博士論文

連続操作によるクロマトグラフィー 分離の生産性推定方法 Methods for predicting the productivity of continuously operated chromatography

平成 30 年 1月

杉山 征輝 山口大学大学院医学系研究科 目次

第1章 緒言

1.1 背景	••••• 1	
1.2 連続クロマトグラフィーの原理	•••• 3	
1.2.1 単カラムを用いた繰返連続操作	•••• 3	
1.2.2 複数カラムを用いた連続操作	•••• 3	
1.3 連続クロマトグラフィーに関する研究動向	•••• 5	
1.3.1 SMB に関する研究	•••• 5	
1.3.2 回分式繰返連続注入 (RCO) クロマトグラフィーと		
疑似移動層式 (SMB) クロマトグラフィーの比較研究	••••• 6	
1.4 本研究の目的と構成	••••• 10)
引用文献	•••• 18	3

第2章 回分式繰返連続注入 (Repeated cyclic operation : RCO) クロマトグラフィーの 生産性評価

2.1	概要	•	•	•	•	•	20
2.2	実験方法	•	•	•	•	•	21
2.3	結果及び考察	•	•	•	•	•	22
2.4	まとめ	•	•	•	•	•	26
引用	文献	•	•	•	•	•	31

第3章 最適化された繰返連続注入 (RCO) クロマトグラフィー操作条件に基づいた 連続クロマトグラフィーの操作条件および生産性計算方法

3.1	概要	•	•	•	•	•	33
3.2	理論	•	•	•	•	•	33
3.3	結果及び考察	•	•	•	•	•	37
3.4	まとめ	•	•	•	•	•	40
引用	文献	•	•	•	•	•	46
第4	章 結言	•	•	•	•	•	47
Nom	enclature	•	•	•	•	•	49

1. 緒言

1.1 背景

18 世紀後半の産業革命を契機とした消費財の大量生産技術の開発により,世界並び に日本の工業生産能力は飛躍的な成長を遂げてきた.その反面,地球温暖化や環境汚染 を始めとする深刻な問題を引き起こすと共に,現在ではエネルギー,食料や水不足など 問題は複雑化している.これら背景から,従来の大量生産のみでは無く,省エネルギー 技術や新機能素材の開発,さらには多様化する使用原料や利用可能エネルギーなど 様々な問題に対応可能な生産技術開発が必要と言われている [1].国内の産業構造も 時代と共に変化し,近年では第二次産業の低迷から「ものづくり」の競争力低下が指摘 されている [2].同時に,食料,保健医療や教育を始めとする消費割合も大きく変化し ており,この変化は産業構造にも影響を及ぼしていることが伺える [i].その中,昨今 の消費者ニーズは,例えばカジュアル (低コスト,汎用化)と高級 (高機能化) という 言葉で表される二極化の傾向にあると言われている [3].これら商品の価値向上には しばしば機能成分が用いられるが,この機能成分の製造という観点から考えてみると, いかに安く製造するか,又は高い機能が発揮できる形態 (組成) に加工できるかという 視点が重要になるといえる.

この機能成分の製造においては、天然物からの抽出,発酵又は反応操作が一般的に利用される.しかしながら、これら操作だけでは目的の機能成分と不要成分の混合物で得られる場合が多く、後段の工程において分離精製を組み合わせた製造プロセスが広く利用されている.これら分離精製の単位操作には、蒸留、膜分離、晶析や吸着などの方法があり、製造コストや品質の観点から対象成分の特徴に合わせた製法が用いられている.その中、吸着技術は様々な分野に利用されており、高速液体クロマトグラフィー(HPLC)に代表されるクロマトグラフィー分離がある.この分離技術は分析装置にも利用されていることからも分かるように、幅広い成分への適用が可能であり、非加熱且つ高度な分離(単離による高純度化)が可能である.クロマトグラフィー分離では、対象成分と固定相及び移動相との親和力の差を利用した分離が行われる(Fig.1).固定相には充填剤として無機系のシリカゲル、ポリマー系のイオン交換樹脂や合成吸着剤が、移動相には水、エタノール、メタノールなどの溶媒が一般的に用いられる.このクロマトグラフィー分離の操作には、回収方法の点から、大きく分けて回分式(Batch)クロマトグラフィーと連続式(Continuous)クロマトグラフィーの2種類がある.

回分式クロマトグラフィーは、分析機器を初め、水処理、脱臭、溶剤回収、又は有害 金属除去などの処理流体中から微量成分を除去/回収する分野において、装置コスト や操作の簡便性の点から古くから利用されている [4].

仮に固定相 (充填剤) と移動相を向流で操作ができれば Fig. 2 のような連続分離が可 能である. これは True moving bed (TMB) と呼ばれるが,実際に充填剤を移動すること は困難である. 疑似移動層式 (Simulated moving bed : SMB) クロマトグラフィーはカラ ムをスイッチングすることにより擬似的に TMB と同等な操作を実施する手法であり, 実用的な装置として 1961 年に Broughton と Gerhold によって提案された [5]. その後, 米国の Universal Oil Product (UOP) 社によって実用化され, 1976 年の特許満了を機に世 の中に広まった分離操作である [6]. 例として,石油関連成分である混合キシレンを原 料としたパラキシレンの分離を初め,その後も製糖業のフルクトース/グルコースの 分離やファインケミカル, 医薬品分野での異性体分離に利用されている.

ここで、工業化事例の1つとして、果糖(フルクトース/グルコース)の製造プロセスの工程図を示す[7].このプロセスでは、澱粉を原料とし、加水分解と酵素反応により異性化糖にした後、原料濃度調整のための濃縮工程、クロマトグラフィー(SMB)分離によるフルクトース/グルコースの分離、最後に製品濃度調整のための濃縮工程といった複数の工程で成り立っている(Fig. 3).ここで、SMBは複雑な装置であることから設備費用が高く、さらにはクロマトグラフィー分離工程の前後には濃縮工程が必要になることから付帯設備(蒸留設備)の投資、濃縮に用いられる蒸気等のユーティリティー費用がかかる為、その製造コストは全コストの大部分を占め、製品は高コストになることが想定される。一方で、市販の果糖は数百円・kg⁻¹程度と低価格である。この想定価格との相違は、大量生産による固定費低減、原料又はエネルギーの再利用の効果に加え、クロマトグラフィー分離工程における最適な運転条件設計よる高い供給量、吸着カラム容量のコンパクト化、溶媒使用量削減による設備の軽量化、ランニングコストの低減が大きく関係する。

っまり,目的成分の単離(高純度化)研究を実生産に応用するためには,プロセス開 発における生産性(収率,吸着剤使用量)や溶媒使用量の最適設計は重要な要素であり, 効率的な分離操作に着目した工学的なクロマトグラフィー研究が望まれているといえ る.次節では,効率的な運転方法として連続操作に着目し,単カラム(回分式クロマト グラフィー)と複数カラム(SMB)を用いた場合の連続クロマトグラフィー操作を整 理した.

 $\mathbf{2}$

1.2 連続クロマトグラフィーの原理

1.2.1 単カラムを用いた繰返連続操作

対象成分と固定相及び移動相との親和力(吸着力)によるカラム内の移動速度差を 利用する単純な回分式操作においても,原料注入の繰返し操作を行うことで連続運転 が可能である.一方で,繰返し操作,供給量の増加や装置のコンパクト化(カラム長さ の短縮)による生産性向上に伴い,繰返し注入された成分や溶出ピークの広がりにより 分離性が低下する課題がある.この生産性と分離性のトレードオフの問題は,以下のモ デルにより最適化される.

2 成分の混合サンプル (成分 1: 弱吸着成分, 成分 2: 強吸着成分) の分離において, カラム入口では原料と移動相溶媒の供給が交互に行われる操作を考える. ここで, カラ ム出口において, 成分2の回収がすべて終了してから次の原料供給が行われる場合のカ ラム内の濃度分布を Fig. 4 (a) に示す. カラム出口における成分の溶出挙動を Fig. 4 (b) に示す. これより, 成分1と2は良好に分離されているが, 2回目に注入したサンプルが 回収されるまでの間に空白の時間が存在し, 生産性の観点からは効率的な運転では行 われていないといえる.

一方で、カラム出口における溶出ピーク(成分1と成分2が重ならないタイミング) に合わせて、カラム入口にて次の原料供給を行う場合には Fig. 5 (a), (b) のように表さ れる. この時、入口と出口のサイクル時間は一致し、最も短時間での分離が可能になる. つまり、最適な原料供給を繰返し行う「回分式繰返連続注入 (repeated cyclic operation : RCO) クロマトグラフィー」により、1本のカラムにおいても効率的な連続操作は可能で あるといえる.

1.2.2 複数カラムを用いた連続操作

装置概要

複数カラムを用いる連続操作の代表的な装置である SMB ではカラムをスイッチング することにより,疑似的に向流操作が行われる.Figure 6に2成分を対象とした典型的な SMB の概念図を示す.複数カラムを用いた連続操作においても,個々のカラム内の吸 着力による移動速度差を分離に利用する原理は,回分式クロマトグラフィー操作と同 様である.装置構成として,供給側 (カラム入口) には原料と移動相,回収側 (カラム 出口) には成分 1 を主に回収する回収口 (Raffinate) と成分 2 を主に回収する回収口 (Extract) が設けられている.この時,2つの供給口と2つの回収口が存在することから, 基本的に4本のカラムで構成され、それらカラムが配管で繋がれ、カラム間にはバルブ が設置される.

運転操作は、まずカラムに移動相を充液させ、4本のカラム内に移動相を循環させた 状態をつくる.ここでは、初期条件として以下の条件を考える.カラム3の入口から原 料液の供給、カラム1の入口から溶離液の供給、及びカラム3の出口から Raffinate 画分 (成分1)の回収、カラム1の出口から Extract 画分(成分2)の回収が行われる.この時、 供給と回収量の収支は一致し、各カラムの線速度は異なる.この操作により、2つの供給 口からの原料液と溶離液の供給、2 つの回収口からの Raffinate 画分(弱吸着成分)と Extract 画分(強吸着成分)が連続的に回収される.

吸着剤カラムは固定されており、各カラムの間に設置されたバルブが周期的に切り 替わることで、供給位置と回収位置は設定した時間により順次変えられる.移動相と共 にカラム内を移動した溶出ピークを追従する形で供給位置と回収位置が移動し(1 Step),このStepを4回繰り返すことで、溶出ピークはもとの位置に戻ることになる(4 Step=1 cycle).この原理により、移動速度が異なる2成分を同時に回収する連続的なク ロマトグラフィー操作が可能になる.なお、移動相溶媒は常に一定方向に流れているこ とから2成分は同じ方向に移動する.移動相溶媒が左から右に流れるFig.6において、 原料液の供給位置Fを中心に図示した場合、移動速度の速い弱吸着成分は位置Fの右側 に、遅い強吸着成分は位置Fの左側に存在することから、両成分は疑似的に逆方向へ移 動したかのように表現される.

運転操作の概念(溶出挙動)

Figure 7に SMB の供給側 (Feed, Desorbent) と回収側 (Raffinate, Extract) における任 意の分離条件における定常状態の溶出挙動を示す. なお, Fig. 7 は移動相溶媒が右から 左に流れる場合の概念図である. 供給側では, 原料液 (F) と移動相溶媒 (D) 共に, 均 一濃度の液が一定速度で供給される. 一方で, 回収側の Raffinate (弱吸着成分の回収) と Extract (強吸着成分の回収) の回収速度は一定であるが, 回収される成分濃度は経時 で変化することに注意が必要である.

Figure 7 (a), (b) の4つのピークは,前述のバルブ切替え (ステップ) 毎に各カラムか ら回収されたことを示している. Raffinate 画分では,溶出ピークの先端から回収される ことから,回分式操作の破過曲線と同様にカラム切替え開始から徐々に濃度が増加す ることになる.一方で, Extract 画分では,溶出ピークの後端に向かって回収されるこ とから,成分濃度は徐々に減少されることになる.なお,成分の物性値にもよるが,定 常状態になるまで一般的に 10~20 サイクル程度の startup と shutdown 操作が行われる.

