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General introduction
Echinococcosis is zoonotic diseases caused by infection with larvae of the genus 

Echinococcus (order Cyclophyllidea, family Taeniidae) in the intermediated hosts. 

Alveolar echinococcosis (AE) and cystic echinococcosis (CE) are the two main types of 

this disease (Eckert, 2001). Since CE and AE are important for medical and veterinary 

point of view, the two pathogens, E. granulosus (sensu lato) and E. multilocularis, are 

well studied. E. granulosus (sensu lato) is present in over 100 countries from all 

continents except Antarctica (Eckert and Deplazes, 2004) and up to eleven different 

strains are identified (Maule and Marks, 2006; McManus, 2009). On the other hand, E. 

multilocularis is restricted to endemic regions in the Northern Hemisphere (Davidson et 

al., 2012) and has a much lower global incidence. However, AE is more difficult to treat 

than CE (Stojkovic and Junghanss, 2012). AE is almost impossible to cure when 

detected at late stages of development, and is typically lethal if left untreated (Eckert 

and Deplazes, 2004). This makes AE to be the most serious zoonosis in the Northern 

Hemisphere, and it has been estimated that the global burden of AE is comparable to 

that of many other neglected tropical diseases such as Leishmaniasis and 

Trypanosomiasis, for which research efforts are much more intensive (Torgerson et al., 

2010). 



1. E. multilocularis 

1.1 Life cycle and biology of E. multilocularis 

E. multilocularis (Tappe et al., 

2010), is a tiny tapeworm of the fox with four or five segments, around 1.2~4.5mm in 

length, and completes its life cycle via transmission between two different hosts (Figure 

1). The definitive host (mainly foxes and dogs) of the parasite which has a sexual and 

adult stage in the intestine can produce eggs (Deplazes and Eckert, 2001; Díaz et al., 

2015). And the intermediate host (mainly small rodents) are infected by ingestion of 

eggs of the parasite (Díaz et al., 2015). After hatching of eggs, the oncospheres (the first 

larval stage) are released and activated in the small intestine. Activated oncospheres 

penetrate into the intestinal wall and are carried by blood or lymph to internal organs 

(mainly the liver) and cause AE (Díaz et al., 2015). Oncospheres then develop into 

metacestodes and can produce numerous small vesicles, which develop germinal and 

laminated layers. Some germinal cells initiate the production of brood capsules and 

protoscoleces in each vesicle (Eckert, 2001). In the susceptible intermediate host, 

protoscoleces start to be produced after 40 days of post infection. The definitive host 

acquires infection by ingesting protoscoleces and the protoscoleces establish in the 

small intestine of the definitive host. The head of the adult is denominated the scolex 

and it contains the attachment organs (suckers and rostellum with hooks). Behind the 

scolex, the neck region proliferates extensively and continuously generates a chain of 

segments (proglottids), each one developing a complete set of male and female 

reproductive organs. 



Figure 1. Life cycle of E. multilocularis

1.2 Genomics of Echinococcus spp. 

A meeting was held at the Wellcome Trust Sanger Institute that led to the still 

(Koziol and Brehm, 2015). At 

datasets of helminths, although the projects 

for the trematodes Schistosoma mansoni, Schistosoma japonicum, and the nematode 

Brugia malayi were in an advanced stage (Brindley et al., 2009; Koziol and Brehm, 

2015). However, there were 98 Nematode and 30 Platyhelminthes draft genome datasets 

in the WormBase (http://parasite.wormbase.org/species.html) until 2016/10/2, and 4 

datasets were Echinococcus spp.  

Because of AE is fatal for humans and it is a well-documented laboratory model for 

host-parasite interplay (Gottstein and Hemphill, 2008; Brehm, 2010), study of the 

parasite has increased recently. And, genetic homogeneity due to inbreeding was one 



aspect that greatly facilitated genome assembly and thus contributed to the high quality 

of the E. multilocularis draft genome (Tsai et al., 2013). In parallel, Next Generation 

Sequence (NGS) technology was used to produce draft sequences for E. granulosus  

(sensu stricto, G1 strain) (Tsai et al., 2013; Zheng et al., 2013) and E. canadensis (G7 

genotype, isolated from Argentina). As for E. granulosus  G1 strain genome, it was 

firstly carried out on the framework of the E. multilocularis (German isolates) reference 

genome (Tsai et al., 2013). Later, these cestodes whole genome sequencing projects 

were complemented by efforts of a Chinese/Australian consortium, which produced a 

second E. granulosus draft genome from a single hydatid cyst (G1 strain) using 454 and 

Solexa NGS (Zheng et al., 2013) and the E.canadensis genome is implement and almost 

finished. In all three completely Echinococcus spp. genome projects (Tsai et al., 2013; 

Zheng et al., 2013), gene finding and annotation was supported by extensive EST- and 

NGS-transcriptomic analyses of several life cycle stages such as protoscolex, 

metacestode and adult (Parkinson et al., 2012; Tsai et al., 2013; Zheng et al., 2013). The 

studied tapeworms have much smaller genomes than the related flukes (about three 

times) or free-living flatworms (about nine times), which is mostly due to smaller 

intergenic regions, smaller introns, and a lower content of repeats and mobile genetic 

elements in tapeworm genomes (Tsai et al., 2013). Depending on the methodology used, 

between 10,300 and 11,300 genes were predicted in Echinococcus spp. genomes (Tsai et 

al., 2013; Zheng et al., 2013). Furthermore, although E. multilocularis and E. 

granulosus have a well-developed nervous system (Brownlee et al., 1994; Fairweather 

et al., 1994; Camicia et al., 2013; Koziol et al., 2013), several homeobox gene families 

involved in neural development are missing (Tsai et al., 2013) in currently assembled 

genome.  



Spliced-leader trans-splicing (SL-TS) is an mRNA maturation process, similar to 

intron splicing, which has been shown to occur in some parasites but not in theirs hosts 

(mammals) and are suggested to be exploitable for drug development for helminthiases 

(Liu et al., 2009). It is shown that the spliced leader, which is donated by a small RNA, 

is encoded elsewhere on the genome of E. multilocularis by genes that are tandemly 

arrayed (Brehm et al., 2000a). The transcripts of trans-spliced genes thus all harbor an 

E. multilocularis, is 36 bases long and 

contains a trimethyl-guanosine (TMG) cap, which differs from the 7-methyl-guanosine 

end of usual (non-trans-spliced) mRNAs (Brehm et al., 

2000a; Lasda and Blumenthal, 2011). The function of trans-splicing remains unclear. 

But, certain hypotheses argue that it is an adaptive process for coordinated gene 

regulation or translational control, others argue the spliced-leader genes might be selfish 

ial nuclear genes until they cannot be eliminated 

from the genome, leading to an expansion of Spliced-leader genes in tandem arrays 

(Blaxter and Liu, 1996; Blumenthal, 2004). It is revealed that 13% genes in the E. 

multilocularis genome are trans-spliced (Tsai et al., 2013). Among the trans-spliced 

genes, some of them are involved in essential cellular processes such as transcriptional 

and translational control, splicing or replication (Brehm et al., 2000a; Tsai et al., 2013). 

Hence, if trans-splicing or the translation of trans-spliced messages could be inhibited, 

this would surely result in lethal effects for all parasite cells (Koziol and Brehm, 2015). 

It is difficult for design drugs that directed against the splicing process itself to against 

cestodes, since trans-splicing is carried out by the canonical spliceosome, the 

components of which are highly conserved between cestodes and mammals. However, 

as already suggested previously (Liu et al., 2009), the eukaryotic translation initiation 



factor 4E (eIF4E), which initiates translation by binding to the mRNA cap structure, 

could be a promising target. In mammals, eIF4E only recognizes 7mG cap structures, 

whereas in Schistosoma, the trans-splicing eIF4E recognizes both 7mG and TMG caps 

(Liu et al., 2009). The E. multilocularis genome contains one single copy gene for 

eIF4E and it is reasonable to assume that this factor also recognizes both types of caps 

(Koziol and Brehm, 2015). Hence, structural differences in the cap-binding structures of 

parasite and host eIF4E, which are likely to exist (Liu et al., 2009), could possibly be 

exploited for the development of small molecule compounds that target trans-splicing in 

cestodes (Liu et al., 2009). 

Hence, with the establishment of the in vitro cultivation system (Brehm and Spiliotis, 

2008) and the availability of the genome datasets, E. multilocularis is a promising 

model to study host-parasite interface. To facilitate an effective and wide use as a model, 

deep understanding of E. multilocularis biology especially at the molecular level and 

gene expression at different life-cycle stages is necessary and imperative for drugs 

design and vaccination development. 

1.3 Structure of oncospheres and metacestodes of Echinococcus spp. 

Numbers of studies have been undertaken to describe the structure of taeniid 

(Platyhelminthes: Cestoda: Taeniidae) eggs and/or oncospheres (Jabbar et al., 2010; 

Swiderski, 1983), including several research on Echinococcus spp.(Heath and Smyth, 

1970; Heath and Lawrence, 1976; Swiderski, 1983; Harris et al., 1989; Holcman et al., 

1994; Swiderski et al., 2016). Studies describe the structure of oncosphere of 

Echinococcus spp. mainly based on sections taken at random, and results show that 

mature Echinococcus spp. eggs have a thick embryophore and its ultrastructure shows it 



is made of thick elongated blocks united by electron-lucid cement and the oncosphere 

membrane is a thin cytoplasmic layer surrounding the oncosphere. Furthermore, study 

by Swiderski (2016) described oncospheral hook morphogenesis for E. multilocularis

and show that the blade and base gradually protrude outside the oncoblast plasma 

membrane during hook growth. 

During early metacestode development in E. multilocularis, two types of 

- - -cells), 

both of which were found in mitosis (Sakamoto and Sugimura, 1970). LS-cells were 

only found during the earliest stages of the oncosphere to metacestode metamorphosis, 

and were proposed to give rise to the DS-cells. DS-cells accumulate during the 

formation of brood capsules and protoscoleces, and it was proposed that DS-cells 

differentiate into several cell types such as tegumental cells, muscle cells and glycogen 

storing cells (Sakamoto and Sugimura, 1970). Ultrastructural studies of E. granulosus 

metacestodes also described other differentiated cell types, such as calcareous corpuscle 

cells and excretory cells (cells of the excretory tubules and flame cells) (Lascano et al., 

1975; Smith and Richards, 1993).  

2. Transcriptome and RNA-seq 

A transcriptome is the full range of messenger RNA molecules expressed by an 

organism. The term "transcriptome" can also be used to describe the array of mRNA 

transcripts produced in a particular cell, tissue type or life stages. In contrast with the 

genome, which is characterized by its stability, the transcriptome actively changes 



(Velculescu et al., 1997). And it is believed that organisms maintain their stability 

against external and internal changes by regulating gene expression at certain time point. 

Characterization of all the RNAs transcribed therefore helps us understand profound 

bio-processes (Velculescu et al., 1997). 

