。PME－1は，「PP2Ac脱メチル化酵素」であるとともに，PP2Acの触媒活性部位に直接結合す ることで活性を阻害する「PP2A阻害タンパク質」としての機能も持つユニークなタンパク質であ る。PME－1タンパク質発現量の増加は，グリオーマや子宮内膜癌において悪性度と相関すること が明らかとなっているが，その詳細な分子機構は解明されていない。そこで第 3 章では，PME－1欠損細胞を用いた解析を行い，PME－1によるPP2A制御機構の解明を目指して研究を行った。PME－1欠損マウスの胎児から線維芽細胞MEFを単離し，PME－1欠損がPP2A制御機構と細胞の表現型に与 える影響について検討を行った。PME－1欠損細胞ではPP2Acタンパク質発現量が顕著に低下して おり，PP2Acのユビキチン・プロテアソーム系分解が促進していた。このPME－1によるPP2Ac分解保護機構は，PME－1の脱メチル化活性に依存することがPME－1のレスキュー実験，およびPME－1阻害剤ABL127を用いた検討から明らかとなった。また，PME－1欠損細胞では細胞増殖能が低下し ており，細胞増殖シグナルを担うタンパク質であるERK1／2とAktのリン酸化レベルの低下がみら れた。これらの結果より，PME－1欠損細胞の増殖能低下には，特定のBサブユニットを含むPPP2A複合体の増加が関与する可能性が示唆された。

第4章では，PP2AcとPME－1 の相互作用と脱メチル化活性の関係に着目して研究を行い，PME－1 による PP2Ac 脱メチル化にはPME－1 と PP2Ac の安定的な結合は必須ではないことを明らかにし， これを基に PP2Acメチル化レベルの新たな測定方法を樹立した。すなわち，PP2Acのメチル化レ ベルを測定する際に，試験管内において時間依存的な脱メチル化反応が起きるという問題を発見 し，細胞抽出液中に PME－1 阻害剤を添加することにより，細胞内の PP2Acメチル化レベルを正確 に測定することを可能にした。この原理は，免疫沈降法を用いて PP2AcとB サブユニットの結合 を評価する際にも重要であり，PP2A 複合体の制御機構を解析する上で極めて重要な知見である。本研究により，イヌSETアイソフォームの同定およびその機能解析を行い，SETを標的として PP2Aを活性化させる抗がん戦略の獣医領域における発展に重要な知見が得られた。また，PME－1 がPP2Acをユビキチン・プロテアソーム系分解から保護するという新たなPP2A制御機構を明らか とし，細胞内のPP2Acメチル化レベルの正確な測定法も確立した。本研究により明らかとなった PP2A阻害タンパク質によるPP2A制御機構は，PP2Aを標的とした新規抗がん剤開発の実現に貢献 することが期待される。

学位論文審査の結果の要旨

\left.| 氏 | 名部 | 滝太郎 |
| :---: | :---: | :---: |$\right]$