1.3 連続クロマトグラフィーに関する研究動向

1.3.1 SMB に関する研究

代表的な連続クロマトグラフィー操作である SMB に関する最近の研究動向を Fig. 8 に示す.論文数は年々増加傾向にあり,2015 年の件数は 2000 年の約4 倍にまで増加し ていることからも現在もなお注目技術の1 つであることが伺える.これまでの研究で は、対象成分の高純度化と生産性(供給量)の向上が目的とされてきたが、最近では 環境問題の観点から溶媒使用量も重要なパラメーターの1 として認識されている.そ の1 例として、生産性向上と溶媒使用量比(溶剤供給量/原料供給量)削減を目的と した標準型 SMB の改良・改変型システムの研究が進められている.代表的な改良・ 改変型システムの例として、3 ゾーン型 SMB をはじめとして Fig. 9 に示した二つのシ ステムが挙げられる(Fig. 9).以下にそれぞれのシステムを説明する.

(A) 標準型 SMB: 既に説明したように 4-ゾーン (Zone 1:吸着剤の再生, Zone 2:強吸着成分の分離, Zone 3:弱吸着成分の分離, Zone 4:移動相溶媒の再生)で構成される.
 既に Fig. 6 で説明したように 4 ステップで 1 サイクルが完了するが, 1 ステップの切替時間を t_{sw} とする.

(B) 3 ゾーン型 SMB: この方法では移動相溶媒を循環せず, ゾーン 4 が省略された 3 ゾーンで構成される.循環操作に伴う 2 成分のコンタミネーションの問題がなくなる ことから供給量の増加が期待されるが, 溶媒使用量が多くなるデメリットがある.

上記 2 種類では試料を連続的に供給しているが, 試料を部分的に供給する方法として 下記 2 種類が開発されている.分離された液は不連続に回収されるが, 溶媒量の削減 や時間短縮による生産性の向上が期待できるとされている.

(C) I-SMB (間歇試料供給型 SMB) : 1 ステップ切替時間 t_{sw} の前半 ($0 \sim t^*$) は標準型 SMB と同様の運転が行われるが,後半 ($t^* \sim t_{sw}$) は循環操作のみが行われる [8].

(D) OSSv-SMB (間歇試料供給・回収型 SMB) :通常のカラム切替時間 t_{sw} の間に,異なる線速度条件の運転が行われる.前半 ($0 \sim t^*$) は移動相溶媒の供給と Raffinate の回収が,後半 ($t^* \sim t_{sw}$) は移動相溶媒及び原料液の供給と Extract 画分の回収が行われる. このように,間歇的に回収を行う運転方法も提案されている.

これら SMB の改良・改変型システムについて, Sreedhar と Kawajiri [9] は一定供給 (Constant Flow) と部分供給 (Partial Feed) に分け, 相反する生産能力と溶媒使用量比 (溶剤供給量/原料供給量)のパラメーターをパレート効率性により評価している. こ こで、パレート効率性 (Pareto set) は、1897 年にイタリアの経済学者V. パレートによ り示された方法に基づくものである. 「全体に占める各構成要素の割合を明確にする ことによって、何に重点的に力を注ぐべきか、またその重要度や優先度はどのくらい かを分析する手法であり、効率よく収益をあげるために優先順位を明らかにすること が可能になる」と言われている [ii]. Sreedhar と Kawajiri は、高生産性と低溶媒使用量 の両立には至っていないものの、生産能力の最大化には部分供給が好ましく、I-SMB では標準型 SMB よりも低溶媒使用量においても、高い生産能力を得られることが報 告されている.

一方で、改良・改変型システムのメリットをシンプルなモデルで説明することは難 しく、特定の成分を対象とした数値計算による評価が行われているのが現状である. また、SMB 特有の課題として、複雑操作に伴う条件設定の煩雑化や定常状態までの時 間が挙げられている.最適な運転条件の効率的な探索方法 [10]、定常状態までの運転 の効率化 [11] 等の研究も行われている.しかしながら、生産効率の改善に着目した 標準型 SMB の改良・改変型システム開発の研究に比べて、改良・改変型システムの 操作条件の最適設計に関する研究はほとんど行われていない.

1.3.2 回分式繰返連続注入 (RCO) クロマトグラフィーと疑似移動層式 (SMB) クロ マトグラフィーの比較研究

回分式繰返連続注入 (repeated cyclic operation: RCO) クロマトグラフィーに対して, どれだけ疑似移動層式 (SMB) クロマトグラフィーの効率が良くなるかという視点で の比較研究も, SMB の改良型システム開発に関する研究に比べて少なく,実際に明確 な計算方法も存在していない. RCO に対する標準型 SMB の運転効率の比較では,パラ メーターが複数存在することから,比較方法や条件設定の難しさが課題として挙げら れている.研究事例を Table 1 にまとめる. なお,先行文献で用いられている "Btach" は, ここでは "RCO" として扱う.

橋本ら [12] の研究では、これまでに SMB と RCO の比較に関する研究事例がない点 に着目し、両分離方式の分離効率の比較が行われている。分離対象は、成分 1 (弱吸着成 分_マルトース:分配係数 $K_1 = 0.3$ 、総括物質移動係数 $K_{5,1} = 1.0 \times 10^{-2} \text{ s}^{-1}$)と成分 2 (強吸 着成分_グルコース: $K_2 = 0.42$, $K_{5,2} = 3.2 \times 10^{-3} \text{ s}^{-1}$)のヘンリー型の 2 成分系 (成分 1:成 分 2 = 90 %: 10 %)である。成分 1 の純度が 99.5%又は 99.8%以上、収率がそれぞれ 95% 又は 98%以上となる目標組成において生産性が比較されている. 結論として, カラム高 さをパラメーターとした比較計算では, RCO に比べて, SMB の生産性が最大 3.2 倍~4.2 倍になることが述べられている. 一方で, 溶媒使用量の違いについては触れられておら ず, 同一のパラメーターでの比較になっていない.

Strube *et. al.* [13]の研究では、SMB が高効率な分離技術であることの証明を目的に、 RCO と SMB のシミュレーション結果からコスト比較が行われている.また、過去の比 較研究の動向として、SMB の運転条件は最適値が選択されていたのに対し、RCO では必 ずしも最適な運転条件で比較が行われていなかった点を指摘し、"touching and assumption" による最大生産性が算出されている.分離対象は、成分1 (グルコース:分 配係数 $K_1 = 0.25$, mass transfer coefficient = 2.5×10^4 cm·s⁻¹) と成分2 (フルクトース: $K_2 =$ 0.45, mass transfer coefficient = 4.5×10^4 cm·s⁻¹) のヘンリー型の2 成分系 (成分1: 成分2 = 50%: 50%) である. それぞれの成分が純度 99%以上、収率 99%以上となった組成結 果において、充填剤コスト、溶媒コスト、人件費及びプラントコストを含むコストが評 価されている. 結論として、SMB に対する RCO の生産性は 1.7 倍、溶媒使用量は 2.5 倍、 さらには溶媒使用量の点で SMB の方が大幅に低コストになることが述べられている. ー方で、生産量、溶媒使用量及びカラム高さが異なる条件であり、同一のパラメーター での比較になっていない.

Seidel-Morgenstern *et. al.* [14]の研究では、これまでの研究が、著者の利用可能な分離操 作に着目した設計や最適化が行われている点に着目し、同一の計算モデルにおいて、4 つの異なるクロマトモードの分離効率の比較が行われている.4 つの異なるクロマトモ ードとして、アイソクラテッククロマトグラフィー (RCO)、リサイクルクロマトグラ フィー、SMB、回転型の連続クロマトグラフィー (AC)が対象とされている.分離対象 は、成分1 (α-異性体)と成分2 (β-異性体)の拡張ラングミュア型の2成分系 (成分1: 成分2=50%:50%)である.成分1の純度が99%以上、収率が95%以上の目標組成に おける最大生産量と最少溶媒使用量の比較が行われている.結論として、供給量と理論 段数 (*N*=1000~7000:SMBに関する理論段数の記載は無し)をパラメーターとした比 較において、最大生産性は SMB が、最小溶媒使用量はアイソクラテッククロマトグラ フィーとリサイクルクロマトグラフィーが最も優れていることが述べられている.一 方で、生産量 (溶媒使用量)が異なる条件において、溶媒使用量(生産量)の比較結果 が議論されている.また、理論段数をパラメーターに3つのモデルの比較がされている が、SMB については触れられておらず、同一のパラメーターでの比較になっていない. A.Jupke et. al. [15] の研究では, Strube et. al.が行ったコスト比較について, 最適分離 結果が分離コストの最適値に結び付いていなかった点に着目し, RCO と SMB の最適設 計方法の開発とコスト試算による比較が行われている. 分離対象は, 成分 1 (+エナン チオマー) と成分 2 (-エナンチオマー) の競争ラングミュア—型の 2 成分系 (成分 1 : 成分 2 = 50% : 50%) である. 両成分共に純度 99.9%以上の目標組成におけるコスト比較 が行われている. RCO では理論段数 (N=25) と Loading factor, SMB では理論段数 (N= 20~50 : 各ゾーン均一) と流速比をパラメーターとし, 各分離方式の最適化計算結果に 基づいて比較が行われている. 結論として, コスト比較結果から, 1,000 kg·year⁻¹ 小スケ ールでは両分離方式はほぼ同等 (Batch : 2.18 \$'g⁻¹, SMB : 2.11 \$'g⁻¹) であり, 5,000 kg·year⁻¹ の大スケールでも大きな違いが無い (Batch : 1.94 \$'g⁻¹, SMB : 1.72 \$'g⁻¹) ことが述べられて いる. 一方で, Strube et. al.と同様に, コスト試算に基づく結果であることから, 生産性, 溶媒使用量, 収率及びカラム長さが異なり, 同一のパラメーターでの比較になっていな い.

Galatea Paredes *et. al.* [16]の研究では, RCO と SMB の公平な比較を目的として, トレードオフの関係にある生産性と溶媒使用量の2パラメーターについて, Pareto set を用いた比較が行われている.分離対象は,成分1(弱吸着成分_pDNA:分配係数 $K_1 = 0$,物質移動係数 $K_{5,1} = 10 \text{ s}^{-1}$)と成分2(強吸着成分_RNA: $K_2 = 0.95, K_{5,2} = 0.35 \text{ s}^{-1}$)のヘンリー型の2成分系(成分1:成分2=25%:75%)である.成分1の収率が98%,純度が90%と95%の目標組成における最大生産性と最少溶媒量の比較が行われている.結論として,流量やカラム長さ等の運転条件をパラメーターとした比較では,((原料使用量 + 溶媒使用量)/原料使用量の比)=4の条件において, SMB の生産性が RCO の2倍以上になることが述べられている.一方で, Seidel-Morgenstern *et. al.*, A.Jupke *et. al.*が着目した理論段数には触れられていない.また,カラム長さや流量も異なり,同一のパラメーターでの比較になっていない.

Chan *et. al.* [17]の研究では、単一カラムと複数カラムのクロマトグラフィー操作が利用される中で、これまでの研究では、与えられた分離対象に対してどの分離操作が最も好ましいかという観点での証明が行われていない課題を指摘し、コスト面から比較が行われている.分離対象は、成分1(弱吸着成分:分配係数 $K_1 = 0.23$)と成分2(強吸着成分: $K_2 = 0.56$)のヘンリー型の2成分系(成分1:成分2 = 50%:50%)である.成分1と2共に、収率が80%以上、純度99.5%以上が目標組成として設定されている.結論として、プロジェクトが短い商品開発においてはシングルカラムが、5年以上のプロジェ

クトであれば SMB の方が好ましいことが述べられている.一方で,拡散係数などの物 性値の記載はなく,理論段数にも触れられておらず,カラム長さや流量が異なり,同一 のパラメーターでの比較になっていない.