2.1 Transcriptome: an entire dynamic RNA profile 

The term transcriptome was first used in yeast to describe the genes that were being 

expressed and their expression levels at distinct cell phases (Velculescu et al., 1997; 

Zheng, 2012). It is proved that alternatively splice is a common phenomenon in 

eukaryote, for example, transcripts from genes with multiple exons compose up to 95% 

and more than seven alternative splicing events occur in every multi-exon gene in 

human tissue (Pan et al., 2008). Transcriptome analysis provides a wealth of 

bio-in

genome. Transcriptome analysis allows one to analyze such expression patterns as 

alternative splicing and find new exons, especially ones of a small size, or genes or 

single-nucleotide polymorphism (SNP) (Sultan et al., 2008). In particular, it is quite 

useful for annotating genomes of organisms that are poorly understood (Yassour et al., 

2009). Moreover, transcriptome analysis is a powerful tool to be able to compare the up 

or down regulation of gene expression in cells or tissues exposed to different conditions 

and stages. A study comparing matured metacestodes and adult of E. multilocularis

revealed that there are more than 1,000 transcripts are significant different expressed 

(Tsai et al., 2013). This analysis gives us valuable data to search the target genes for 

diagnostic and vaccination for echinococcosis. 



2.2 RNA Sequencing (RNA-Seq): a deep high-throughput technology for 

transcriptional characterization 

RNA-Seq, also called whole transcriptome shotgun sequencing (Morin et al., 2008), 

using NGS to reveal the presence and quantity of RNA in a biological sample at a given 

moment in time (Wang et al., 2009; Chu and Corey, 2012). Different from Automated 

Sanger Sequencing (first generation), NGS technologies have several different 

approaches, including 454, Illumina and SOLiD, et al., but the most popular one is the 

Illumina platform.  



Chapter 1. RNA sequencing of oncospheres and 

metacestodes of E. multilocularis 

Abstract 

In the present study, seven samples at stage of non-activated oncospheres (Nonc), 

activated oncospheres (Aonc), 4-week metacestodes in vivo (4Wmet), 16-week 

metacestodes in vivo (16Wmet) and in vitro cultivated metacestodes (Cmet) of E. 

multilocularis were collected with the aim of measuring dynamics expressed RNA 

transcripts that occur during parasite development. The single-end (s4Wmet and 

s16Wmet) and pair-end (pNonc, pAonc, p4Wmet, pCmet) sequencing by Illumina's 

Genome Analyzer platform and other bioinformatics analyses was used for RNA 

sequencing approach, respectively. The result show that 700 million clean reads with > 

90% of all bases having Phred (Q) scores above 30, and most of de novo assembled 

contigs can matched to the reference genome of E. multilocularis which indicated that 

all sequenced reads of this seven samples and the assembled contigs of pair-end 

sequence samples are reliable.  

Key word: Oncospheres, Metacestodes, Reads, Contigs, Transcriptome 

1. Introduction 

For the development of diagnostic antigen or vaccine targets of AE, gene expression 

data of oncospheres and early larval stages metacestodes were needed. At present, little 

gene expression data has been published for oncospheres and early larval stages. Thus, 

experiments on identifying antigens for use in immunodiagnostic assays is a crucial 



point in the improvement of the diagnostic tool and must be based on the developmental 

stage of the parasite. 

Now, the genome database of E. multilocularis has been recently published, since we 

want to check the trans-spliced transcripts in E. multilocularis genome, all the reads of 

pair-end sequenced samples will de novo assembled by Trinity software (Grabherr et al., 

2011) and for check the de novo assemble is reliable or not, the BLASTN algorithm 

(Altschul et al., 1997) was used to Blast to E. multilocularis reference genome (German 

isolates).  

2. Materials and Methods 

2.1 Ethics statement 

This study was carried out in strict accordance with the recommendations set out in 

the Guidelines for Animal Experimentation of the Japanese Association for Laboratory 

Animal Science, and the protocol for the animal experiments was approved by the ethics 

committee of the Hokkaido Institute of Public Health (Permission number: K25-02). 

2.2 Preparation of parasite samples 

E. multilocularis isolated in Hokkaido (Nemuro strain) was routinely maintained 

through a dog cotton rat life cycle at the Hokkaido Institute of Public Health (Sapporo, 

Japan). Dogs were orally administered 5 × 105 E. multilocularis protoscoleces and the 

infection was terminated 35 77 days post infection by administering two tablets of 

Droncit® (Kouguchi et al., 2016). 



2.2.1 Non-activated oncospheres (Nonc) 

Feces were collected from experimentally infected dogs at 35 days post-infection. 

Eggs were isolated from feces by filtering by mesh, natural sedimentation and flotation 

with sugar solution. The isolated eggs were treated with 3% sodium hypochlorite for 

20min for removal of the embryophore and sterilization. Non-activated oncospheres 

were collected at two times for biological replicates: September 2013 (sample, Nonc1) 

and December 2013 (sample, Nonc2).

2.2.2 Activated oncospheres (Aonc) 

Techniques for activation of non-activated oncospheres were as previously described 

(Holcman et al., 1994; Santivanez et al., 2010). Briefly, non-activated oncospheres were 

activated with 1% pancreatin (Nacalai Tesque, Inc.), 1% hog bile extract (MP 

Biomedicals, LLC) and 0.2% Na2CO3 in RPMI 1640 (Gibco) at 38°C for 20min, and 

then cultivated in RPMI 1640 with 10% fetal calf serum (Gibco) at 38°C for 24h. 

2.2.3 4-week immature metacestodes (4Wmet) 

The DBA/2 mice were sacrificed after four weeks post oral infections with eggs and 

small lesions with early stage larvae were collected from the livers. The collected larvae 

were examined as 4-week metacestodes miniature vesicles (4Wmet) and have no 

protoscoleces, brood capsules and calcareous corpuscles. 

2.2.4 16-week mature metacestodes (16Wmet) 

 The DBA/2 mice were sacrificed after 16 weeks post oral infections with eggs and 

lesions with larvae were collected from the livers. The collected larvae were examined 



as 16-week metacestodes with protoscoleces, brood capsules and calcareous corpuscles 

(16Wmet). 

2.2.5 Metacestodes small vesicles cultivated in vitro (Cmet) 

In vitro cultivation of E. multilocularis was carried out as described previously 

(Spiliotis et al., 2004; Brehm and Spiliotis, 2008) . In short, cyst masses of metacestodes 

from intraperitoneal passage DBA/2 mice at 16 weeks were cut into small pieces and 

cultivated in DMEM (Gibco) with 10% fetal calf serum (Gibco) at 37°C. Miniature 

cysts were grown to small vesicles (2-4 mm in diameter) in several weeks but were 

harvested before the formation of brood capsules and protoscoleces. 

2.3 Extraction of total RNA 

Total RNA was extracted with protocols from Onc (2 samples), Aonc, 4Wmet (2 

samples), 16Wmet and Cmet using Trizol (Invitrogen, cat.no.15596-026) and 

RNase-Free DNase Set (QIAGEN, cat.no.79254). Briefly, parasites were homogenized 

in 1 ml Trizol using mortar by adding liquid nitrogen. Then the total RNA was extract 

from Trizol, which contain the samples by the protocol for Trizol RNA isolation. The 

extracted RNA from each sample was eluted into nuclease-free water. To get rid of 

contaminating genomic DNA, the recovered RNA was purified by RNase-Free DNase 

Set (QIAGEN, cat.no.79254) according to the manual and suspended into RNase-free 

water. The concentration was determined by Nanodrop (Thermo Scientific). 

2.4 Library construction and sequencing  

 The mRNA was extracted using the Illumina mRNA-Seq Sample Preparation Kit 



according to manufacturer instructions. Briefly, total RNA was subjected to poly (A) 

selection using Sera-Mag Magnetic Oligo-dT beads. Poly (A+) RNA was partially 

degraded by incubating in fragmentation buffer at 94°C for 5 min. The first-strand 

cDNA was synthesized using random primers and SuperScript II (Invitrogen), and the 

second-strand cDNA was synthesized using RNaseH and DNA pol I (Illumina). 

Illumina GA sequencing adaptors were ligated to the cDNA ends. Double-stranded 

cDNA was size-fractionated by 6% polyacrylamide gel electrophoresis, and the band of 

200 bp cDNA was recovered and amplified using Phusion DNA Polymerase 

(Finnzymes) in 15 cycles by PCR. Finally, >50 bp single- or pair- end read RNA-seq 

tags were generated (Figure 1-1) using the Genome Analyzer IIx (Illumina, San Diego, 

CA, USA) following methods in the User Guide. 

Figure 1-1. Flowchart of E. multilocularis RNA-Seq. technology. 



2.5 Sequence data quality control 

To assess the quality of each lane, reads obtained from each life-cycle stages were 

filtered by Perl script using the following criteria: 1) trim adapter; 2) remove 

Illumina-filtered reads; 3) remove reads with no-call bases (ex: AATC "N" ATGATAG); 

and 4) remove mouse-mapped reads.  

2.6 De novo assembly for 100bp pair-end reads 

As for Spliced-leader and trans-splicing analysis in E. multilocularis and it 

recommends using pair-end reads for de novo assembly by Trinity software (Grabherr et 

al., 2011), we conduct de novo transcriptome assembly using 100 par-end reads from 

oncospheres and metacestodes of E. multilocularis. Filtered reads were extracted using 

SAMtools (Li et al., 2009) and used for subsequent assemblies. De novo transcriptome 

assemblies of these filtered reads were performed using the Trinity software (Grabherr 

et al., 2011). The command line used for assembly was Trinity.pl seq Type fq JM 10G

left reads-1.fq right reads-2.fq min_contig_length 200. The final output from Trinity 

was a large number of assembled FASTA sequences. After assembly, TransDecoder 

(http://transdecoder.sf.net) was used to identify open reading frames (ORFs) with 

complete coding sequences. To remove possible sources of contamination from 

assemblies of individual samples, the list of contigs from individual samples was used 

as a query for a BLASTN (Altschul et al., 1997)(2.2.31 release of NCBI-BLAST+) 

search against E. multilocularis reference genome (German isolates) that deposited in 

WormBase ParaSite (http://parasite.wormbase.org/species.html ).  



3. Result 

3.1 RNA-Seq sequencing data Analysis 

pNonc1, pNonc2, pAonc, p4Wmet and pCmet (Figure 1-2) were used for pair-end 

sequencing (p) and s4Wmet and s16Wmet (Figure 1-3) were used for single-end 

sequencing (s). And it was show that the clean reads which originated from pair-end 

sequencing were almost twice for single-end sequencing at the stages of metacestodes, 

in vivo (Table 1-1) which indicated that the initial mRNA extract from different 4Wmet 

samples were most equal. The quality of obtained reads was excellent with more than 

90% reads having a quality score at Q30 (error probability of 0.001) or higher (Table 

1-1). 

Figure 1-2. Morphology of different life cycle stages of E. multilocularis. A: Egg; B: 

Non-activated oncospheres (Nonc); C: Activating oncospheres with the hooks dispersive and body 

swelling; D: Activated oncospheres (Aonc) with the hooks aggregation in the smaller lobe after 24 

hours activation; E: 4-week metacestodes, in vivo (4Wmet); F: Metacestodes, cultivated in vitro 

(Cmet) -D),  (E) and1mm (F); Arrowhead: Miniature vesicles. 



Figure 1-3. Morphology of metacestode samples of E. multilocularis for single-end sequencing. 

A: 4-week immature metacestodes (s4Wmet) in the liver of a mouse; B: 16-week mature 

metacestodes (s16Wmet) in the liver of a mouse; Bar: 25  (B); Arrow: germinal 

(nucleated) inner layer; Virtual arrow: protoscolex. 



Table 1-1. Overview of the RNA-seq. Result. 

Samples Yield 

(Mbases)

% PF Raw Reads Clean Reads % of >= Q30 

Bases (%PF)

Mean Quality 

Score (%PF)

pNonc1 13,251 93.34 141,966,744 131,761,968 91.66 35.74 

pNonc2 13,870 94.45 146,847,812 136,531,516 93.53 36.39 

pAonc 12,735 94.76 134,400,788 126,184,658 93.48 36.24 

p4Wmet 12,430 93.77 132,558,666 121,105,597 91.36 35.79 

s4Wmet 9,102 91.89 72,304,466 66,440,573 87.75 34.27 

s16Wmet 8,174 93.78 74,498,150 69,707,919 93.31 36.13 

pCmet 10,051 93.57 107,407,454 98,702,084 90.28 35.38 

Note1: pNonc1: Non-activated oncosphere 1 (pair-end sequencing); pNonc2: Non-activated oncosphere2 (pair-end 

sequencing); pAonc: Activated oncosphere (pair-end sequencing); p4Wmet: 4-week metacestode (in vivo, pair-end 

sequencing); 4-week metacestode (in vivo, single-end sequencing); s16Wmet: 16-week metacestode (in 

vivo, single-end sequencing); pCmet: Metacestode (in vitro, pair-end sequencing) 

Note2: % Reads Identified (%PF): The total fraction of passing filter reads assigned to an index 

Note3: Q10 means 1 in 10bases is mistake; Q20 means 1 in 100 base is mistake; Q30 means 1 in 1000 base is 

mistake 

3.2 De novo ssembly for 100bp pair-end reads 

Illumina sequencing of four E. multilocularis developmental stage yielded 100 bp 

length paired-end clean reads. Reads were then generated contigs with average lengths 

are 1,848bp (pNonc1), 1,163bp (pNonc2), 1,748bp (pAonc), 772bp (p4Wmet) and 

1,330bp (pCmet). The length of N50 of pNonc1 and pAonc were longer and the ratio of 

completed ORFs predicted by TransDecoder was also higher at pNonc1 and pAonc. 

Furthermore, the length of N75 of p4Wmet is shortest (Table 1-2). The highest ratio of 

BLASTN matched contigs with E-value between 0 to 1e-150 (Figure 1-4) against the E. 

multilocularis reference genome (German isolates) in pNonc1 and pAonc indicated that 

most of the contigs were assembled as full-length sequences in pNonc1 and pAonc. The 



low ratio of BLASTN matched contigs with E-value between 0 to 1e-150 (Figure 1-4) 

but a little higher ratio of similarity of 100% against the E. multilocularis reference 

genome (German isolates) in p4Wmet means that the matched region length of contigs 

are short. After removing contaminating sequences, the GC% content of p4Wmet and 

pCmet changed from 58.72% and 52.50% to 50.44% and 49.04%, respectively, but only 

about 1% variation was found in non-activated and activated oncospheres (Tables 1-2 

and 1-3). However, the GC content of the contaminating sequences filtered Cmet 

transcriptome was near to reference transcriptome of E. multilocularis (Table 1-3). This 

result indicated that most contigs in this study were correctly assembled. 



Table 1-2. Metrics for E. multilocularis transcriptome assembly and predicted peptides.

pNonc1 pNonc2 pAonc p4Wmet pCmet 

Reads 

Raw reads 141,966,744 146,847,812 134,400,788 132,558,666 107,407,454

Clean reads 131,761,968 136,531,516 126,184,658 231,874 98,702,084 

Phred score >30 91.66 93.53 93.48 91.36 90.28 

Assembled contigs

#Contigs 214,410 109,275 182,883 24,949 49,255 

#Components 70,199 52,792 76,479 21,685 28,826 

Maximum length (bp) 17,379 13,450 19,110 11,414 30,022 

Minimum length (bp) 201 201 201 201 201 

Average length (bp) 18,48 1,163 1,748 772 1,330 

Median length (bp) 1,341 759 1,088 474 687 

N25 4,692 3,001 5,106 2,108 4,652 

N50 3,038 1,904 3,189 1,204 2,544 

N75 1,509 1,060 1,840 587 1,263 

GC% 47.24 48.51 46.73 58.72 52.50 

Total ORFs 123,154 60,660 103,533 19,428 28,936 

Predicted peptides*

Total LCPC ORFs 25,558 25,927 26,622 17,009 14,882 

complete ORFs 70,605 23,898 59,257 22,88 12,147 

5prime partial ORFs 13,943 9,023 10,557 3,739 6,510 

3prime partial ORFs 25,690 12,055 17,325 3,467 4,305 

internal ORFs 12,916 15,684 16,394 9,934 5,974 

*ORF predicted by TransDecoder. 

N25, N50, N75: The contig length that using equal or longer contigs produces 25%, 50%, 75% the bases of the 

genome. The N25, N50 , N75 size is computed by sorting all contigs from largest to smallest and by determining the 

minimum set of contigs whose sizes total 25%, 50%, 75% of the entire genome. 



A. E-value distribution 



B. Similarity distribution 

Figure1-4. Characteristics of similarity search of de novo contigs against E. multilocularis 
reference genome. A: E-value distribution of BLAST hits for each transcript with a cutoff 
E- B: Similarity distribution of the top BLAST hit for each transcript. 



Table 1-3. Summary of de novo assembled data of E. multilocularis after the contamination 

filtered 

pNonc1 pNonc2 pAonc p4Wmet pCmet Reference 

Transcriptome

(German 
isolates)

#Transcripts 192,861 86,068 158,820 9,114 41,150 10,669 

#components 50,220 30,550 52,874 8,590 24,382 

Maximum length (bp) 17,379 13,450 19,110 11,414 30,022 33,585 

Minimum length (bp) 201 201 201 201 201 33 

Average length (bp) 1,983 1,332 1,959 405 1,127 1,504 

Median length (bp) 1,527 996 1,404 291 594 1,071 

N25 4,779 3,167 5,167 801 3,682 3,684 

N50 3,124 2,065 3,272 415 2,067 2,199 

N75 1,924 1,266 1,948 273 1,042 1,275 

GC% 46.75 47.19 46.40 50.44 49.04 49.89 

Total length 382,396,537 114,639,338 311,205,473 3,691,924 46,372,592 15,326,092 

4. Discussion 

Most of the Taenia immunizing antigens (Johnson et al., 1989; Harrison et al., 1996; 

Lightowlers et al., 1996a; Lightowlers et al., 1996b; Flisser et al., 2004; Gonzalez et al., 

2005; Gauci et al., 2008), which prove to be effective to protect livestock and humans, 

were all cloned from the infective  (oncospheres). With 

the parasite genome project implement and the development of the sequence technique, 

there are several transcriptome datasets available for Echinococcus spp. (Parkinson et 

al., 2012; Tsai et al., 2013; Zheng et al., 2013; Pan et al., 2014;) . And for E. 

multilocularis, transcriptome datasets for mature metacestodes cultivated in vitro and 

immature /mature adult are available, but it is very dangerous to prepare activated 

oncospheres for this parasite, there have transcriptome datasets for 



non-activated oncosphere, activated oncosphere and metacestode that developed post 

oral infections with oncospheres till four weeks and 16 weeks. In the present study, we 

would like to analysis transcriptome of E. multilocularis from its larval, especially the 

activated oncospheres using NGS technology. We get more than 700 million clean reads 

(contain the host sequenced reads) from all the sequenced samples. It is already 

observed that larval tissue in the liver of 1-3 weeks post oral infections in DBA/2 mice 

were very small. In the present study, the lesions were identified in the livers and lesions 

with the parasite (4Wmet) were separated and extracted after four weeks post oral 

infections of egg of the parasite. The extracted samples contained more host tissue than 

the parasites. Thus, the low ratio of BLASTN matched contigs with E-value between 0 

to 1e-150 against E. multilocularis reference genome (German isolates) but high ratio of 

similarity of 4Wmet were main caused by the contamination of the host RNA and did

the problem from the quality of reads. And the hypothesis also proved by the 

significantly decreased when filtering the mouse-mapped reads (Form 131,761,968 

clean reads reduced to 231,874 clean reads). Moreover, most of de novo assembled 

contigs could be matched to the reference genome of E. multilocularis, which indicated 

that all sequenced reads of the seven samples and the assembled contigs of pair-end 

sequencing samples were reliable. 



Chapter 2. Different gene expression and function 

annotation in oncospheres and metacestodes of  

E. multilocularis

Abstract 

In order to get the different expressed genes of different life-cycle stages of E. 

multilocularis, the reference genome of E. multilocularis (German Isolates) was used as 

reference to align the sequenced reads. In the present study, the mapped data show that 

there were 1,300 DEGs in oncospheres versus metacestodes, from which there were752 

DEGs are up-regulation when oncospheres transform to metacestodes and 84 DEGs in 

Aonc versus Nonc. Furthermore, all of these DEGs were up-regulation when Nonc 

transform to Aonc. In addition, for DEGs in oncospheres versus metacestodes, amyloid 

beta A4 protein, EG95, some diagnostic antigen GP50, major egg antigen (HSP20) and 

Tetraspanin 3 (TSP3) were highly expressed in Onc, however, Antigen B subunits 

(EmAgB8/1, 2,3 and 4), Tetraspanin 5, 6 (TSP5 and TSP6) and tegumental protein were 

highly expressed in metacestodes. Strikingly, 97% (938/968) of the predicted 

trans-splicing genes are expressed at the stages of oncospheres and metacestodes, 

though 20% (2,177/10,669) genes in the reference transcriptome were almost no 

expression. Moreover, the 769 and 1980 predicted ES and TM proteins of the E. 

multilocularis revealed an enrichment of 

, respectively. The protease analysis showed 

that there were 257 proteases and 55 proteases inhibitor. And most of proteinases have 

relatively higher expression levels in 16 Wmet, which indicated these proteinases might 



play a more important role in regulating host immune response during the chronic stage 

of echinococcosis. In contrast, proteases inhibitor, especially Kunitz-type protease 

inhibitors, were highly expression in oncospheres which suggesting some proteases 

inhibitor might play an important role to block the proteolytic attack in the host 

alimentary tract.  

This study demonstrated that, the genes expression levels in E. multilocularis were 

change in the transformation and the development. Genes that are highly expressed in 

non-activated/activated oncospheres, immature/mature metacestode could be explored 

as novel candidates for diagnostic antigens and vaccine targets. 