これらの比較研究をまとめると, RCO と SMB では分離方式が異なることから, 運転 条件や分離結果に複数のパラメーターが存在し, 比較方法や条件設定の難しさが課題 であることが分かる. これら課題に対して, 特定の制約条件を設定する方法, 理論段数 を指標とする方法, 製造コストを指標として表す方法, 及びトレードオフの2パラメー ターを Pareto set を指標に比較する方法が提案されている. 一方で, 1) パラメーターの 同一性, 2) 製造コストによる評価, 及び3) データの汎用性については検討の余地があ ると考えられる.

1) パラメーターの同一性という点では、過去の研究では各分離方式の最適条件における分離結果に基づいて比較されていたことから、RCOとSMBの分離条件が異なっている点で課題がある.さらに、分離条件(カラム長さ、理論段数又はカラムの利用率等)が分離結果(生産性、溶媒使用量)に及ぼす影響についても十分に考察されていない. また、多くの論文では目標組成として下限値が設定(e.g. 98%以上)されていることから、目標組成の違い(e.g. 98%と 99.5%)が分離結果に及ぼす影響の議論も十分ではない.

2) コストの評価指標という点では、一般的に人件費や設備投資額(減価償却費)な どの固定費は地域やメーカー毎に異なり、原料、吸着剤やユーティリティー費(蒸気、 電力等)の変動費も製造単価により異なる点で課題がある.その為、設定する単価次第 では、生産性又は溶媒使用量のコストへの影響も異なり、著者によって結論が異なるこ とが考えられる.

3) データの汎用性という点では、これまでの研究は各々の論文で着目している成分の比較であったことから、特定の条件下(物性値,純度や収率)での結果という点で課題がある.

また,実際の製造プロセスへの適用という点では,すでに RCO で生産している製品 に対して,分離装置を SMB に置き換えた場合にどの程度のメリット (例えば,組成,溶 剤量,生産性,装置容量)が生じるかという視点での比較も重要である.つまり,最も 高効率な RCO の運転条件に対して,SMB の分離結果にどの程度のメリットが生じるか という視点での比較が重要であるが,このような観点での比較研究はない.

最近では設計手法の統一化に関する方法 [18] も提案されているが, 比較方法や条件

9

設定の難しさの課題は解決できておらず,対象成分による物性値の違いについても議論 されていないことが分かる.そのため,どのような条件のときに SMB のメリットが生 じるかという根本的な課題については,現在も明確な計算方法は確立されていないのが 現状である.

1.4 本研究の目的と構成

抗体や食品精製のダウンストリームプロセスではクロマトグラフィー操作が必要と されるが、その製造コストは全コストの大部分を占め、運転操作の効率化が望まれてい る. このクロマトグラフィーの効率化すなわち生産性の向上には、適切なモデルと評価 方法の構築が必要である. 一般的なクロマトグラフィーである回分式では、繰返連続注 入 (repeated cyclic operation : RCO) による連続化も可能であると共に、生産性の定義も 容易である. 一方で、複数本のカラムを切替え (スイッチング)、擬似的に連続操作を する方法として、高い生産性が得られると言われている疑似移動層式 (Simulated Moving Bed : SMB) クロマトグラフィーが提案されているが、操作変数が多く生産性の 定義が難しい. このため、最適化された RCO と SMB の生産性比較はほとんど行われて おらず、どのような条件で SMB の生産性がどの程度向上するかについては明確ではな い.

そこで本研究では、等組成溶出クロマトグラフィーによる2成分分離をモデル系として、最適化した RCO を基準とした標準4 ゾーン SMB との生産性比較方法を提案し、実験値に基づいて両方法の生産性とクロマトグラフィー条件との比較を行った。

本報は,緒言(1章),回分式繰返連続注入(RCO)クロマトグラフィーの生産性評価(2章),最適化された繰返連続注入(RCO)クロマトグラフィー操作条件に基づいた連続クロマトグラフィーの操作条件および生産性計算方法(3章),結言(4章)で構成される.

10

Table 1 回分式クロマトグラフィーと疑似移動層式クロマトグラフィーの分離効率の比較研究

文献	成分 (比率)	パラメーター (等温線の型)	X: 純度 Y: 収率	評価指標	結果 (対 RCO)
[12]	グルコース マルトース (90 : 10)	$K_1 = 0.30$ $K_2 = 0.42$ (ヘンリー型)	$X \ge 99.8\%$ $Y \ge 98\%$	生産性	3倍以上
[13]	グルコース フルクトース (50 : 50)	$K_1 = 0.25$ $K_2 = 0.45$ (ヘンリー型)	$\begin{array}{l} X \geq 99\% \\ Y \geq 99\% \end{array}$	コスト	分離条件や 生産数量により, 高くなる場合も あるが, 差がな い場合もある.
[14]	α-異性体 β-異性体 (50:50)	拡張 ラングミュア 一型	$X \ge 99\%$ $Y \ge 95\%$	生産性 移動相 溶媒量	分離条件や 生産数量により, 高くなる場合も あるが, 差がな い場合もある.
[15]	+ エナンチオマー - エナンチオマー (50:50)	修正競争 ラングミュア <u>一</u> 型	$X \ge 99.9\%$ $Y \ge 99.9\%$	コスト	大量スケール でメリットあり
[16]	p-DNA RNA (25 : 75)	K ₁ =0 K ₂ =0.95 (ヘンリー型)	$X \ge 95\%$ $Y \ge 98\%$	生産性 移動相 溶媒量	2 倍以上
[17]	成分 1 成分 2 (50:50)	K ₁ = 0.23 K ₂ = 0.56 (ヘンリー型)	$X \ge 99.5\%$ $Y \ge 80\%$	コスト	5 年以上で メリットあり

Figure 1 回分式クロマトグラフィー操作による 2 成分分離挙動

Figure 2 向流操作による連続分離の概念

Figure 3 クロマト分離を用いた製造プロセス事例 (高純度果糖の製造)

 Figure 4 一般的な回分式クロマトグラフィーの単回操作における濃度分布

 (a) カラム内の濃度分布, (b) 溶出挙動

Figure 5回分式繰返連続注入 (RCO) クロマトグラフィーにおける濃度分布

(a) カラム内の濃度分布,(b) 溶出挙動

Figure 6 標準型 4-ゾーン SMB の概念図とカラム内の濃度分布

(a) Raffinate と(b) Extract 画分における溶出挙動

Figure 8 疑似移動層式 (SMB) クロマトグラフィーに関する文献の数 (Science Direct による検索 2005 年~2015 年)

Figure 9 標準型および改良型 SMB システム

引用文献

- [1] 吉田有哉; グリーン・ケミストリーと化学産業の競争力強化, みずほ情報総研レポ ート, vol.6, 2-15 (2013)
- [2] 草場洋方ら; I 産業・経済・社会構造の変化を踏まえた競争力強化のあるべき方 向性,みずほ産業調査, 42, No.2, 9-30 (2013)
- [3] 深沢政彦ら (AlixPartners); 二極化傾向の日本市場, OUTLOOK 外食・ 食品サービス (2014)
- [4] 橋本健治; クロマト分離工学, 培風館 (2005)
- [5] D. B. Broughton, C. G. Gerhold; "Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets." US patent, 2,985,589 (1961)
- [6] P.S. Gomes, M. Minceva, A.E. Rodrigues; Simulated moving bed technology: old and new. Adsorption, 12, 375-392 (2006)
- [7] 清水寛; 吸着技術ハンドブック, 株式会社 NTS (1993)
- [8] K. Shigeharu; "Enhancing the productivity of chiral multicolumn continuous chromatography: Intermittent simulated moving bed." For the degree of Doctor of Sciences, Diss. ETH No.19967 (2011)
- [9] B. Sreedhar, Y. Kawajiri; Multi-column chromatographic process development using simulated moving bed superstructure and simultaneous optimization - Model correction framework. Chem. Eng. Sci., 116, 428-441 (2014)
- [10] J. Bentley, C. Sloan, Y. Kawajiri; Simultaneous modeling and optimization of nonlinear simulated moving bed chromatography by the prediction–correction method. J. Chromatogr. A., **1280**, 51-63 (2013)
- S. Li, Y. Kawajiri, J. Raisch, A. Seidel-Morgenstern; Optimization of startup and shutdown operation of simulated moving bed chromatographic processes. J. Chromatogr. A., 1218, 3876-3889 (2011)
- [12] K. Hashimoto, Y. Shirai, S. Adachi, M. Horie; Comparison of Efficiency in Separation of Maltose and Glucose between Conventional Batch Chromatography and Simulated Moving-bed Adsorber" (in Japanese). KagakuKougaku Ronbunshu, 17, 3, 623-626 (1991)
- [13] J. Strube, S. Haumreisser, H. Schmidt-Traub, Michael Schulte, Reinhard Ditz; Comparison of Batch Elution and Continuous Simulated Moving Bed Chromatography. Org. Process

Res. Dev., 2, 305-319 (1998)

- [14] A. Seidel-Morgenstern; Optimization and comparison of different modes of preparative chromatography. Analusis, 26, 46-55 (1998)
- [15] A. Jupke, A. Epping, H. Schmidt-Traub; Optimal design of batch and simulated moving bed chromatographic separation processes. J. Chromatogr. A., 944, 93-117 (2002)
- [16] G. Paredes, M. Mazzotti; Optimization of simulated moving bed and column chromatography for a plasmid DNA purification step and for a chiral separation. J. Chromatogr. A., 1142, 56–68 (2007)
- [17] S. Chan, N. Titchener-Hooker, E. sorenson; Optimal Economic Design and Operation of Single- and Multi-column Chromatographic Processes. Biotechnol. Prog., 24, 389-401 (2008)
- [18] J. Siitonen, T. Sainio; Unified design of chromatographic separation processes. Chem. Eng. Sci., 122, 436-451 (2015)

引用 URL

- [i] http://www.mhlw.go.jp/wp/hakusyo/roudou/11/ (Aug. 2016)
 厚生労働省;平成 23 年版 労働経済の分析—世代ごとにみた働き方と雇
 用管理の動向—我が国の経済社会の変化,厚生労働省 H.P.
- [ii] http://www.educate.co.jp/glossary/4-misc/59-80-20.html (Jul. 1, 2017)

2. 回分式繰返連続注入 (Repeated cyclic operation : RCO) クロマトグラフィーの生産性評価

2.1. 概要

抗体に代表されるタンパク薬剤などの製造におけるダウンストリームプロセスでは、 複数回のクロマトグラフィー操作が必要とされる [19], [20]. 対象的に食品産業では、 単位操作としてクロマトグラフィーを一般的に使用されていない. これは, 主に食品製 品がタンパク薬剤よりもあまり高価ではないからである. 最近の健康食品には高い機 能性が期待され、比較的効果なポリフェノールが配合されることも多く、効率的で経済 的に実用可能なクロマトグラフィープロセスを設計する要求が増加している.しかし, コストの問題に加え、食品分離には多くの制約があり、それらが食品分野でのクロマト グラフィーの利用を難しくしている.固定相(樹脂)と移動相(液体)は、規制機関で 許可された物質に基づいて選ばれる. 加えて、樹脂は簡便に洗浄され、衛生的でなけれ ばならない. これらの制約下において、エタノール水混合溶液の移動相とスチレンジビ ニルベンゼン (PS-DVB) 樹脂の固定相によるクロマトグラフィーは最も魅力的である. 樹脂は水性溶媒で洗浄され、エタノールはとても安全な溶媒であり、必要に応じて簡単 に再利用される.しかし、シリカ担体を用いた順相クロマトグラフィーに比べて [21]、 [22],ポリマー担体を用いた逆相クロマトグラフィープロセスは十分に検討されてい ない. これまでに、エタノール水混合溶液の移動相と PS-DVB 樹脂により、ポリフェノ ール (カテキンと EGCg) の保持時間と分離メカニズムが検討されている [23], [24]. イオン交換クロマトグラフィーにおけるタンパクの直線グラジエント溶出 [25],[26] に利用できる"等分離度曲線"の概念が、逆相クロマトグラフィー分離モデルにも適用さ れた.