Key words: Genome, Transcriptome, Oncosphere, Metacestode, Different 

Expression 

1. Introduction 
Hosts of E. multilocularis produce immune responses to reject and/or limit the 

growth of the parasite. The parasite can also produce molecules to avoid these immune 

attacks (Zhang et al., 2008). With immune responses to larval Echinococcus spp. 

phase (Siracusano et al., 2011).  

DBA/2 mice are thought to be highly susceptibility to AE based on mature 

protoscolex formation and subsequent active growth of larval parasites in 4 inbred 

strains of mice (Matsumoto et al., 2010). Differential expression of stage-specific 

molecules in in vivo and in vitro 4-week metacestodes has been clearly demonstrated in 



this parasite, suggesting that differently expressed molecules may play an important role 

in the process of E. multilocularis infection and modulation of the immune response 

(Tsai et al., 2013). Moreover, the specific IgG and IgM levels in DBA/2 mice against 

crude antigens became positive at 4 or 9 weeks post-infection and continued to increase 

until 16 weeks post-infection (Matsumoto et al., 2010) suggesting that metabolism of 

the parasite and host responses vary during different growth periods of metacestodes. 

However, gene expression profile data of metacestodes based on experimental infection 

through oral ingestion of parasite eggs (termed primary AE) remains lacking. 

The E. multilocularis reference genome (German Isolates) was sequenced by the 

Parasite Genomics group at the Wellcome Trust Sanger Institute in collaboration with 

Klaus Brehm. The initial version of the genome was described in Tsai et al. at 2013, 

which ly 

 complete from telomere to telomere. The gene 

models have since been subject to iterative improvement. Until 2016/10/26, the total 

scaffold length was about 115 MB and the longest one was about 20.1 MB and has 

10,663 coding genes and 10,669 transcripts. The developing reference genome of E. 

multilocularis makes it possible to predict the gene expression level accurately. In 

addition, the available software, such as Blast2GO (Götz et al., 2008), InterproScan 

(Jones et al., 2014) and annotated database, like KEGG (Kanehisa et al., 2015), RefSeq 

(Pruitt et al., 2007) and Uniprot (Wu et al., 2006), MEROPS (Rawlings et al., 2015) 

make it easy to prediction the function of DEGs.  



2. Materials and Methods 

2.1 Mapping and quantification statistics 

Clean RNA-Seq reads larger than 50 were mapped to E. multilocularis reference 

genome (January 2016) using TopHat with default parameters (Trapnell et al., 2009).

Then, the mapped read number for each gene was counted by htseq-count (Anders et al., 

2014) which was integrated with Galaxy software (https://usegalaxy.org/ ) using the 

default parameter, and then transformed to counts per million (CPM) and Reads Per 

Kilobase of exon model per Million mapped reads (RPKM). To validate NGS data, nine 

genes common to the pNonc1 and pCmet and six antigen candidates from s4Wmet and 

s16Wmet were selected for real-time PCR analysis, respectively. The primers employed 

for amplification of 15 genes of E. multilocularis and GAPDH (EmuJ_000254600, 

http://www.oligoarchitect.com) 

and are shown in Table 2-1. The real-time PCR was performed using Applied 

Biosystems 7300 Real-time PCR System with SYBR-Green detection (SYBR Premix, 

n in 

triplicate, after which the average threshold cycle (Ct) was calculated per sample and 

the relative expression of genes was calculated using the 2
- Ct

 method (Livak and 

Schmittgen, 2001).  



Table 2-1. Primers for real-time PCR 
Description Gene ID Forward primers Reserve primers 

Major egg antigen EmuJ_000212700 CGAAGGGTAATAAGGTGTA TTGTAGAACTCACGATGT 

Na :K ATPase alpha EmuJ_000342600 CTTCATCCACATTATCACT CAGTAGTAGCCAAGGATA 

Tetraspanin EmuJ_000355500 CGAAGGTGATGCTGAAGA TCCGACCACAATGAAGAC 

Tegumental protein EmuJ_000372400 CGAAGTGCTCAAGTCTGA GCTAGAGTCGGCATTGTA 

FABP2 EmuJ_000550000 AACTTCGTAGTCACTGAT AGTCATCTCCTTGAACTT 

Tetraspanin 5 EmuJ_001077100 TTCTTCTTCAATGCCATT TACCTCCAGACTTGTTAG 

Amyloid beta A4 protein EmuJ_001136900 TTCAATGCTACATCAGGTAAT CGCCTACATTCCTTCTTAG 

GP50 EmuJ_000681200 AGCAACAACCTCTTCTTC AGTCTTCATAGTATAAGCCAAT 

ETS transcription factor EmuJ_000770300 AACATGAGTGAGGAGAAT CGTAGAACTTGTAGACATC 

EG95 EmuJ_000368620 TTCTCGGATGGACAACTC CCTCTCACTGCTTCTACA 

AgB2 EmuJ_000381100 CTCTTGGCAATGACCTAACT TAACATACTTCTTCAGCACCTC 

AgB1 EmuJ_000381200 AAATGCTTGGCGAAATGA CCTTAACATCTGGAACACTT 

AgB3 EmuJ_000381500 GGTGATGTTGATGAAGTG TTGGAAGAAGTCCTTGAT 

AgB4 EmuJ_000381400 TCTTGTTCTCGTGGCTTT TCGCATTATGAGGCACTT 

MUC-1 EmuJ_000742900 TACTATGCTGAAGAGGAT GGAGGTGAATAGATGAAG 

MUC-2 EmuJ_000408200 TAGACAACCATCCACAACT ATCGTAGAAGTCGCTGTT 

GAPDH EmuJ_000254600 CTTCCAACTCTGTCAATG GCTGTCAATAACCAACTT 

2.2 Differentially expressed gene analysis 

For differential gene expression and related analyses, gene expression is rarely 

considered at the level of raw counts since libraries sequenced at a greater depth will 

result in higher counts. Rather, it is common practice to transform raw counts onto a 

scale that account for such library size differences. Popular transformations include 

counts per million (CPM), log 2-counts per million (log-CPM), reads per kilobase of 

transcript per million (RPKM), and fragments per kilobase of transcript per million 

(FPKM) (Law et al., 2016). edgeR is often used when detect differential expression 

genes which designed for the analysis of replicated count-based expression data and raw 



counts are converted to CPM and log-CPM values using the cpm  function (Robinson 

et al., 2010). It is a better choice if there are repeat when use edgeR software to detect 

the different expressed genes between two group according to the manual of the 

software (Robinson et al., 2010). But, it is dangerous to prepare activated oncospheres 

samples, so there was only one sample prepared for activated oncospheres. For getting 

more reliable result for DEGs detection, I divided the pair-compared groups depend on 

the biological development stages of the parasite and the read count cluster result 

(Figure 2-1). Firstly, I compared DEGs between oncospheres and metacestodes. And 

then, for deeply understand the DEGs, oncospheres were divided into non-activated and 

activated oncospheres and metacestodes were divided to immature metacestodes in vivo, 

mature metacestodes in vivo, and cultivated metacestodes. Non-activated oncospheres 

and immature metacestodes which have repeat were as standard to establish the 

dispersion when did differently expression gene analysis. So, DEGs were detected using 

edgeR software with p<0.01 and false discovery rate (FDR) smaller than 0.05 by the 

following groups: 

Oncospheres (Nonc1, Nonc2, Aonc) vs. Metacestodes (4Wmet1, 4Wmet2, Cmet, 

16Wmet); 

Non-activated oncospheres (pNonc1, pNonc2) vs. Activated oncospheres (pAonc); 

4-weeks metacestodes (p4Wmet, s4Wmet) vs. cultivated metacestodes, in vitro

(pCmet); 

4-weeks metacestodes (pWmet, s4Wmet) vs. 16-weeks metacestodes (s16Wmet). 



Figure 2-1. CPM value Plot of E. multilocularis samples. Samples from the same stage cluster 

together in the plot, while samples from different stages form separate clusters. This indicates that 

the gene expression differences of difference stages are larger than those within stage  

2.3 In silico excretory-secretory (ES) and transmembrane (TM) proteins prediction 

Because experimental identification of ES and TM proteins is time-consuming and 

expensive, the prediction of ES and TM proteins from sequenced genomes is a novel 

alternative strategy used to priorities the experimental study of new therapeutic and 

immunodiagnostic targets for human parasitic diseases, even though in silico prediction 

result are influenced by parameter setting, prediction model, et al., and the false positive 

prediction for amino sequences may exists, especially for the prediction of subcellular 

localization of proteins (Wang et al., 2015a). 10,669 amino sequences predicted from 



the reference transcriptome of E. multilocularis were downloaded from WormBase 

ParaSite 

(http://parasite.wormbase.org/Echinococcus_multilocularis_prjeb122/Info/Index/) 

(November 2, 2016). In silico prediction of ES proteins and TM proteins were carried 

out according to the protocol described previously (Garg and Ranganathan, 2011). 

Briefly, the ES proteins homologues were utilizing the following four tools: SignalP 

(version 4.1) (Petersen et al., 2011) for classical secreted proteins; SecretomeP (version 

2.0) (Bendtsen et al., 2004) for non-classical proteins; TMHMM (version 2.0) 

(Sonnhammer et al., 1998) for trimming transmembrane proteins; TargetP (version 1.1) 

(Emanuelsson et al., 2007) for trimming mitochondrial proteins. The proteins predicted 

to contain only one TM domain, further TM prediction was performed by the Phobius 

algorithm (Käll et al., 2007) to help discriminate hydrophobic helices of TM topologies 

from those of signal peptides, in which only the proteins confirmed by Phobius were 

considered as TM proteins. The predicted proteins with no transmembrane helices were 

thought to be ES proteins. 

2.4 Protease analysis 

Putative homologues of known proteases of the 10,669 amino acid sequences in E. 

multilocularis reference transcriptome were identified using the complete set of core 

protease sequences from the MEROPS (release 10.0) database (Rawlings et al., 2015). 

They consist of a non-redundant library of the catalytic unit of a protease and exclude 

all other functional units, such as domains of Ca2+-binding and ATP-binding. These core 

sequences were used to avoid false positive identification of proteases due to high 

sequence identity in its non-catalytic parts. Core sequences were compared to the 



10,669 amino acid sequences in E. multilocularis reference transcriptome. The 

MEROPS batch BLAST (Rawlings and Morton, 2008) comparisons were carried out 

using the 10,669 proteins as the queries, and the MEROPS peptidases as the subject 

database. 

2.5 Spliced-leader and trans-splicing analysis 

The de novo assembled E. multilocularis contigs of each stages were alignment with 

the spliced leader sequences (Brehm et al., 2000a; Tsai et al., 2013) using BLAST 

(Altschul et al., 1997) (parameters word-size: 12, E-value: 1E-10). The identified 

contigs were filtered according to BLAST alignment features: an alignment length of at 

least 12 nucleotides, one or no mismatches between query and subject and presence of 

-complementary to the SL 

sequence, the sequence was reverse complemented and the corresponding quality entry 

string reversed. Then the 10,669 transcripts sequences of E. multilocularis reference 

transcriptome would BLASTN (Altschul et al., 1997) to contigs which contain 

spliced-leader and the result showed E-value smaller then 1E-25, and identity binger 

than 95% would retained. And this sequences from the reference transcriptome were 

assigned to spliced-leader contain transcripts. 

2.6 Functional annotations 

Sequences of E. multilocularis reference transcriptome were used as queries against 

the National Center for Biotechnology Information non-redundant database 

Platyhelminthes Section (Taxonomy ID: 6157) using BLASTX (Altschul et al., 1997) 

with an e-value threshold of 1e-5. The BLASTX output, generated in xml format, was 



used for Blast2GO analysis to annotate the transcripts with Gene Ontology (GO) terms 

describing biological processes, molecular functions, and cellular components (Götz et 

al., 2008). The e-value filter for GO annotation was 1e-8. Proper GO terms were 

generated using Blast2GO mapping process (Götz et al., 2008). And then, GOslim, 

which is integrated in the Blast2GO software, was used to slim the annotation. A 

sequence description was also generated from Blast2GO, based upon NR database 

Platyhelminthes Section (Taxonomy ID: 6157) according to e-value and identity to 

BLASTed genes. KOBAS (KEGG Orthology Based Annotation System, v2.0) was used 

to identify biochemical pathways and genes coding amino sequences were compared to 

amino sequences of Schistosoma mansoni which was the only available flatworm 

database in KOBAS software (Xie et al., 2011). The Interpro function domain 

annotations were extracted directly from the GFF3 file of the parasite that deposited at 

WormBase ParaSite. 

2.7 Gene Oncology (GO) term enrichment analysis 

GO enrichment analysis of the stages significant highly expressed genes were 

performed using the Fisher's Exact Test function in Blast2GO (Götz et al., 2008) with 

the FDR cut-off value =0.05. 

3. Result 

3.1 Mapping reads to the E. multilocularis genome 

In the present study, seven RNA-Seq libraries were constructed, of which five for 

pair-end sequencing and two for single-end sequencing. As for pair-end sequencing 

reads, there are 78.4%, 80.2%, 82.7%, 0.4% and 68.9% reads were mapped to the E. 



multilocularis reference genome (German isolates) from pNonc1, pNonc2, pAonc, 

p4Wmet and pCmet, respectively. In addition, there are 1.4% and 9.0% single-end 

sequenced reads were mapped the same genome from s4Wmet and s16Wmet, 

respectively (Table 2-2). In the following analysis, the reads with alignment quality less 

than -10 were counted by htseq-count software. In order to validate the expression 

profiles, 9 (Figure 2-2A) and 6 (Figure 2-2AB) genes of E. multilocularis for pair-end 

and single-end sequencing were selected for quantitative RT-PCR analysis using the 

same RNA samples as for RNA-Seq. The real-time PCR results confirmed the result 

obtained from deep sequencing analysis and showed similar trends of up- or 

down-regulated genes. 

Table 2-2. Summary of alignment statistics in different life-cycle stages. 
Samples Aligned pairs 

(Pair-end) 

Mapped reads 

(Single-end) 

Alignment 

rate 

pNonc1 971,213  78.4% 

pNonc2 1,032,382  80.2% 

pAonc 932,949  82.7% 

p4Wmet 265,767  0.4% 

pCmet 603,046  68.9% 

s4Wmet  926,796 1.4% 

s16Wmet  6,276,152 9.0% 

Note: The statistics data of each sample was origin from Tophat align summary



Figure 2-2. Correlation of fold-changes between RNA-seq. and real time PCR. The y-axis 

indicates the value of relative expression level (2- ) by real-time PCR and log2Ratio of 

pNonc1/pCmet (A, pair-end) and s4Wmet/s16Wmet (B, single-end) by Next-generation sequencing. 

A: pair-end; B: single-end; GAPDH as the internal control. 

A: pNonc1/pCmet

B: s4Wmet/s16Wmet



3.2 Differentially expressed gene analysis 

For DEGs analysis, there were 1,300 DEGs in oncospheres versus metacestodes, 

from which 752 were up-regulation when oncospheres transform to metacestodes 

(Figure 2-3). In addition, there were 84 DEGs in Aonc versus Nonc and all of these 

DEGs were up-regulation when Nonc transform to Aonc (Figure 2-3). Moreover, there 

were 82 DEGs in 4Wmet versus Cmet, of which 34 DEGs were up-regulation in 4Wmet 

(Figure 2-3). At last, there were 194 DEGs in 4Wmet versus 16Wmet (Figure 2-3), and 

135 DEGs up-regulation in 16Wmet (Figure 2-3). As for those DEGs, most genes 

(1,169) were significant high expressed when oncospheres versus metacestodes (Figure 

2-4), and one gene was detected to be DEGs among compared stages, and there were 

less DEGs when compared 4Wmet to Cmet than compared to16Wmet (Figure 2-4). For 

DEGs in oncospheres versus metacestodes, amyloid beta A4 protein 

(EmuJ_001136900.1), EG95 (EmuJ_000710400.1), some diagnostic antigen GP50 

(EmuJ_000295100.1, EmuJ_000032300.1, EmuJ_000261100.1), major egg antigen 

(EmuJ_000212700.1), Tetraspanin 3 (EmuJ_001077400.1) were significant highly 

expressed in oncospheres, however, Antigen B subunits (EmAgB8/1, 2, 3 and 4), 

Tetraspanin 5, 6 (EmuJ_001077100.1, EmuJ_001021300.1) and tegumental protein 

(EmuJ_001001400.1) were significant highly expressed in metacestodes (Figure 2-5). 

As for Nonc versus Aonc, EG95 (EmuJ_000368620.1) and GP50 (EmuJ_000261100.1) 

and purine nucleoside phosphorylase (EmuJ_000635800.1) were highly expressed in 

Aonc (Figure 2-6), for 4Wmet versus Cmet, it was shown that Actin cytoplasmic A3 

(EmuJ_000406900.1, EmuJ_000407200.1) were significant highly expressed in Cmet, 

however glioma pathogenesis protein 1 (EmuJ_000290500.1) and LRRP1 

(EmuJ_002194800.1) are highly expressed in 4Wmet (Figure 2-7). And collagen alpha 



iv chain (EmuJ_000140000.1) and EG19 antigen (EmuJ_000342900.1) were highly 

expressed in 16Wmet, however GP50 (EmuJ_001120900.1) was highly expressed 

4Wmet (Figure 2-8). 

Figure 2-3. Analyses of differentially expressed genes (DEGs) among Nonc, Aonc, 4Wmet, 

Cmet and 16Wmet. Note Red points means significant differently expression genes. 

Nonc vs Aonc

4Wmet vs Cmet

Oncspheres vs Metacestodes

4Wmet vs 16Wmet



Figure 2-4. Transcriptome analysis of different expression genes in different stages.  



Figure 2-5. Heatmap of log-RPKM values for top 100 DEGs in oncospheres versus 

metacestodes. Expressions across each gene (or row) have been scaled so that mean expression is zero and 

standard deviation is one. Samples with relatively high expression within a gene are marked in red, samples with 

relatively low expression are marked in blue. Lighter shades and white represent genes with intermediate expression 

levels. Samples and genes have been reordered by the method of hierarchical clustering. A dendrogram is shown for 

the clustering of samples. Note: DEGs are arranged by the average log-RPKM value among all sequenced samples.  



Figure 2-6. Heatmap of log-RPKM values for all DEGs in Nonc versus Aonc.



Figure 2-7. Heatmap of log-RPKM values for all DEGs in 4Wmet versus Cmet.



Figure 2-8. Heatmap of log-FPKM values for all DEGs in 4Wmet versus 16Wmet.



3.3 Gene Oncology (GO) term enrichment analysis 

The GO term analysis show that the predominant terms in the reference transcriptome 

at level 2 for , for 

r Figure2-9, 2-10, 

2-11). Gene Ontology (GO) term enrichment analysis shown that a significant increase 

was observed in GO-terms associated with transmembrane transport (FDR=4.8E-3) of 

84 up-regulated DEGs in Aonc when compared with Nonc (Figure 2-12) and the 752 

up-regulated DEGs in metacestodes suggested the up-regulation of proteinaceous 

extracellular matrix (FDR=6.6E-4), plasma membrane (FDR=6.6E-4) and cell adhesion 

(FDR=4.2E-7) (Figure 2-13). In addition, the 135 up-regulated DEGs in 16Wmet 

suggested the up-regulation of proteinaceous extracellular matrix (FDR=2.6E-7) when 

compared with 4Wmet (Figure 2-14). However, there were  enrichment GO terms in 

4Wmet compare to Cmet. 

Figure 2-9. Pie charts level 2 GO distribution of annotated reference transcriptome in 

molecular function. 



Figure 2-10. Pie charts for level 2 GO distribution of annotated reference transcriptome in 

biological process. 

Figure 2-11. Pie charts for level 2 GO distribution of annotated reference transcriptome in 

cellular component. 



Figure 2-12. The GO enrichment of 84 significant highly expression genes (FDR<0.05) in Anoc 

when compared with Nonc. 



Figure 2-13. The GO enrichment of 752 significant highly expression genes (FDR<0.05) in 

metacestodes when compared with oncospheres. 



Figure 2-14. The GO enrichment of 135 significant highly expression genes (FDR<0.05) in 

16Wmet when compared with 4Wmet. 

3.4 Predicted E. multilocularis secretome and transmembranome size 

There are 10,669 putative protein sequences of reference genome of E. multilocularis, 

a number of 853 sequences (8.0%) were predicted to contain a signal peptide cleavage 



site by SignalP. Of the remaining sequences, SecretomeP classified 314 protein 

sequences (2.94%) as non-classical secreted proteins. The putative 1,167 secreted 

proteins were parsed to TargetP and TMHMM, Phobius, even though the result show 

that there are 15 protein sequences (7.8%) predicted to be of mitochondrial origin and 

383 protein sequences (21.7%) predicted to contain transmembrane helices, there may 

contain mitochondrial and transmembrane proteins in the predicted secretome of E. 

multilocularis in the present study for the sensitive of the predict software. Potential 

mitochondrial and transmembrane proteins were excluded from the data set resulting in 

769 E. multilocularis ES protein sequences, representing 7.21% of the putative protein 

dataset. TM protein resulted in 1,980 (18.56%) sequences out of the 10,669 E. 

multilocularis putative protein sequences and are similar to previous study (Wang et al., 

2015a). The expression data of top 100 ES and TM proteins (Arranged by average 

log-RPKM value) are shown in Figure 2-15 and Figure 2-16. It is show that amyloid 

beta A4 protein (EmuJ_001136900.1), hypothetical protein (EmuJ_001142400.1) are 

highly expressed in oncospheres, however, MUC-1 (EmuJ_000742900.1), EmAgB8/1, 

8/2, 8/3 (EmuJ_000381200.1, EmuJ_000381100, EmuJ_000381500.1) are highly 

expressed in metacestodes for the ES protein (Figure 2-15). As for predicted TM 

proteins, it is show that express protein (EmuJ_000312200.1) and tetraspanin 

(EmuJ_000355900.1) are highly expressed in metacestodes (Figure 2-16), however, 

peptidase inhibitor R3HDML (EmuJ_000651500.1) and conserved hypothetical protein 

(EmuJ_000072600.1) are highly expressed in oncospheres (Figure 2-16). 