一方で、実際のプロセス設計で要求が増加している効率的で経済的な視点における 生産性の研究は行われていなかった.本章では、"等分離度曲線"の概念に基づく PS-DVB 樹脂クロマトグラフィーでのポリフェノールの生産性の計算方法について述 べる.アイソクラテック溶出の繰返連続注入操作 (回分式繰返連続注入 (repeated cyclic operation: RCO) クロマトグラフィー) に焦点を当て、移動相濃度 (エタノール濃度) の関数である一理論段相当高さ HETP と分配係数 K を計算に利用した.

2.2. 実験方法

実験装置には前の研究 [23], [24] と同じものを用い, 標準の HPLC 装置 (JASCO PU980 pumps and a 6-way injection valve) と 280nm の UV 検出器 (JASCO UV970, Tokyo, Japan) を利用した. スチレンジビニルベンゼン (PS-DVB) 樹脂 (Diaion HP20SS, 三菱 化学社製) を、調整流量アダプター (Vantage, diameter $d_c = 1.1$ cm, ミリポア, Billerica, MA, USA) を持つカラムの中に充填した. また, 充填層の上部と流路アダプターの間の 死容積を最小化する為,移動相組成 (エタノール水混合液) による充填カラム高さ Z の 変化に応じて,上部の流路アダプターを調整した.なお,充填層高さはほとんどの実験 で15 cm であった. この時, 粒子径 dp も移動相組成と共に変化することから (I: 容積% でのエタノール濃度),エタノール濃度の関数として,平均粒子径 d_aを顕微鏡で測定し t_{c} ($d_{p} = 62 \ \mu m$ (I = 20%), $d_{p} = 67 \ \mu m$ (I = 30%), $d_{p} = 72 \ \mu m$ (I = 40%), $d_{p} = 100 \ \mu m$ ($I = 100 \ \mu m$) 100%)). モデルポリフェノールサンプルは、シグマ (MO, USA) のカテキンと和光 (Osaka, Japan) のエピガロカテキンガレート (EGCG) である. 樹脂構造, 及びサンプル の構造式を Fig. 10 に示す. なお、サンプル濃度 C_0 は 1.0 mg·mL⁻¹、サンプル容量 V_F は 0.2 mLとし、移動相にはエタノール水混合液を用いて、温度は298±2Kに設定した.アイソ クラテック溶出実験では、様々な異なる流速において、ピーク保持時間 t_R、ピーク幅 (標準偏差 σ_t) を測定した. σ 値は, 修正ガウス曲線 (C_{max} は最大ピーク濃度) と実験溶 出曲線のフィッティングにより測定した.

$$C = C_{\max} \exp\left[-\frac{t_R}{2\sigma_t^2 t} (t - t_R)^2\right]$$
⁽¹⁾

この時, 分離効率の指標である一理論段相当高さ HETP は次の式に従って計算した.

HETP =
$$Z(\sigma_t/t_R)^2 = Z(W_t/t_R)^2/16 = Z(\sigma_V/V_R)^2$$
 (2)

ここで、Zはカラム長さ、 $\sigma_V = F_v \sigma_t$ は容積 (F_v = volumetric flow-rate) での σ 値, Wはベースラインのピーク幅 (Fig. 11)、保持容積 $V_R = F_v t_R$ は、Eq. (3) のように、分配係数 Kに関係づけられる.

$$V_{\rm R} = V_{\rm o} + (V_{\rm t} - V_{\rm o})K = V_{\rm o}(1 + HK)$$
(3)

ここで、 V_o = 空隙容積、 V_t = カラム容積と $H = (V_t - V_o)/V_o = (1 - \varepsilon_b)/\varepsilon_b$ は容量の相比である. る. カラム空隙率 $\varepsilon_b = V_o/V_t$ は、保持が無く、完全に排除される容積 (Dextran mol.wt. 2,000,000, Fluka) のピーク保持容積から決定した. 溶質 (カテキンと EGCG) の保持容 積 V_R から K を決定した.

2.3. 結果及び考察

分配係数 K と HETP は移動相組成 (エタノール濃度) I の関数として表すことができる. 直線等温アイソクラテックの溶出曲線は、分配係数 K と HETP から推算できる.実 験データは次の Eqs. (4) – (8) によって整理した. 直線勾配溶出実験に基づき, Eq. (4) を 用いて分配係数 K を算出した (Fig. 12).

 $K = A I^{\rm B} + K_{\rm C} \tag{4}$

 $A, B > K_c$ の値は次の通りである.

Catechin: $A = 5.34 \times 10^4, B = 3.1, K_c = 0.69$ EGCG : $A = 8.62 \times 10^6, B = 4.5, K_c = 0.69$

異なる *I* 値での 2 サンプルの HETP vs. *u* プロットは, 次の Van Deemeter 型の Eq. (5) と よく一致する [24].

HETP =
$$Z/N = A^{\circ} + C^{\circ}u = 2D_{\rm L}/u + HKd_{\rm p}^{2}u/[30D_{\rm s}(1 + HK)^{2}]$$
 (5)

Nは理論段数, D_L は軸方向拡散係数と D_L/u は定数であり、およそ 1-10 d_p に等しい [20], [25]. 異なる I 値の固定相の係数 D_s は、次の式によって表すことができる.

$$KD_{\rm S} = K_{\rm C}D_{\rm p} = \alpha D_{\rm m} = 0.07 \ D_{\rm m} \tag{6}$$

 $K_{\rm C}$ と $D_{\rm p}$ は,溶質が樹脂に吸着しない時の値である. すなわち, $K_{\rm C}$ は空孔率 ($\epsilon_{\rm p}$) と同じ であり, $D_{\rm p}$ は細孔拡散係数である. $D_{\rm m}$ は分子拡散係数であり,溶媒粘度変化がIに依存 するように, $D_{\rm m}$ もまたエタノール濃度Iの関数である. Wilke-Chang 式 [27] に基づいて

計算された Dm値は, Iの関数 Eq. (7) として次の多項式によって表すことができる.

Catechin:
$$D_{\rm m} = 1.62 \times 10^{-13} I^2 - 1.51 \times 10^{-11} I + 6.33 \times 10^{-10}$$
 (7a)

EGCG :
$$D_{\rm m} = 1.26 \times 10^{-13} I^2 - 1.17 \times 10^{-11} I + 4.91 \times 10^{-10}$$
 (7b)

最後に, Iの関数として HETP は以下の式によって計算することができる.

HETP =
$$Z/N = A^{\circ} + C^{\circ}u = 0.045 + HK^2 d_p^2 u/[30(0.07)D_m(1 + HK)^2]$$
 (8)

Eq. (4) と Eq. (8) から求めた計算値は,実験値と良好に一致した (Fig. 13).

等分離度曲線に基づく生産性計算

エタノール濃度*I*の関数である分配係数*K*とHETP-u曲線から分離特性を予想するための方法として、等分離曲線を用いることができる.

ここで、等分離度曲線計算の手順を示す. Figure 14 に分離度 *R*_sの概念図を示す. 与えられる *I* における分配係数差と線速度により分離度の値は異なり、分配係数差が大きい又は線速度が遅い場合には良好な分離が得られる. 分離度 *R*_sは, Eq. (9) で表され、2 つのピークとそれらのピーク幅の間の距離によって決定することができる.

$$R_{\rm s} = (t_{\rm R2} - t_{\rm R1}) / [(W_1 + W_2)/2]$$
⁽⁹⁾

R_s=1の時, Fig. 11に示す2成分のベースラインでの分離が得られる.ガウス分布において, R_s>1.2 が完全分離に必要である [19], [20], [22].溶出容積 (保持容積) V_Rは, Iの関数として K を含む Eq. (3) の修正形によって与えられる.

$$V_{\rm R} = V_{\rm o} + (V_{\rm t} - V_{\rm o})K(I) = V_{\rm o}[(1 + HK(I)]$$
(10)

Eq. (2) と Eq. (3) を Eq. (9) に代入することで, R_s=1のための次の式が誘導される.

$$R_{\rm s} = 1 = H(K_2 - K_1) / [(W_1^* + W_2^*)/2]$$
(11)

$$W_1^* = (W_1/V_0) = 4(1 + HK_1)(\text{HETP}_1/Z)^{0.5}$$
 (12a)

$$W_2^* = (W_2/V_0) = 4(1 + HK_2)(\text{HETP}_2/Z)^{0.5}$$
 (12b)

下付き1と2は、それぞれ成分1と2を示す(組成1は最初に溶出する成分である). こ こでは、組成1がカテキン、組成2が EGCG である. 相対分離容量(バッファー濃度) *V*_{SEP}/*V*_oと分離時間*t*_{SEP}は次の式で与えられる.

$$V_{\rm SEP}/V_{\rm o} = V_{\rm b2}/V_{\rm o} = (1 + HK_2) + W_2^*/2$$
(13)

$$t_{\rm SEP} = (V_{\rm SEP}/V_{\rm o})(Z/u_{\rm M}) \tag{14}$$

与えられる*I*値において、この分離 ($R_s = 1$) が可能な最大流速 u_M を求める. 一旦 u_M が 得られると、 t_{SEP} と V_{SEP}/V_o が計算できる. ここで、圧力損失の観点から、線速度に制約条 件 ($u < 15 \text{ cm} \cdot \text{min}^{-1}$) を設けた. t_{SEP} 値が V_{SEP}/V_o 値に対してプロットされる時、「等分離 度曲線」は Fig. 15 で得られる. これより、高い *I* 値では分離時間は分離容積の減少に従 い長くなる. これは、分配係数と同様に、2 つの分配係数差 ($K_2 - K_1$) も *I* の増加と共に 減少するためである. *I* 値の異なる典型的な溶出曲線を Fig. 16 に示す. これより、分離時 間と移動相使用量が移動相濃度 *I* につれてどのように変化するかが分かる.

ここで,操作がアイソクラテックに行われる時,繰返しサンプル投入が可能である. このタイプの「繰り返しサイクル操作」[28],[29] として,サイクル時間 t_c とサイクル溶出容量 V_c は重要な変数である.

$$V_{\rm C}/V_{\rm o} = (V_{\rm 2b} - V_{\rm 1a})/V_{\rm o} \tag{15}$$

$$t_{\rm C} = t_{\rm 2b} - t_{\rm 1a} = (V_{\rm C}/V_{\rm o}) \left(Z/u_{\rm M}\right) \tag{16}$$

Figure 15 に示すように, 最適値 (最小の $t_c \ge V_c/V_o$) は, $t_{2b} \ge V_{2b}/V_o$ 曲線の値よりも小さかった. ここで, 生産性はたいてい次の式で定義できる.