Figure 2-15. Heatmap of log-RPKM values for top 100 ES proteins. Note: ES proteins are arranged 

by the average log-RPKM value among all sequenced samples.  



Figure 2-16. Heatmap of log-RPKM values for top 100 TM proteins. Note: TM proteins are arranged 

by the average log-RPKM value among all sequenced samples.  



3.5 Functional annotation of E. multilocularis ES and TM proteins of the reference 

transcriptome 

Functional annotations of E. multilocularis ES and TM proteins were based on GO 

terms, KEGG pathway and InterPro annotation. The enrichment analysis shown that a 

significant increase was observed in the GO-terms associated with 

activit E-10) of ES proteins when 

compared with the reference transcriptome (Figure 2-17). And for TM protein, the 

GO- -102), 

-96) and -32) 

were significant increased as well. (Figure 2-18). 

InterPro annotation of predicted ES protein sequences resulted in 537 different 

assigned protein domains and families. The most represent domains and high ratio of ES 

proteins between secretome and transcriptome were 

Pa -3). As for 

, 

rhodopsin- Tetraspanin

most frequency occurring domain and shown high ratio between transmembranome and 

transcriptome at the same time (Table 2-4). 



Figure 2-17. GO enrichment of predicted ES proteins. 

Figure 2-18. GO enrichment of TM proteins. 



Table 2-3. Top 20 protein domains and families of predicted ES proteins from E. multilocularis

reference transcriptome. 

InterPro IDs Description No. of ES proteins 

IPR013783 Immunoglobulin-like fold 23 
IPR002223 Pancreatic trypsin inhibitor Kunitz domain 18 
IPR007110 Immunoglobulin-like domain 16 
IPR020901 Proteinase 16 
IPR003599 Immunoglobulin subtype 13 
IPR014044 CAP domain 12 
IPR013032 EGF-like, conserved site 11 
IPR003961 Fibronectin type III 11 
IPR000742 EGF-like domain 10 
IPR000169 Cysteine peptidase, cysteine active site 10 
IPR000668 Peptidase C1A, papain C-terminal 10 
IPR013128 Peptidase C1A 10 
IPR025660 Cysteine peptidase, histidine active site 10 
IPR017853 Glycoside hydrolase superfamily 9 
IPR003598 Immunoglobulin subtype 2 9 
IPR008860 Taeniidae antigen 9 
IPR025661 Cysteine peptidase, asparagine active site 9 
IPR013098 Immunoglobulin I-set  8 
IPR009057 Homeodomain-like 8 
IPR007087 Zinc finger, C2H2 7 
IPR001283 Cysteine-rich secretory protein, allergen 

V5/Tpx-1-related 
7 

IPR013201 Cathepsin pro peptide inhibitor domain (I29) 7 



Table 2-4. Top 20 protein domains and families of predicted TM proteins from E. multilocularis

reference transcriptome. 

InterPro IDs Description No. of TM proteins 
IPR020846 Major facilitator superfamily 65 
IPR013783 Immunoglobulin-like fold 60 
IPR017452 G protein-coupled receptor, rhodopsin-like, 7TM 59 
IPR000276 G protein-coupled receptor, rhodopsin-like 56 
IPR005821 Ion transport domain 45 
IPR007110 Immunoglobulin-like domain 44 
IPR011701 Major facilitator superfamily 43 
IPR018499 Tetraspanin/Peripherin 41 
IPR002126 Cadherin 38 
IPR015919 Cadherin-like 38 
IPR020894 Cadherin conserved site 36 
IPR008952 Tetraspanin, EC2 domain 34 
IPR011009 Protein kinase-like domain 34 
IPR013032 EGF-like, conserved site 32 
IPR000719 Protein kinase domain 32 
IPR000742 EGF-like domain 31 
IPR003599 Immunoglobulin subtype  31 
IPR027417 P-loop containing nucleoside triphosphate 

hydrolase 
30 

IPR003961 Fibronectin type III 28 
IPR013083 Zinc finger, RING/FYVE/PHD-type 24 

3.6 Predicted E. multilocularis protease analysis 

There were 257 predicted proteases and 55 proteases inhibitor identified from the 

reference transcriptome of E. multilocularis (Appendix I). The 257 proteases constituted 

2.41% of the 10,669 predicted protein-encoding transcripts of E. multilocularis. 

Proteases of five classes were characterized: 3.11%, 33.46%, 30.74%, 22.96% and 7.78% 

for aspartic, cysteine, metallo, serine, and threonine proteases, respectively (Figure 



2-19). In addition, there were 28 transcripts coding proteases had no expression 

(RPKM<1) in oncosphere and metacestode (Appendix I) in the present study. And, we 

were able to assign KEGG (Kyoto Encyclopedia of Genes and Genomes) functional 

pathways to 212 E. multilocularis proteases using BlastKOALA analysis (Appendix I). 

156 were predicted engage enzyme activity, and 101 were play roles in genetic 

information processes and 24 proteases likely perform functions in environmental 

information processes. (Figure 2-20). It was shown that genes that coding proteinases 

belong to the subfamily of C56, T01A, S26B were mostly conserve expressed in the 

sequenced sample. However, the antigen 5 and Mastin, which belong to the subfamily 

S01A, were mainly highly expressed in Met. And it is shown that E. granulosus antigen 

5 is closely related to proteases of the trypsin family with only catalytic serine residue is 

replaced by threonine. As for the proteases inhibitor, it was shown that most genes that 

coding proteins belong to I02 family were highly expressed in oncospheres. And the 

genes coding 60S ribosomal protein L38 (I04) and Stefin B (I25A) are continuously 

expressed in all sequenced samples (Appendix I). 



Figure 2-19. Proportions of protease families in the reference genomes of E. multilocularis. 

Figure 2-20. KEGG pathway interactions for predicted proteases from reference 

transcriptome of E. multilocularis. Graphic showing the number of proteases engaged in diverse 

signal processes and pathways.
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3.7 Spliced-leader and trans-splicing genes analysis 

Predicted were 968 SL-TS genes at the reference transcriptome level in the present 

study. 20% (2,177/10,669) genes in the reference transcriptome showed almost no 

expression (Average RPKM<1), 97% (938/968) of predicted trans-splicing genes were 

expressed in the stages of oncospheres and metacestodes. The elp gene (Antigen II/3), 

which identified as a trans-splicing gene in E. multilocularis was highly expressed 

among all sequenced samples (Figure 2-21) and solute carrier family 10 (SLC10)

homology that identified as a trans-splicing gene in T.solium was expressed in all 

sequenced samples, as well (Figure 2-21).  



Figure 2-21. Heatmap of log-RPKM values for top 100 SL-TS genes. SL-TS genes are arranged by 

the average log-RPKM value among all sequenced samples



Discussion 
The genus Echinococcus has been studied at the genomic level (Koziol and Brehm, 

2015). Studying on genus Echinococcus have increased recently and several proteomes, 

transcriptomes, and even draft genomes have been published (Monteiro et al., 2010;

Parkinson et al., 2012; Tsai et al., 2013; Zheng et al., 2013; Pan et al., 2014; Wang et al., 

2015b; Huang et al., 2016). NGS has proved to be an appropriate approach to gain 

insights into the functional genomics of organisms such as Echinococcus, allowing the 

characterization of its transcriptome (Parkinson et al., 2012; Pan et al., 2014; Huang et 

al., 2016).  

In present study, a global view of gene expression profiles and the stage-specific 

significant different express genes were demonstrated during the early invasion phases 

of the parasite. Putative ES and TM proteins were predicted using bioinformatics. Of 

Kazal, 

immunoglobulin, K

trypsin inhibitor Kunitz domain were highly expressed in Nonc and Aonc and poorly 

expressed in Cmet and 16Wmet. Real-time PCR (Huang et al., 2016) also validated 

amyloid beta A4 protein expression level in oncospheres. The previous study described 

two (EgKI-1, EgKI-2) secreted single domain Kunitz-type protease inhibitors from E. 

granulosus  (Ranasinghe et al., 2015). It has been shown that the EgKI-1 which is 

highly expressed in oncospheres is a potent chymotrypsin and neutrophil elastase 

inhibitor that binds calcium and reduces neutrophil infiltration in a local inflammation 

model. It may also be involved in oncosphere host immune evasion by inhibiting 

neutrophil elastase and Cathepsin G once this stage is exposed to the mammalian blood 

system (Ranasinghe et al., 2015). The two candidate Kunitz-type protease inhibitors 



analyzed in the present study were highly expressed in E. multilocularis oncospheres 

and both of them have a relatively close relationship to EgKI-1 indicting that they may 

both have similar functions to EgKI-1 in AE. This hypothesis requires further 

investigation to be confirmed.  

Over the past decade, researches have been undertaken to develop vaccines and novel 

chemotherapeutic agents to prevent and control transmission of Echinococcus spp. E. 

multilocularis metacestode metabolites have been found to contain a cysteine protease 

that digests eotaxin, a C-C motif pro-inflammatory chemokine (Paredes et al., 2007; 

Mejri and Gottstein, 2009), and caspase 3 that can cause apoptosis was detected both in 

fertile and infertile E. granulosus  cysts (Paredes et al., 2007). Furthermore, the serpin 

of E. multilocularis which highly expressed in oncospheres can readily inhibit trypsin 

and pancreatic elastase ( Merckelbach and Ruppel, 2007; Huang et al., 2016). In present 

study, it was clear that Antigen 5 (S1-like), lysosomal protective protein (S10) and 

Cathepsin peptidase (C1) were highly expressed in Met. However, Kunitz inhibitor 

domain containing proteins (I2) were highly expressed in Nonc and Aonc, especially in 

Nonc. 



Chapter 3. Transcriptome-wide based antigen candidate 

analysis for oncospheres and metacestodes of E. multilocularis

Abstracts 
The transcriptome-wide based antigen candidate expression level of E. multilocularis

oncospheres and metacestodes were tested using the Next-Generation Sequencing 

approach. The antigen profile analysis revealed that some diagnostic antigen GP50 

isoforms, antigen EG95 family, major egg antigen (HSP20) and Tetraspanin 3 

dominated in activated oncospheres, however, Antigen B subunits (EmAgB8/1, 2,3 and 

4), Tetraspanin 5, 6, tegumental protein and Antigen 5 family dominated in 

metacestodes. Furthermore, heat shock proteins 70 family and antigen II/3(elp) were 

constantly expressed. Apomucins analysis showed that MUC-2 sub-family transcripts 

were present in all assayed samples and some of them were highly expressed in 

oncospheres, especially activated oncospheres. However, MUC-1 family transcripts 

presented only in vitro/vivo cultivated metacestodes. The identification of antigen 

expression profile during the parasite development stages, especially the stage of 

oncospheres, will give fundamental information for choosing candidate antigens used in 

vaccination and early diagnosis. 