単位は [(kg-product)(m⁻³-bed)s⁻¹]である (m³-bed はカラム空隙体積 m³-void volume of bed を示す). 回分式クロマトグラフィーの繰返連続注入操作における移動相 (溶媒) 使 用量を考慮した生産性の評価方法について, 以下の定義式を提案する.

$$P_{1,RCO} = (C_0 V_F) / (V_o t_C V_C) = P_{RCO} / V_C$$
(18)
= [(サンプル濃度)(サンプル容量)]/[(カラム空隙容量)(サイクル時間)(サイクル容量)]

 P_1 はカラム容量,溶媒使用量及びサイクル時間あたりに得られる生産量を示す. その単位は [(kg-product)(m³-bed)⁻¹(m³-solvent)⁻¹s⁻¹]である (m³-bed はカラム空隙体積 m³-void volume of bed を示す).吸着等温線が線形である場合, $P^* = P/C_0, P_1^* = P_1/C_0$ の式が利用 される. C_0 はサンプル濃度 [g·L⁻¹]を示す. すなわち,生産性は C_0 に比例し,等温線が線 形であれば $P^* = P/C_0$ として整理できる.

$$P_{\rm RCO}^{*} = P_{\rm RCO}/C_0 = (V_{\rm F}/V_{\rm o})/(t_{\rm C})$$
⁽¹⁹⁾

$$P_{1,\text{RCO}}^{*} = P_{1,\text{RCO}}/C_0 = (V_{\text{F}}/V_0)/(t_{\text{C}}V_{\text{C}})$$
(20)

 P_{RCO}^{*} の単位は [(m³-product)(m³-bed)⁻¹s⁻¹], $P_{1,\text{RCO}}^{*}$ の単位は [(m³-product)(m³-bed)⁻¹ (m³-solvent)⁻¹s⁻¹] である (m³-bed はカラム空隙体積 m³-void volume of bed を示す). 次の 式に従い, V_{F}/V_{o} は W_{1}^{*} から決定される. ガウス曲線では, ピーク幅への V_{F} の影響は次の 式で与えられる.

$$(W^+/V_{\rm o})^2 = (W/V_{\rm o})^2 + (4/3)(V_{\rm F}/V_{\rm o})$$
⁽²¹⁾

*V*_Fは試料供給容量 [m³], *W*⁺は試料負荷量を考慮した分離ピークの幅 [s] である. 溶出 挙動への試料負荷量の影響が 1%の場合,以下の式が成り立つ.

$$W^{+}/V_{o} = [(W/V_{o})^{2} + (4/3)(V_{F}/V_{o})^{2}]^{0.5} = 1.01(W/V_{o})$$
(22)

この時, Fig. 17 において計算された P^* 値は Iの関数として表され,最大 P^* 値は I = 24%で得られた.ここで, $K_1 = 3.5$, $K_2 = 6$, $K_2 - K_1 = 2.5$ 及び $u_M = 6.7$ cm·min⁻¹である. 溶質の 保持は移動相組成を変化せることで,逆相,イオン交換又は疎水性相互作用クロマトと して容易に制御される. それゆえ, $(K_2 - K_1)$ 値は,分離特性を改善するために増加され うる.しかし,繰返しサイクル運転において,最小の移動相溶媒使用量において最大生 産性を示す,移動相溶媒の最適な濃度が存在することが本結果から分かる. 疑似移動層 (SMB) クロマトグラフィーは,特に難しい 2 成分分離のための効率的な方法として知 られる.すなわち, SMB は小さい $(K_2 - K_1)$ 値の分離に適している.しかし, $(K_2 - K_1)$ 値 が 1 より大きい値のとき,回分式繰返連続注入 (RCO) クロマトグラフィーは良好な方 法である [12],[30].分取クロマトの最適化のために,多くの洗練されたモデルが利用 されるが [31].提案された簡便方法は簡単に利用され,タンパクのクロマトグラフィ ーのような他のクロマト分離方法にも適用され得る.

2.4. まとめ

スチレンジビニルベンゼン (PS-DVB) 樹脂を用いたポリフェノール (カテキンと EGCg) — エタノール/水混合系 (分配係数差が大きい逆相クロマトグラフィー分離) を対象とし,等分離度曲線に基づき,回分式クロマトグラフィーの繰返連続注入操作 (RCO) と単回操作の比較,及び最大生産性の簡便な予測方法の検討を行った.直線勾 配溶出実験によってエタノール濃度 Iの関数として分配係数 K を,等組成溶出実験によ って I の関数として HETP-u の関係を決定し,計算に用いた.なお,分配係数 K は, 288~308 K の温度範囲において I の関数としても表され,発熱反応 (van't Hoff plots, ITC 測定) であり K は温度上昇とともに減少する [32].移動相溶媒量と操作時間の関 係を整理した結果,高 I 値 (低 ΔK 値) 条件では,単回操作に比べて,繰返し操作の方が 使用溶媒量あたりの運転時間が短く,効率的な運転になることが分かった.一方で,低 I 値 (高 ΔK 値) 条件では操作方法の違いは見られなかった.また,充填容積あたりの生 産性 P^* ,且つ移動相消費量あたりの生産性 P_1^* には,最大生産性をとる最適な I 値(= 20%, 25%) が存在することが分かった.

Figure 112 成分分離における繰返しサイクル操作の概念図 (R_s = 1)

Figure 12 エタノール濃度と分配係数 (K₁, K₂, K₂ - K₁)の関係

Figure 13 異なるエタノール濃度条件 (I=20,27%) における計算と実験の溶出曲線 I=20%, Z=15.5 cm, ε_{b} =0.44, u=7.8 cm·min⁻¹ I=27%, Z=17.5 cm, ε_{b} =0.41, u=0.75 cm·min⁻¹

Figure 14 分離度の概念

Reduced separation volume, V_{2b}/V_o or cycle volume $(V_{2b}-V_{1a})/V_o$ [-]

Figure 15 分離時間又はサイクル時間と溶出液量とサイクル液量の関係 (Z = 30 cm, ε_b = 0.4, 298 K, I = 18~28%)

Figure 16 各エタノール濃度溶媒のカテキンと EGCG の溶出曲線 (Z = 30 cm, $\varepsilon_b = 0.4$) (a) I = 20%: $R_s = 1$, $K_1 = 5.6$, $K_2 = 12.7$, $K_2 - K_1 = 7.1$, $u = 15 \text{ cm} \cdot \text{min}^{-1}$, $V_F/V_0 = 0.166$, $t_C = 40.7 \text{ min}$, $V_c/V_0 = 20.6$, (b) I = 27%: $R_s = 1$, $K_1 = 2.6$, $K_2 = 3.8$, $K_2 - K_1 = 1.2$, $u = 2.5 \text{ cm} \cdot \text{min}^{-1}$, $V_F/V_0 = 0.693$, $t_C = 41.8 \text{ min}$, $V_c/V_0 = 3.5$,

Figure 17 エタノール濃度 Iに対する生産性 P^*, P_1^* の関係

引用文献

- [19] M. Ladisch; Reversed phase chromatography, Bioseparations Engineering : Principles, Practice, and Economics. New York, Wiley (2001)
- [20] G. Carta, A. Jungbauer; Protein Chromatography, Weinheim, Wiley-VCH, (2010)
- [21] GE-Healthcare Bio-Sciences AB. "Hydrophobic Interaction and Reversed Phase Chromatography Principles and Methods." Uppsala (2006)
- [22] G. Guiochon, SG. Sirazi, AM. Katti; "Fundamentals of Preparative and Nonlinear Chromatography." Boston, Academic Press (1994)
- [23] S. Yamamoto, M. Hakoda, T. Oda, M. Hosono; Rational method for designing efficient separations by chromatography on polystyrene-divinylbenzene resins eluted with aqueous ethanol. J. Chromatogra. A., 1162, 50-55 (2007)
- [24] M. Hosono, R. Maeda, N. Yoshimoto, S. Yamamoto; Rational method for designing efficient chromatography processes based on the iso-resolution curve. Chem. Eng. Technol., 35, 198-203 (2012)
- [25] S. Yamamoto, K. Nakanishi, R. Matsuno; "Ion-exchange chromatography of proteins." New York, Dekker (1988)
- [26] S. Yamamoto; Electrostatic interaction chromatography process for protein separations: The impact of the engineering analysis of biorecognition mechanism on the process optimization. Chem. Eng. Technol., 28, 1387-1393 (2005)
- [27] TK. Sherwood, RL. Pigford, CR. Wilke; "2.6 Diffusion in liquids, Mass Transfer." New York, McGraw-Hill ,1976, p.25-29.
- [28] TK. Sherwood, RL. Pigford, CR. Wilke; "10 Design of fixed-bed sorption and ion exchange devices. Mass Transfer." New York, McGraw-Hill, 1976, p. 548-592.
- [29] B.J. McCoy; Semicontinuous affinity chromatography separations. Biotech. Bioeng., 27, 1477-1481 (1985)
- [30] F.D. Antia; "A simple approach to design and control of simulated moving bed chromatographs. In Rathore A, Velayudhan A, editors. Scale-up and optimization in preparative chromatography: principles and biopharmaceutical applications." New York, Marcel Dekker, 2002, p.173-201
- [31] M. Degerman, K. Westerberg, B. Nilsson; A Model based approach to determine the design

space of preparative chromatography. Chem. Eng. Technol., 32, 1195-1202 (2009)

[32] Hiroshi Kojyo, Yukiteru Sugiyama, Yu Isakari, Noriko Yoshimoto, Shuichi Yamamoto and Ales Podgornik; Temperature effects in adsorptive chromatography of polyphenols. Proceedings of APCChe, 1-5 (2015)

3. 最適化された繰返連続注入 (RCO) クロマトグラフィー操作条件に基づいた 連続クロマトグラフィーの操作条件および生産性計算方法

3.1. 概要

2 章では、回分式繰返連続注入 (RCO) クロマトグラフィーにおいて、移動相消費量 を考慮した生産性の計算方法を提案し、最大生産性が得られる最適なエタノール濃度 (分配係数) が存在することを示した [33].一般的な連続操作のクロマトグラフィーと しては、疑似移動層式 (SMB) クロマトグラフィーが知られている.一方で、複数のパ ラメーターが存在し、評価方法の難しさから RCO との比較研究はほとんど行われてお らず、実際にどのような条件のときに SMB のメリットが生じるかという点については 現在も明確な推定方法は確立されていないことを1章で説明した [12] - [18].また、分 配係数が大きい逆相クロマトグラフィーを用いた分離系での比較研究についても、こ れまで十分に行われていない.

本章では、等組成溶出クロマトグラフィーによる2成分分離(エタノール水移動相に よるカテキン、エピガロカテキンガレートのポリスチレン樹脂逆相クロマトグラフィ ー)をモデル系として、2章で最適化した RCO の操作条件を基にした標準4 ゾーン型 SMB との生産性比較方法を提案し、実験値に基づいて両方法の生産性とクロマトグラ フィー条件との比較を行った.

3.2. 理論

繰り返しクロマトグラフィーによる2成分分離

等組成 (isocratic) 溶出の2成分分離の理論は2章と同様である. なお, 生産性の算出 方法について, 2章ではある大きさのカラムの生産性に着目したため Eq. (20) と定義し たが,本章では単位体積単位時間あたりの Eq. (23) として改めて定義する. なお, Eq. (19) は2章と同様である.

$$P_{\rm RCO}^{*} = P_{\rm RCO}/C_0 = (V_{\rm F}/V_{\rm o})/(t_{\rm C})$$
(19)

$$P_{1,\text{RCO}}^{*} = P_{\text{RCO}}(V_0/V_C) = (V_F/V_0)[t_C(V_C/V_0)] = (V_F)/(t_CV_C)$$
(23)

単位は $P^*[(m^3-product)(m^3-bed)^{-1}s^{-1}] = [s^{-1}], P_1^*[(m^3-product)(m^3-solvent)^{-1}s^{-1}] = [s^{-1}]$ である.

複数カラム切り替えによる連続操作 (擬似移動層 SMB)

前述の回分式クロマトグラフィーの繰返し連続注入操作 (RCO) では1本のカラムを 利用している. 複数のカラムを切り替えることによる擬似的な連続クロマトグラフィ 一操作がいくつかあるが,等組成2成分分離としてもっともよく知られているのは擬似 移動層 (SMB) である. SMB にもさまざまな改変型があるが [9],ここでは標準型4 ゾ ーン (4 カラム) SMB を考える. 基本的な操作を Fig. 18 に示す. ここで,移動相溶媒 (Desorbent) はゾーン1のカラムに,試料 (Feed) はゾーン3のカラムに供給され,エク ストラクト (Extract) 画分はゾーン1とゾーン2の間から,ラフィネート (Raffinate) 画 分はゾーン3 とゾーン4 の間から回収される.

RCO では流速 u は一定であるが, SMB では各ゾーンの速度は異なる $(v^{(1)}, v^{(2)}, v^{(3)}, v^{(4)})$. また,入口 2 か所 (v_F, v_D) と出口 2 か所の流速 (v_R, v_E) , さらにはカラム切替時間 t_{sw} の合計 9 つの変数が存在する.カラム長さ (ゾーン長さ) を固定しても 9 つの変数を 最適化し,最大生産性条件を探索することは容易ではない.

定常状態で2か所の入口と2か所の出口の流速にはEq.(24)が成立する.

 $v_{\rm F} + v_{\rm D} = v_{\rm R} + v_{\rm E}$

分離を達成するためには各ゾーンの速度 v⁽¹⁾ は, Adachi [34] が提案している 4 つの不等 式を満足するように設定しなければならない. これについては Triangle Theory として整 理され, 以下の記述が広く用いられている [30, 35].

$m^{(l)} = (v^{(l)} - \varepsilon_{\rm b} v_{\rm s}) / [(1 - \varepsilon_{\rm b}) v_{\rm s}]$	(25)
$K_2 < m^{(1)}$	(26a)
$K_1 < m^{(2)} < m^{(3)} < K_2$	(26b)
$-1/H < m^{(4)} < K_1$	(26c)

ここで、 $m^{(1)}$ は移動相と固定相の移動速度の比を表わし、無次元化速度比 (dimensionless flow-rate ratio) と呼ばれる. v_s は固定相線速度 $[m \cdot s^{-1}]$ であり、次式で定義される.

$v_{\rm s} = Z/(4t_{\rm sw})$	(27)
5 (511)	

(24)

SMB では原料と溶媒供給および分離液の回収は連続的に行われる. RCO と SMB の変数 は以下の式で関係づけられる.

$V_{\rm o,SMB} = A_{\rm C} Z_{\rm SMB} \varepsilon_{\rm b}$	(28)
$t_{\rm C,SMB} = n t_{\rm sw}$	(29)
$V_{\rm F,SMB} = A_{\rm C} v_{\rm F} t_{\rm C,SMB}$	(30)
$V_{\rm C,SMB} = A_{\rm C} v_{\rm D} t_{\rm C,SMB}$	(31)

 $V_{0,SMB}$ はSMBの全カラムの空隙容積, A_{C} はカラム断面積, Z_{SMB} はSMBの全カラム長さ, $t_{C,SMB}$ はSMBの1サイクル時間, n はカラム本数 (=本検討では4本), $V_{C,SMB}$ は1サイ クルあたりの溶媒供給量, $V_{F,SMB}$ は1サイクルあたりの原料供給量である. Eqs. (28) -(31)を Eq. (19)と Eq. (23) に代入することにより, SMBの生産性は以下の式で表され る.

$$P_{\text{SMB}}^{*} = (V_{\text{F}})/(V_{\text{o}}t_{\text{C}}) = (A_{\text{C}}v_{\text{F}}t_{\text{C},\text{SMB}})/(A_{\text{C}}Z\varepsilon_{\text{b}})/(t_{\text{C},\text{SMB}}) = A_{\text{C}}v_{\text{F}}/(A_{\text{C}}Z\varepsilon_{\text{b}}) = v_{\text{F}}/Z\varepsilon_{\text{b}}$$
(32)

$$P_{1,\text{SMB}}^{*} = (V_{\text{F}}/V_{\text{o}})/[t_{\text{C}}(V_{\text{C}}/V_{\text{o}})] = P_{\text{SMB}}^{*}/(V_{\text{C},\text{SMB}}/V_{\text{o}}) = P_{\text{SMB}}^{*}/[v_{\text{D}}t_{\text{C},\text{SMB}}/(Z_{\mathcal{E}_{\text{b}}})]$$

= $(v_{\text{F}}/v_{\text{D}})/t_{\text{C},\text{SMB}} = (v_{\text{F}}/v_{\text{D}})/(4t_{\text{sw}}) = (v_{\text{F}}/v_{\text{D}})(4t_{\text{sw}}) = (v_{\text{F}}/v_{\text{D}})/(Z_{\text{SMB}}/v_{\text{s}})$ (33)

本章では、回分式繰返連続注入 (RCO) クロマトグラフィーにおける最大生産性 $P_{\rm M}$ の操作条件に関する結果を基にした SMB の運転条件の決定と生産性の計算方法を提案 する.

<計算手順>

はじめに RCO における $P_{\rm M}$ を求める(1) - (3).

- (1) 分配係数は 2 成分ともに一定である (本系では移動相濃度 *I* により値が決定される).
- (2) 2 成分の HETP は Eq. (5) で計算する (A^o, C^o はそれぞれの成分で異なる).
- (3) カラム長さZのRCOにおいて P^{*}_M (P^{*}の最大値) となる移動相線速度 u_M と試料供給 量 V_{EM} を求める (P_Mの求め方は2章で述べたように [33, 36],単位時間使用溶媒量

あたりの試料供給量が最大になる $u \ge V_F$ を探索する方法である). 次に SMB のパラメーターを順次決定していく.

(4) ゾーン 3 の線速度 $v^{(3)}$ は RCO の \underline{u}_M (P^*_M となる線速度の最大値) と同じに設定する. $v^{(3)} = \varepsilon_b \underline{u}_M = v_M$

(5) 分離パラメーターm⁽²⁾は Eq. (25) と Eq. (26) から適正な値を決定する.

(6) 試料 (Feed) 供給速度 v_Fを以下の手順で計算する. SMB カラム長さは均等に 4 分割 する.

$$Z_{\rm RCO} = Z_{\rm SMB} = Z^{(1)} + Z^{(2)} + Z^{(3)} + Z^{(4)} = 4Z^{(1)}$$
(34)

$$P_{M}^{*} = (V_{F}/t_{C})/(V_{o}) = (A_{C}v_{F})/(A_{C}Z_{SMB}\varepsilon_{b}) = v_{F}/(Z_{SMB}\varepsilon_{b})$$
(35)

 $(V_{\rm F}/t_{\rm C})$ は1サイクルあたりの試料供給量であり, SMB では $A_{\rm C}v_{\rm F}$ となる.これより,

$$v_{\rm F} = P^*_{\rm M} Z_{\rm SMB} \varepsilon_{\rm b} \tag{36}$$

(7) 溶媒あるいは移動相供給速度 v_Dは, RCO と同じになるように計算する.

$$t_{\rm F}/(t_{\rm C}-t_{\rm F}) = (v_{\rm F}/v_{\rm D})$$

 $v_{\rm D} = v_{\rm F}(t_{\rm C}-t_{\rm F})/t_{\rm F}$
(37)

(8) $v^{(2)}$ は $v^{(3)} = v_{\rm M}$ から $v_{\rm D}$ と等しくなる. RCO において $V_{\rm C} = V_{\rm D} + V_{\rm F}$ なので

$$v_{\rm M} t_{\rm C} A_{\rm C} = v_{\rm D} t_{\rm C} A_{\rm C} + v_{\rm F} t_{\rm C} A_{\rm C} \qquad \succeq t_{\rm C} \ v_{\rm M} = v_{\rm D} + v_{\rm F}$$

$$v^{(2)} = v^{(3)} - v_{\rm F} = v_{\rm M} - v_{\rm F} = v_{\rm D}$$
(38)

(9) v_s は分離パラメーター $m^{(2)} = (v^{(2)} - \varepsilon_b v_s)/[(1 - \varepsilon_b)v_s]$ から次式で計算する.

$$v_{\rm s} = v^{(2)} [\varepsilon_{\rm b} + (1 - \varepsilon_{\rm b})m^{(2)}]$$
(39)

(10)
$$t_{sw}$$
は, $t_{sw} = Z_{SMB}/(4v_s)$ で決定する. (40)

(11) v⁽¹⁾は, HETP_{RCO} = HETP_{SMB} となるように Eq. (41) より計算する.

$$v^{(1)} = 2(\text{HETP} - A^{\circ})/C^{\circ} + (v_{\rm D} + v_{\rm F})/2 - v^{(3)}$$
(41)

(12) v_Eを物質収支に基づき Eq. (42) で決定する.

$$v_{\rm E} = v^{(1)} - v^{(2)} \tag{42}$$

(13) $v^{(4)}$ は物質収支に基づくと $v_{\rm E}$ と等しくなる.

$$v^{(4)} = v^{(1)} - v_{\rm D} = v^{(1)} - v^{(2)} = v_{\rm E}$$
(43)

(14) vR を物質収支に基づき Eq. (44) で決定する.

$$v_{\rm R} = v^{(3)} - v^{(4)} \tag{44}$$

(15) 以上の手順により決定されたすべてのパラメーター ($v^{(1)}$, $v^{(2)}$, $v^{(3)}$, $v^{(4)}$, v_{D} , v_{E} , v_{F} , v_{R} , Z_{SMB} , t_{sw}) を用いて SMB の数値シミュレーション計算を行い,純度 X_{SMB} と回収率 Y_{SMB} を計算する. X_{SMB} , Y_{SMB} の計算値が目標値 (X, Y) を下回る場合は, Eq. (36) の v_{F} を減 少し,計算値が上回る場合は, v_{F} を増加して目標値を達成するまで再計算する. (16) 生産性を Eq. (32) と Eq. (33) で計算する.

3.3. 結果及び考察

2章に示したエタノール水移動相によるカテキン(成分1),エピガロカテキンガレート(成分2)のポリスチレン樹脂(Diaion HP20)逆相クロマトグラフィー)をモデル系として、回分式クロマトグラフィーの繰返連続注入操作による生産性について検討した.この系ではエタノール水移動相のエタノール濃度*I*が減少すると分配係数*K*₁,*K*₂と分配係数の差(*K*₂ - *K*₁)が増加するので分離は容易になるが、使用溶媒量が増える傾向となる.Eq.(23)で定義される生産性を計算したところ*I* = 26%(*v/v*)付近で最大生産性が得られることが明らかとなった[33].*I* = 24%および*I* = 26%における両成分の溶出挙

動の分離シミュレーションの結果を Fig. 19 に示す. なお,本研究では $\epsilon_b = 0.400$ として 計算した. RCO の等分離度条件 ($R_s = 1 : X_{RCO} = 98\%$, $Y_{RCO} = 98\%$) に基づき, SMB の数 値シミュレーション計算では $X_{SMB} = 0.98 \pm 0.01$, $Y_{SMB} = 0.98 \pm 0.01$ および $X_{SMB}Y_{SMB} = 0.9625 \pm 0.025$ を目標値とした.

3.2.で提案した計算法による *I*=24%に対する計算手順と計算結果は以下となる.
まず, *K*₁および *K*₂は既報 [33] に従って実験的に求めた相関式から計算した. *I*=24%, 26%における *K*₁および *K*₂を用いて最適化した RCO の各パラメーターを Table
2 に示す.これらの値を使用して順次パラメーターの値を決定する.

$Z^{(1)} = Z^{(2)} = Z^{(3)} = Z^{(4)} = Z_{\text{RCO}}/4$	= 7.5	cm
$P^*_{\rm M} = V_{\rm F}/(t_{\rm C}V_{\rm o})$	$= 9.4 \times 10^{-3}$	min ⁻¹
$v_{\rm F} = P^*_{\rm M} Z_{\rm SMB} \varepsilon_{\rm b}$	= 0.113	cm·min ⁻¹
$v_{\rm D} = v_{\rm F} (t_{\rm C} - t_{\rm F})/t_{\rm F}$	= 2.57	cm·min ⁻¹
$v^{(3)} = v_{\rm M}$	= 2.68	cm·min ⁻¹
$v^{(2)} = v_{\rm D}$	= 2.57	cm·min ⁻¹
Eq. (25) \succeq Eq. (26) $\ddagger \emptyset$ $m^{(2)} = 1.2K_1$	= 4.20	
$v_{\rm s} = v^{(2)} / (\varepsilon_{\rm b} + (1 - \varepsilon_{\rm b}) 1.2K_1)$	= 0.88	cm·min ⁻¹
$t_{\rm sw} = Z/(4v_{\rm s})$	= 8.53	min
$v^{(1)} = 2(\text{HETP}_{1,\text{RCO}} - A^{\circ})/C^{\circ} + (v_{\text{F}} + v_{\text{D}})/2 - v^{(3)}$	= 4.24	cm·min ⁻¹
$v_{\rm E} = v^{(1)} - v^{(2)}$	= 1.67	cm·min ⁻¹
$v^{(4)} = v_{\mathrm{E}}$	= 1.67	cm·min ⁻¹
$v_{\rm R} = v^{(3)} - v^{(4)}$	= 1.01	cm·min ⁻¹

これらの値を使用して付録に示す SMB のシミュレーションを行ったところ, エクスト ラクト画分の成分2について, $X_{SMB} = 97.4\%$, $Y_{SMB} = 96.3\%$, $X_{SMB}Y_{SMB} = 0.939$ であった. 同 様な計算をI = 26%についても行い, その結果をI = 24%の値とともに Table 3 にまとめ る. I = 26%では, $X_{SMB} = 98.5\%$, $Y_{SMB} = 98.6\%$, $X_{SMB}Y_{SMB} = 0.971$ であった. 目標値より高 いので v_F を増やして計算をし, $v_F = 0.084$ cm·min⁻¹, $v_D = 1.40$ cm·min⁻¹, $t_{sw} = 13.3$ min にて 以下の結果を得た. $X_{\text{SMB}} = 98.1\%, Y_{\text{SMB}} = 97.9\%, X_{\text{SMB}}Y_{\text{SMB}} = 0.960$

$$P^*_{\text{SMB}} = v_{\text{F}}/(Z_{\text{SMB}\mathcal{E}_b}) = 0.084/[(30)(0.4)] = 7.0 \times 10^{-3} \text{ min}^{-1}$$

 $P_{1 \text{ SMB}}^{*} = (v_{\text{F}}/v_{\text{D}})/(4t_{\text{sw}}) = (0.084/1.40)/[4(13.3)] = 1.1 \times 10^{-3} \text{ min}^{-1}$

 P^*_{SMB} は RCO の生産性 $P^* = 5.7 \times 10^{-3} \text{ min}^{-1}$ に対して 1.23 倍, $P^*_{1,\text{SMB}}$ は RCO の生産性 $P^*_{1} = 1.3 \times 10^{-3} \text{ min}^{-1}$ に対して 0.87 倍であった.なお、同様な計算をI = 24%についても行ったが、目標値を満たす結果は得られなかった.