1. Introduction 
It has been proven that infections can be blocked at the egg and early larval stages of 

Echinococcus and Taenia by antibodies and complement-dependent mechanisms 

(Rogan et al., 1992). Furthermore, in vitro hatching and activation of the oncospheres 

have been achieved, showing that oncospheres have an extended excretion apparatus 

and proteinases that may contribute to a considerable portion of the excreted proteins 



during the penetration process (Lethbridge, 1980; Holcman et al., 1994; Hewitson et al., 

2009; Santivanez et al., 2010). The fact that ES proteins produced in the early 

(oncosphere, immature metacestode) and chronic (mature metacestode) infectious 

stages by E. multilocularis can cause significant apoptosis of the dendritic cells (DC). 

The result suggests that the early infective stage of E. multilocularis is a strong inducer 

of tolerance in DC, which is most probably important for producing an 

immunosuppressive environment in the infection phase (Nono et al., 2012).  

Immune response to larval Echinococcus spp. infections has been divided into 

et al., 2011). And it thought that the parasite is more susceptible to immune attack 

Siracusano et al., 2011). The immunogenic to the tested models of numbers of 

recombinant proteins are available. It was reported that vaccine Eg95, which is based on 

the recombinant protein cloned from mRNA from the oncosphere of E. granulosus 

and shown to be highly effective in vaccine trials of sheep and had induced a high level 

of protection (96 100%) for more than a year post-vaccination (Lightowlers and Heath, 

2004). In addition, AgB (Ioppolo et al., 1996; Virginio et al., 2003), EmY162 (Katoh et 

al., 2008), P29 (Boubaker et al., 2014), EgEF (Margutti et al., 1999), Eg19 (Delunardo 

et al., 2010) and TSPs (Dang et al., 2012; Dang et al., 2009), derived from the 

Echinococcus spp., exhibit strong immunogenic properties in tested model, respectively. 

Furthermore, secondary AE, in which homogenates of the larval parasite are 

intraperitoneally, intravenously or intrahepatically injected into the host animals, is 

widely used; however, it does not reproduce the early stages of parasite development 

that occurs during natural infection via oral ingestion of the eggs (Matsumoto et al., 



2010). In addition, immunization with E. multilocularis 14-3-3 protein protected 

intermediate hosts from primary but not secondary challenge infection with AE 

(Siles-Lucas et al., 2003). Matsumoto et al. (2010) showed that the parasite lesions in 

the liver of primary AE at 4 weeks post-inoculation varied among the strains of mice 

suggesting that the resistance to the early stages of parasite infections, including parasite 

establishment in the liver, is genetically regulated. 

Vaccination and early diagnosis are possible ways to prevent echinococcosis. 

Accurate immunodiagnosis of early stage of infection requires highly specific and 

sensitive antigens. At present, little gene expression data has been published for eggs 

and early larval stages. Thus, experiments on identifying antigens for use in 

immunodiagnostic assays are a crucial point in the improvement of the diagnostic tool 

and must be based on the developmental stage of the parasite. 

As for mentioned above and gain understanding of the gene expression patterns for 

diagnostic assay and vaccine design, we analyzed the transcriptomes of Nonc, Aonc, 

4Wmet, Cmet and 16Wmet to identify homologues of the various known antigens of 

tapeworms, especially Echinococcus spp.  

2. Materials and Methods 

2.1 Preparation of parasite samples 

The parasite samples were prepared as written in chapter 1. 

2.2 Antigen homologues in E. multilocularis 

Putative antigen homologues of amino acid sequences in the E. multilocularis

reference genome (German isolates) were identified using known antigen sequences 



(accession numbers shown below). Briefly, BLASTP (Altschul et al., 1997) 

comparisons were carried out using the amino acid sequences of E. multilocularis

genome version 4 as queries and the known antigens sequences as subjects. Sequences 

with an E-value < 1E-25, identity value & query coverage> 80% were considered to be 

homologues of matched antigens within Echinococcus spp. Furthermore, antigen EG95 

and diagnostic antigen GP50 family homologues were queried using the same amino 

acid sequences as used previously inference genome of E. multilocularis (German 

isolates). 

2.3 Accession numbers of published antigen candidates 

Accession numbers for various known E. multilocularis, E. granulosus  and Taenia 

solium antigens sequences used in this study were as follows: E. multilocularis

CAA59739, CAA10109, AAL51153, BAC11863, BAC66949, BAC77657, BAD89809, 

BAD89810, BAD89811, BAD89812, Q8WT41, BAF02516, BAF02517, BAF63674, 

BAF79609, ACJ02401, ACJ02402, ACJ02403, ACJ02404, ACJ02405, ACJ02406, 

ACJ02407, BAJ83490, BAJ83491, AER10547, AHA85399, Q07840, Q24895, Q24902, 

Q27652, Q8MM75, Q8WPI6, Q8WT42, Q9GP32, Q9NFZ5, Q9NFZ6, and Q9NFZ7); 

E. granulosus  (AAF02297, AAL87239, CAF18421, AAX20156, AAX73175, 

ACA14465, ACA14466, ACA14467, ABI24154, AFI71096, AGE12481, AGE12482, 

O16127, O17486, O46119, P14088, P35417, P35432, Q02970, Q03341, Q03342, 

Q04820, Q07839, Q24789, Q24798, Q24799, Q24800, Q8MUA4, Q8T6C4, Q95PU1, 

Q9BMK3, Q9GP33, Q9GP38, Q9U408 and Q9U8G7); and T. solium (AAP49286, 

AAP49287, AAP49288, AAP49284 and AAP49285). 



3. Results and Discussion 
3.1 Apomucins 

Since the laminated layer (LL) is synthesized by the tegumental syncytium located at 

the outer most part of germinal layer, genes coding for LL components should be 

expressed by the tegumental cells (Díaz et al., 2015) and essential in the interface with 

host. A survey of the E. granulosus  transcriptome identified a family of apomucins 

among highly expressed Thr-rich proteins in the germinal layer (Parkinson et al., 2012) 

and only exists in Echinococcus spp. (Tsai et al., 2013; Zheng et al., 2013). There are 

two families of apomucin in Echinococcus spp. named as MUC-1 family and MUC-2 

sub-family (Koziol et al., 2014;Díaz et al., 2015). And the MUC-1 family is highly 

expressed in metacestodes and only has a single gene in each of E. granulosus and E. 

multilocularis genomes and named EgrG_000742900.1 (EGR_08371) and 

EmuJ_000742900.1, respectively (Tsai et al., 2013; Zheng et al., 2013; Díaz et al., 

2015). However, the MUC-2 sub-family with several similar genes and some of them 

appear to have an unpaired cysteine (Tsai et al., 2013). In this study, MUC-1 family was 

highly expressed in Cmet and 4Wmet, whereas one MUC-2 sub-family gene 

(EmuJ_000408200.1) was present in all assayed materials but highly expressed in 

oncospheres and 4Wmet (Appendix II). Most interesting, the rest MUC-2 genes were 

only detected in Aonc, suggesting these genes may have special function in Aonc. The 

LL is widely thought to be a key components in the host parasite interaction in 

echinococcosis (Díaz et al., 2015). Its roles include shielding the parasite from direct 

attack by host immune cells, and probably down-regulating local inflammation (Díaz et 

al., 2015). MUC-1, as expected, is expressed in the tegument and thought to contribute 

to conventional glycocalyces (Koziol et al., 2014). The quotient of gene expression 



level between the sum of MUC-2 members and MUC-1 was approximately 1/255 for in 

vitro metacestodes of  in a previous study (Tsai et al., 2013) which is in 

concordance with result for Cmet and 16Wmet. This suggests that it is highly likely that 

MUC-1 is a major LL constituent in E. multilocularis metacestodes. In addition, the 

formation of LL within 13 days of in vitro culture post-oncospheral has been observed 

(Gottstein et al., 1992). In the present study, MUC-2 sub-family members were highly 

expressed in oncospheres, especially in activated oncospheres, indicating that 

oncospheres are used to prepare materials, such as mRNA for synthesis of MUC-2 

proteins, to construct LL during transformation to metacestodes of E. multilocularis. 

Furthermore, it thought that LL of post-oncospheres takes part in protecting the 

developing oncosphere from host immune reactions (Sakamoto and Sugimura, 1970), 

thus, MUC-2 may be a key factor in post-oncosphere host-parasite immune reactions. 

3.2 Em-alp 

It is observed that alkaline phosphatase activity in metacestode very high (strong 

reaction in less than 5 minutes) and restricted to the distal syncytial tegument of the 

germinal layer (Koziol et al., 2014), but is not found in brood capsules. This may 

indicate that the gene coding alkaline phosphatase is a good histochemical marker for 

germinal layer. In E. multilocularis reference genome, there are four genes that code 

alkaline phosphatase named as em-alp-1 (EmuJ_000393300.1), em-alp-2 

(EmuJ_000393400.1), em-alp-3 (EmuJ_000752700.1) and em-alp-4

(EmuJ_000752800.1). And the amino acid sequence analyses showed that em-alp-1 and 

em-alp-2 protein contain a signal peptide (Figure 3-1) at the N-terminal. Moreover, 

em-alp-1 and em-alp-2 are significant highly expressed when Nonc transforms to Aonc, 



and has expressed in all sequenced samples of present study, whereas the em-alp-3 and 

em-alp-4 were almost no expressed in the sequenced samples of present study 

(Appendix II) and the previse study also show that em-alp-1 and em-alp-2 were found 

to be specifically expressed in the germinal layer (Koziol et al., 2014), while em-alp-4

has substitutions of conserved catalytic amino acid residues, and cannot be detected by 

RT-PCR in the germinal layer or in protoscoleces (Koziol et al., 2014), suggesting that 

em-alp-4 is a pseudogene, although expression was observed in RNA-Seq data of adult 

worms (Koziol et al., 2014). As for em-alp-3, it is show that it was only detected in 

protoscoleces, with a strong up-regulation after protoscolex activation that indicated the 

expression of em-alp-3 need stimulate from their host, especially the definitive host. 

These data suggested that em-alp-1 and em-alp-2 were expressed in the oncospheres and 

tegumental cells of the germinal layer, and em-alp-2 was another marker for the 

tegumental cells in the germinal layer, while em-alp-3 was expressed in the protoscolex 

excretory system. 



Figure 3-1. SignalP 4.1 prediction of cellular localization and signal sequence cleavage site of 

Em-alp. 