SMB カラム長さの影響

生産性は $v_{\rm F}$ の他, $Z_{\rm SMB}$ に関係付けられることから, $Z_{\rm SMB}$ の影響について検討した. 具体的には,前述の <計算手順> により得られた $X_{\rm SMB}$, $Y_{\rm SMB}$ の計算値が目標値 (X, Y)を下回る場合は, Eq. (35)の $Z_{\rm SMB}$ を増加し,計算値が上回る場合は, $Z_{\rm SMB}$ を低減して目標値を達成するまで再計算した. I = 24%では,目的値より低いので $Z_{\rm SMB}$ を増やして計算をし, $Z_{\rm SMB} = 38.7$ cm にて以下の結果を得た.

 $X_{\text{SMB}} = 98.6\%, Y_{\text{SMB}} = 97.6\%, X_{\text{SMB}}Y_{\text{SMB}} = 0.963$

$$P^*_{\text{SMB}} = v_F / (Z_{\text{SMB}} \varepsilon_b) = 0.113 / [(38.7)(0.4)] = 7.3 \times 10^{-3} \text{ min}^{-1}$$

 $P_{1 \text{ SMB}}^{*} = (v_{\text{F}}/v_{\text{D}})(4t_{\text{sw}}) = (0.113/2.57)/[4(11.0)] = 7.7 \times 10^{-4} \text{ min}^{-1}$

 P^*_{SMB} は RCO の生産性 $P^* = 9.4 \times 10^{-3} \text{ min}^{-1}$ に対して 0.78 倍, $P_1^*_{\text{SMB}}$ は RCO の生産性 $P_1^* = 1.3 \times 10^{-3} \text{ min}^{-1}$ に対して 0.61 倍であった. 同様な計算を I = 26%についても行った. その結果を I = 24%の値とともに Table 4 にまとめる. P^*_{SMB} は RCO の生産性 $P^* = 5.7 \times 10^{-3} \text{ min}^{-1}$ に対して 1.15 倍, $P_1^*_{\text{SMB}}$ は RCO の生産性 $P_1^* = 1.3 \times 10^{-3} \text{ min}^{-1}$ に対して 0.96 倍であった. I = 24%と I = 26%における SMB カラム内の濃度分布を Fig. 20 に示す.

SMB 層内の線速度の影響

さらに、分配係数が一定の条件下として、I = 26%における SMB 層内の線速度の影響

を確認した. SMB の線速度 $v^{(3)}$ を変え,前述の <計算手順> に基づいて Z_{SMB} を変数とし て生産性 P^* を算出した.条件を Table 5 に,生産性の結果を Fig. 21 に示す.線速度の低 減に伴い, SMB の生産性 P^* は共に増加した.この時,カラム長さ Z と線速度から算出 した HETP から理論段数 (N = Z/HETP) を求めることができる.その結果を Fig. 22 に示 す.カラム長さ Z = 30 cm の場合,低線速度条件では SMB の理論段数は増加し,X 値,Y 値は共に目標値 (X = 98%, Y = 98%)を上回る結果であった.一方で,いずれの線速度条 件でも,Zを変数として最適計算 (X = 98%, Y = 98%)された時の理論段数の値は同じで あった.すなわち,カラム長さ又は線速度を変化させることにより SMB の生産性は変 化するが,これらは理論段数の影響であると考えられた. RCO と同様に, SMB の分離は 理論段数に依存することが示された.

まとめ

逆相系, イオン交換, 疎水性相互作用クロマトグラフィーにおいては, 移動相組成に より分配係数と分配係数差を制御することができる. 疑似移動層式 (SMB) クロマトグ ラフィーは, 難しい 2 成分分離すなわち, 分配係数差 ($K_2 - K_1$) が小さい分離において 効率的な方法であると主張されている [37]. ($K_2 - K_1$) 値が>1 のように大きく, 物質移 動が速い (HETP が小さい) ときは回分式クロマトグラフィーの繰返連続注入操作でも 十分に効率的な分離が可能であり, 場合によっては SMB より適していることも多い.

SMBとRCOの性能あるいは生産性比較については比較の基準があいまいなので正確 な判定ができていない. SMB が 2-3 倍高い生産性であると結論している論文もあるが [16],対象の回分式が十分に最適化されていない.分離条件に依るがそれほどの差がな い [13, 14],あるいは大スケールによりメリットがでる [15] という報告もある.生産 性のみに着目したが,SMB は装置が複雑であり初期投資についても十分検討しておく 必要がある.初期投資を考えると5年以上の運転が必要との指摘もある [17].また4 ゾ ーン以外の SMB も開発されており,単純な比較は難しい [38].

ここで提案した方法は SMB の 8 個の流速のうち 6 個を最適化した繰り返しクロマト グラフィー操作条件に基づくことにより設定している.生産性は純度と回収率の設定 値や,目的成分と不純物の構成比率によっても大きく変化する.本提案方法を用いて, 広い条件下での SMB と繰り返し回分操作との生産性の比較をすることにより,それぞ れの方法のメリットがでる操作条件あるいはクロマトグラフィー条件が明確になるこ とが期待される.

Table 2 最適化された RCO と SMB の計算に用いられたパラメーター

Rep	Repeated Cyclic Operation (RCO) optimized conditions for $R_s = 1$ ($X_{RCO} = 98\%$, $Y_{RCO} = 98\%$)												
Ι	K_1	K_2	и	$V_{\rm F}$	$t_{\rm C}$	$t_{\rm F}$	HETP_1	HETP_2	Ζ	N_1	N_2	$P^* \times 10^3$	$P_1^* \times 10^3$
%	-	-	cm·min ⁻¹	mL	min	min	cm	cm	cm	-	-	min ⁻¹	min ⁻¹
24	3.5	5.99	6.7	3.6	33.2	1.4	0.31	0.44	30.0	97	69	9.4	1.3
26	2.88	4.39	3.7	2.35	36.4	1.67	0.19	0.25	30.0	161	118	5.7	1.3

Table 3 疑似移動層式 (SMB) クロマトグラフィーの計算結果

Ι	$v_{\rm F}$	$v_{\rm D}$	$v_{\rm E}$	$v_{\rm R}$	$v^{(1)}$	$v^{(2)}$	v ⁽³⁾	$v^{(4)}$	$v_{\rm s}$	$t_{\rm sw}$	Ζ	$X_{\rm SMB}$	$Y_{\rm SMB}$	$X_{\rm SMB}Y_{\rm SMB}$
%				c	m∙min ⁻¹					min	cm	%	%	-
24	0.113	2.57	1.67	1.01	4.24	2.57	2.68	1.67	0.88	8.53	30.0	97.4	96.3	0.939
26	0.068	1.41	1.10	0.38	2.51	1.41	1.48	1.10	0.57	13.2	30.0	98.5	98.6	0.971

 Table 4 疑似移動層式 (SMB) クロマトグラフィーにおける Z を変数とした場合の計算

 結果

Ι	v_{F}	$v_{\rm D}$	$v_{\rm E}$	$v_{\rm R}$	$v^{(1)}$	$v^{(2)}$	$v^{(3)}$	$v^{(4)}$	$v_{\rm s}$	$t_{\rm sw}$	Ζ	$P^* \times 10^3$	$P_1^* \times 10^3$
%	cm·min ⁻¹									min	cm	min ⁻¹	min ⁻¹
24	0.113	2.57	1.67	1.01	4.24	2.57	2.68	1.67	0.88	11.0	38.7	7.3	0.77
26	0.068	1.41	1.10	0.38	2.51	1.41	1.48	1.10	0.57	11.4	26.1	6.5	1.2

 Table 5 疑似移動層式 (SMB) クロマトグラフィーにおける線速度の影響 (エタノール

 濃度 I=26%): Z を変数

	v_{F}	v _D	$v_{\rm E}$	$v_{\rm R}$	$v^{(1)}$	v ⁽²⁾	v ⁽³⁾	v ⁽⁴⁾	vs	t _{sw}	Ζ	$X_{\rm SMB}$	$Y_{\rm SMB}$
				cm∙	min ⁻¹					min	cm	%	%
Case 1	0.068	1.41	0.38	1.10	2.51	1.41	1.48	1.10	0.57	11.4	26.1	98.2	98.0
Case 2	0.068	1.41	0.38	1.10	2.18	1.08	1.15	0.77	0.44	11.5	20.0	98.1	97.8
Case 3	0.068	1.41	0.38	1.10	1.85	0.75	0.81	0.43	0.30	14.2	17.1	97.9	98.4

Figure 18 疑似移動層式 (SMB) クロマトグラフィー

Figure 19 逆相クロマトグラフィーにおける2成分系 (カテキン (1), エピガロカテキ ンガレート (2))の溶出計算結果 ((a) *I* = 24%, (b) *I* = 26%)

Figure 20 SMB のカラム内濃度分布 (エタノール濃度条件: (a) I=24%, (b) I=26%)

Figure 21 SMB のゾーン 3 の線速度 v⁽³⁾ に対する生産性 P^{*} (RCO と SMB の比較)

Figure 22 SMB のゾーン 3 の線速度 $v^{(3)}$ に対する理論段数 N の関係 (RCO と SMB の比較)

Appendix Numerical calculation method for SMB

SMB の数値シミュレーションは以下の基礎式を有限差分化して数値計算することにより行った.

移動相
$$\partial C / \partial t + H \partial \overline{C_s} / \partial t = -u \partial C / \partial z$$
 (A1)

固定相:
$$\partial \overline{C_s} / \partial t = K_s [KC - \overline{C_s}]$$
 (A2)

移動相では混合拡散を無視しており、固定相は総括物質移動係数 K_s による linear driving force モデルを使用している. C は移動相での溶質濃度、 \overline{C}_s は固定相での溶質平均濃度 である K_s と HETP は以下の式で関係づけられる.

$$K_{\rm s} = 2HK/(1 + HK)^2(u/\rm HETP)$$
 (A3)

境界条件は下記となる.

$$C_{i}^{(l)}(z,0) = C_{i}^{(l+1)}(z,t_{sw}), l = 1, 2, 3$$
(A4a)
$$C_{i}^{(l)}(z,0) = C_{i}^{(l+1)}(z,t_{sw}), l = 1, 2, 3$$
(A4b)

$$C_{\rm si}^{(l)}(z,0) = C_{\rm si}^{(l+1)}(z,t_{\rm sw}), l = 1, 2, 3$$
(A4b)
$$C_{\rm si}^{(4)}(z,0) = C_{\rm si}^{(1)}(z,t_{\rm sw}), l = 1, 2, 3$$
(A4b)

$$C_{i}^{(4)}(z,0) = C_{i}^{(1)}(z,t_{sw})$$
(A4c)

$$C_{\rm si}^{(4)}(z,0) = C_{\rm si}^{(1)}(z,t_{\rm sw})$$
(A4d)

下記の条件も成立しなければならない.	
$C_{i}^{(l)}(z, t) = C_{i}^{(l+1)}(0, t), l = 1, 3$	(A5)
$u_{i}^{(2)}C_{i}^{(2)}(z,t) + u_{F}C_{F,i} = u_{i}^{(3)}C_{i}^{(3)}(0,t)$	(A6)
$u_{i}^{(4)}C_{i}^{(4)}(z,t) = u_{i}^{(1)}C_{i}^{(1)}(0,t)$	(A7)

以上の計算を Kawajiri らが開発した MATLAB によるパッケージを改訂して計算した [9]. SMB の数値計算では、定常状態における Extract 画分の成分 2 における純度 X_{SMB} と 収率 Y_{SMB} の値が以下の式から算出した.

$$X_{SMB} = \frac{C_{E,2}}{C_{E,1} + C_{E,2}}$$
(A8)

$$Y_{SMB} = \frac{v_E C_{E,2}}{v_F C_{F,2}}$$
(A9)

引用文献

- [33] N. Yoshimoto, Y. Sugiyama, S. Yamamoto; A simple method for calculating the productivity of polyphenol separations by polymer-based chromatography. Biosci. Biotech. and Biochem., 81, 812-816 (2017)
- [34] S. Adachi; Simulated moving-bed chromatography for continuous separation of two components and its application to bioreactors. J. Chromatogr. A., 658, 271-282 (1994)
- [35] A. Rajendran, G. Paredes, M. Mazzotti; Simulated moving bed chromatography for the separation of enantiomers. Journal of Chromatogr. A, 1216, 709-738 (2009)
- [36] S. Yamamoto, M. Nomura; Predicting the performance of gel-filtration chromatography of proteins. J. Chromatogr. A, 512, 77-87 (1990)
- [37] G. H., Roger, P. Todd, S. R. Rudge, S. R., D. P. Petrides, "Bioseparations Science and Engineering." Oxford University Press (2003)
- [38] Y. Sugiyama, N.Yoshimoto, S.Yamamoto; Continuous chromatographic separation processes by using a column switching technique (in Japanese), Jpn. J. Food Eng., 18, A9
 -A12 (2017)

4. 結言

抗体や食品精製のダウンストリームプロセスではクロマトグラフィー操作が必要と されるが、その製造コストは全コストの大部分を占め、運転操作の効率化が望まれてい る. このクロマトグラフィーの効率化すなわち生産性の向上には、適切なモデルと評価 方法の構築が必要である.一般的なクロマトグラフィーである回分式では、繰返連続 注入操作による連続化も可能であると共に、生産性の定義も容易である.一方で、複数 本のカラムを切替え (スイッチング)、擬似的に連続操作をする方法として、高い生産 性が得られると言われている疑似移動層式 (SMB) クロマトグラフィーが提案されて いるが、操作変数が多く生産性の定義が難しい.このため、最適化された回分式繰返連 続注入 (RCO) クロマトグラフィーと SMB の生産性比較はほとんど行われておらず、 どのような条件で SMB の生産性がどの程度向上するかについては明確ではない.本研 究では、等組成溶出クロマトグラフィーによる2成分分離をモデル系として、最適化し た RCO を基準とした標準4 ゾーン型 SMB との生産性比較方法を提案し、実験値に基づ いて両分離方式の生産性とクロマトグラフィー条件との比較を行った。

2章では、スチレンジビニルベンゼン (PS-DVB) 樹脂を用いたポリフェノール (カテ キンと EGCg) — エタノール/水混合系 (分配係数差が大きい逆相クロマトグラフィー 分離)を対象とし、等分離度曲線に基づき、RCO と単回操作の比較、及び最大生産性の 簡便な予測方法の検討を行った. 直線勾配溶出実験によってエタノール濃度 Iの関数と して分配係数 K を、等組成溶出実験によって Iの関数として HETP-uの関係を決定し、 計算に用いた. 移動相溶媒量 V と操作時間 t の関係を整理した結果、高 I 値 (分配係数差 $\Delta K (= K_2 - K_1)$ が低い)条件では、回分式の単回操作に比べて、RCO の方が使用溶媒量 あたりの運転時間が短く、効率的な運転になることが分かった. 一方で、低 I 値 (高 ΔK 値)条件では、回分式の単回操作と RCO の間で操作方法の違いは見られなかった. また、 充填容積あたりの生産性 P^{*}、且つ移動相消費量あたりの生産性 P₁*には、最大生産性を とる最適な I(=20%, 26%)が存在することが分かった. これは, I(ΔK) 値の違いによる 分離特性 (試料供給量や溶媒使用量の違い)や圧力損失 (線速度)の境界条件も影響し ていると推定している.

3 章では、2 章で得られた RCO における最大生産性 P_M の操作条件結果を基にした SMB の運転条件決定と生産性計算方法を提案し、比較計算を行った.数値シミュレー ション計算により SMB の純度 X と収率 Y を算出した結果、RCO (X=98%, Y=98% : R_s =

1, Z = 30 cm) に比べて, I = 24% (高 ΔK 値) の X, Y 値は下回ったが, I = 26% (低 ΔK 値) ではX,Y値は上回る結果となった.I=26%では、目標値(X=98%,Y=98%)より高いの で $v_{\rm F}$ を増やして計算をした結果, $P_{\rm SMB}^*$ はRCOの生産性 $P^* = 5.7 \times 10^{-3} \, {\rm min}^{-1}$ に対して 1.23 倍, $P_{1,SMB}^{*}$ はRCOの生産性 $P_{1}^{*} = 1.3 \times 10^{-3} \text{ min}^{-1}$ に対して 0.87 倍であった. なお, 同様な計 算をI=24%についても行ったが、目標値を満たす結果は得られなかった.また、カラム 長さ Z を変数として計算した結果, I=24%ではカラム長さ Z=38.7 cm, I=26%ではカ ラム長さ Z = 26.1 cm において目標値を満たす結果が得られた. I = 24%では, P^*_{SMB} は RCO の生産性 $P^* = 9.4 \times 10^{-3} \text{ min}^{-1}$ に対して 0.78 倍, $P_{1,\text{SMB}}^*$ は RCO の生産性 $P_{1}^* = 1.3 \times 10^{-3}$ min^{-1} に対して 0.61 倍であった. I = 26%では, P_{SMB}^* は RCO の生産性 $P^* = 5.7 \times 10^{-3} min^{-1}$ に対して 1.15 倍, $P_{1,SMB}^{*}$ は RCO の生産性 $P_{1}^{*} = 1.3 \times 10^{-3} \text{ min}^{-1}$ に対して 0.96 倍であった. さ らに、I=26%の条件において、SMBのカラム線速度 v⁽³⁾を変数にした計算では、低線速度 条件になるに従い SMB の X, Y 値は RCO (X=98%, Y=98%)の値を上回った.この時、 RCOに比べて SMB の理論段数は増加し、カラム長さ Z とカラム線速度 u の関係は理論 段数により整理できた.以上より、連続操作によるクロマトグラフィー (RCOとSMB) の比較評価において、分配係数や理論段数は重要なパラメーターであることが分かっ た.

逆相系,イオン交換,疎水性相互作用クロマトグラフィーにおいては,移動相組成に より分配係数を制御することができる.SMBは,難しい2成分分離すなわち,ΔKが小さ い分離において効率的な方法であると主張されている.一方で,ΔK値が>1のように大 きく,物質移動が小さい (HETPが小さい) ときは RCOでも十分に効率的な分離が可能 であり,場合によっては SMBより適していることも多い.生産性は純度と回収率の設 定値や,目的成分と不純物の構成比率によっても大きく変化する.本研究で提案した方 法を用いて,広い条件下での SMBと RCO との生産性の比較をすることにより,それぞ れの方法のメリットがでる操作条件あるいはクロマトグラフィー条件が明確になるこ とが期待される.

48

Nomenclature

A	constant	[-]
$A_{\rm C}$	cross-sectional area	[m ²]
В	constant	[-]
С	liquid-phase concentration	[kg·m ⁻³]
C_0	initial concentration	[kg·m ⁻³]
$ar{C}_s$	average stationary phase concentration	[kg·m ⁻³]
D_{L}	axial dispersion coefficient	$[m^2 \cdot s^{-1}]$
$D_{\rm m}$	molecular diffusion coefficient	$[m^2 \cdot s^{-1}]$
D_{p}	pore diffusion coefficient	$[m^2 \cdot s^{-1}]$
Ds	stationary phase fiffusion coefficient	$[m^2 \cdot s^{-1}]$
F	volumetric flow rate	[kg·m ⁻³]
Н	volumetric phase ratio (= $(V_t - V_o)/V_o = (1 - \varepsilon_b)/\varepsilon_b$)	[-]
HETP	hight equivalent theoretical plate	[m]
Ι	ethanol concentration	[%]
Κ	distribution coefficient	[-]
Kc	distribution coefficient when the solute is not adsorbed on the resin	[-]
K _S	overall mass transfer coefficient	[s ⁻¹]
т	dimensionless flow-rate ratio	[-]
n	number of columns	[-]
Ν	theoretical plate number	[-]
$P^* = P/C_0$	amount of the product obtained per unit bed volume per cycle time	[s ⁻¹]
$P_1^* = P_1/C_0$	amount of the product obtained per unit bed volume	
	per unit solvent per cycle	$[s^{-1}]$
R _s	resolution	[-]
t	time	[s]
t^*	arbitrary column switching time	[s]
t _C	cycle time	[s]
$t_{ m F}$	feed time	[s]
t _R	retention time	[s]

$t_{\rm SEP}$	separation time	[s]
t _{sw}	column switching time	[s]
и	linear mobile phase velocity	$[\mathbf{m} \cdot \mathbf{s}^{-1}]$
V	superficial linear velocity	$[\mathbf{m} \cdot \mathbf{s}^{-1}]$
V _C	cycle elution volume	[m ³]
$V_{\rm F}$	feed volume	[m ³]
$V_{\rm R}$	retention volume (= $Ft_{\rm R}$)	[m ³]
Vt	column bed volume	[m ³]
Vo	column void volume ($= \varepsilon_b V_t$)	[m ³]
$v_{\rm S}$	velocity of the stationary phase	$[\mathbf{m} \cdot \mathbf{s}^{-1}]$
$V_{\rm SEP}$	separation volume	[m ³]
W	peak width at the base line (= $4\sigma_t$)	[s]
Х	purity	[%]
Y	yield	[%]
Ζ	column length	[m]

Greeek

\mathcal{E}_{b}	void fraction (= $V_{\rm o}/V_{\rm t}$)	[-]
σ	standard deviation	[s]

Subscripts

a	start position of elution curve
b	end position of elution curve
D, E, F, R	abbreviation of Desorbent, Extract, Feed, Raffinate
i	component <i>i</i>
RCO	repeated cyclic operation
SMB	simulated moving bed

Superscripts

l zone number for SMB

本研究は、山口大学大学院医学系研究科応用分子生命科学専攻 山本修一教授の御 指導のもとに行われたものであります.山本修一教授には、終始一貫して懇切、丁寧な 御指導を賜りました.ここに厚く御礼申し上げます.

また、本論文を作成するにあたり、山口大学大学院医学系研究科応用分子生命科学専 攻 吉本則子准教授には有益な御助言を賜りました. 謹んで御礼申し上げます.

末筆となりましたが,本研究に協力、援助していただきました飯盛遊氏,伊藤大祐氏, 濱地正嵩氏,前田亮氏,水口和信氏,矢田友一氏を始めとする山口大学大学院医学系研 究科応用分子生命科学専攻の諸先輩,同輩ならびに在校生に皆様に厚く御礼申し上げ ます.