3.3 Tubulin

Tubulin- -translational modification that occurs in highly stable 

microtubule. Because it is able in principle to label all nerve cells independently of their 

neurotransmitter, acetylated tubulin-  immunoreactivity has been used to describe in 

detail the complete nervous system of numerous invertebrates of E. multilocularis

(Koziol et al., 2013). Benzimidazoles, particularly albendazole and mebendazole, are 

the most important forms of AE therapy (Brehm et al., 2000b). The main mode of 

benzimidazoles -tubulin, 

thus inhibiting the polymerization of microtubules (Lacey, 1990). In reference genome 

of E. multilocularis, there were 17 genes that coding proteins contain domains of alpha 



tubulin (Appendix II) and two genes (EmuJ_000413200.1, EmuJ_000886400.1) were 

highly expressed among those alpha tubulin domain contain proteins (Appendix II). 

Furthermore, one gene (EmuJ_000886400.1) was significant low expressed at Nonc 

when compared to other sequenced samples (Appendix II). In addition, there were 10 

genes that coding beta tubulin domain contain proteins. And one beta tubulin coding 

gene (EmuJ_000672200.1) was highly expressed in all sequenced samples, but beta 

tubulin coding genes (EmuJ_000202500.1, EmuJ_000202600.1) were significant low 

expressed in Nonc (Appendix II). 

3.4 Actin 

Actins constitute a highly conserved family of proteins found in all eukaryotes [l]. 

These proteins are found predominantly in the cytoplasm of cells where monomers 

polymerize to form microfilaments. Microfilaments of actin participate in various cell 

functions such as muscle contraction, cell cytoskeleton and motility (Oliveira and Kemp, 

1995). Actin microfilaments also function in bundles where they form microvilli, 

stereocilia, and other cellular structures. The reference genome of E. multilocularis 

shows that there are 7 transcripts of actin, which show high homologies to E. 

granulosus actin. One actin (EmuJ_000036300.1) expressed highly in all sequenced 

samples in present study, but most of the other actin (EmuJ_000406900.1, 

EmuJ_000407200.1, EmuJ_000061200.1, EmuJ_000701700.1, EmuJ_000703300.1) 

expressed only in Cmet and 16Wmet (Appendix II). These results suggested that highly 

expression actin in Cmet and 16Wmet might locate in the muscle cell of the parasite.  



3.5 Tropomyosin 

It was shown that isoforms of two tropomyosin genes were strongly expressed in the 

suckers of E. granulosus protoscoleces (Alvite and Esteves, 2009). And a recent study 

has shown that tropomyosin isoforms can be found in the muscle fibers in the germinal 

layer, accumulating in the interior of brood capsules and in the muscle layers during 

protoscolex development in E. multilocularis (Koziol et al., 2014). There are two 

tropomyosin isoforms in E. multilocularis genome (Tsai et al., 2013), but previous study 

(Koziol et al., 2014) show that em-tpm-1 (EmuJ_000958100.1) was no expression using 

whole mount in situ hybridization (WMISH) method in the germinal layer. In present 

study, it was shown that em-tpm-2 has a relative higher expression level in the 

cultivated metacestodes (no protoscolex) than em-tpm-1, but a lower expression level in 

the mature metacestodes (contain protoscolex), in vivo (Appendix II). In summary, 

em-tpm-1 protein could be used as a molecular marker for the development of muscle 

cells during brood capsule and protoscolex development, but not in the germinal layer.  

3.6 Diagnostic antigen GP50 

Taenia solium GP50 has been used for the diagnosis of cysticercosis (Levine et al., 

2004). GP50 isoforms are species-specific antigens and may be stage-specific in

Cysticercus cellulosae (Hancock et al., 2004) based on the lack of antibody reactivity 

with one serum sample from an individual confirmed to be taeniasis-positive but 

cysticercosis-negative (Hancock et al., 2004). A previous study showed that more than 

90% of E. multilocularis GP50 isoforms were not expressed in metacestodes cultivated

in vitro (Tsai et al., 2013), and our present work also corroborated to this finding, since 

few or no transcripts of GP50 were found in Cmet (Appendix II). Some GP50 isoforms 



were expressed in 4Wmet from in vivo DBA/2 mice infections, suggested that these 

GP50 isoforms might be key factors in the host-parasite interface during the early stage 

of infection. 

3.7 HSPs antigens 

The putative HSP20 gene, which can express immunogenic products and stimulate 

the immune system, showed high expression in the oncosphere stage (Kouguchi et al., 

2010; Merckelbach et al., 2003). The predicted HSP20 homologue (onco2) also showed 

the highest expression at Nonc (RPKM=9,125.50) and Met as well (Appendix II). Taken 

together with the findings from the published transcriptome of E. multilocularis (Tsai et 

al., 2013), it is clear that this molecule was expressed at almost all stages of E. 

multilocularis, including non-activated oncosphere, activated oncosphere, metacestode 

and adult worms. 

The HSP70 family has been described as the major antigens in Echinococcus spp. 

(Mühlschlegel et al., 1995; Ortona et al., 2003) and the most striking gene family 

expansions with 22 full copies in E. multilocularis reference genomes. Furthermore, in 

various infectious disease models including echinococcosis, vaccination strategies using 

HSPs have been produced significant protection (Ortona et al., 2003; Zügeli and 

Kaufmann, 1999). The transcriptome datasets of the present study show that HSP70 

homologues were constantly expressed in all stages (Appendix II). Continuous antigenic 

stimulation with parasite-derived HSP families would induce an apparent antibody 

response to these molecules in infected animals. These antibody responses create an 

opportunity to use HSPs in diagnostic assay and vaccine development for 

echinococcosis. 



3.8 Antigen II/3 (elp) 

Antigen II/3 share homology with the mammalian ezrin/radixin/moesin (ERM) 

protein family that is involved in several key processes related to cellular architecture, 

including cell-cell adhesion, membrane trafficking, microvillus formation and cell 

division (Louvet Vallée, 2000). Antigen II/3 is encoded by the elp gene and the 

antigens of Em10 and Em18 are thought to be homologues, which have also been used 

as important diagnostic antigens (Felleisen and Gottstein, 1993; Sako et al., 2002). In 

the present study, antigen II/3 was highly expressed in all sequenced samples. Previous 

studies proved that antigen II/3 can be expressed at the stages of protoscoleces, 

metacestodes and adult and localized within the germinal layer and parenchymal cell of 

protoscoleces and on the surface of calcareous corpuscles (Felleisen and Gottstein, 

1993). It has been shown that antigen II/3 is also constantly expressed in the early stage 

metacestodes and adults (FPKM>200 (Tsai et al., 2013)). 

The viability of protoscoleces was significantly reduced at day 10 after silencing the 

elp gene statistically (Mizukami et al., 2010). Together with the constantly high 

expression level of antigen II/3 at almost all life-cycle stages may hint that antigen II/3 

has a fundamental role for supporting parasites, such that antigen II/3 can act not only 

as an important diagnostic antigen special for the oncosphere stage, but also as a 

vaccine candidate. 

3.9 Antigen B subunits 

Antigen B (AgB) was initially identified as major hydatid cyst fluid antigen of E. 

granulosus  (Oriol et al., 1971). This antigen is a polymeric lipoprotein with a 

molecular weight of 120 KDa, and five 8 KDa subunits were identified as EmAgB 8/1, 



EmAgB 8/2, EmAgB 8/3, EmAgB 8/4 and EmAgB 8/5 in E. multilocularis (Mamuti et 

al., 2007). And, there are seven isoforms that code antigen B subunits in E. 

multilocularis reference genome, of which EmAgB8/3 (EmuJ_000381500) had highest 

expression in metacestodes (Appendix II); even Aonc showed relative high expression 

(RPKM=186.79). But the other two isoforms (EmuJ_000381600.1 and 

EmuJ_000381700.1) that code EmAgB8/3 subunit were no expression expressed in all 

the sequenced stages (Appendix II). Unlike other AgB subunits, which were almost 

within the 2-fold expression level when comparing 4Wmet to Cmet or 16Wmet, 

EmAgB8/2 showed a more than 10-fold difference (Appendix II). Previous studies have 

shown that the sensitivity of EgAgB2 in E. granulosus  was obviously different in 

different assays ( Virginio et al., 2003; Jiang et al., 2012), and one reason may be that E. 

granulosus  isolated from CE patients in different countries expresses differing levels 

of the AgB2 subunit (Jiang et al., 2012). The present data suggest this might be caused 

by differing expression of AgB2 within the early stage metacestodes. Furthermore, 

antibody responses to AgB in different larval stages (CE1-CE5) of different sensitivities 

(Zhang et al., 2012) also indicate that AgB subunits dynamically change in larval stages. 

In conclusion, from the perspective of expression level, we proposed that EmAgB8/3 

may be expected to have essential metabolic functions throughout all life-cycle stages of 

the parasite, while EmAgB8/1, EmAgB8/2, and EmAgB8/4 may be essential factors for 

survival of larvae in intermediate hosts. EmAgB8/5, which was firstly detected to be 

highly expressed in the adult of E. multilocularis (Mamuti et al., 2007), but was not 

detected in this study. 



3.10 EG95 (Fibronectin type III-like) antigen 

Previous studies have described the effectiveness of Fibronectin type III domain-like 

protein vaccines against echinococcosis (Chow et al., 2001; Gauci et al., 2002; Katoh et 

al., 2008). These highly immunogenic proteins, which may be involved in host invasion, 

are encoded by a multigene family; EG95 vaccine is effective against E. granulosus 

(Chow et al., 2004) and EM95 is effective against E. multilocularis (Gauci et al., 2002).

The antigen is a secreted protein with a GPI anchor that is upregulated during 

oncosphere activation (Chow et al., 2004; Zhang et al., 2003) and is probably involved 

in cell adhesion (Bonay et al., 2002). Three (EmuJ_000328500, EmuJ_000368620, 

EmuJ_000710400) out of five EG95 relatives followed the previous prediction (Tsai et 

al., 2013), and corresponded to the top 20 expressed proteins in Nonc and Aonc 

(Appendix II). Unlike EmuJ_000328500 (Identity=95.68%) and EmuJ_000368620 

(Identity=99.36%), the highly expressed EmuJ_000710400 showed low identity 

(Identity=41.67%) with the published EM95 antigens, suggesting that it may be a new 

candidate antigen for vaccine development against alveolar echinococcosis. Most 

interestingly, EmuJ_000368620 that shows highest identity to EM95 was significantly 

expressed in Aonc (Appendix II). However, EmuJ_000328500 that shows highest 

identity to Onco1 (79.5% identity to EM95) was highest expression in Nonc (Appendix 

II). It is not surprised that EmuJ_000328500 has the highest expression level in Nonc in 

accordance with the data from previous study (Merckelbach et al., 2003). 

EmY162, a potential vaccine candidate against E. multilocularis, showed 31.4% 

identity to the amino acid sequence of EM95, which is also a fibronectin type 

III-containing protein (Katoh et al., 2008). EmuJ_000564900 (85% identity to 

BAF79609) was expressed in most of the life-cycles stages, especially in Aonc 



(Appendix II), and EmuJ_000515900 (98% identity to the BAF79609) primarily 

expressed in Cmet and 16Wmet, in the present study (Appendix II), which is consistent 

with findings in a previous study (Katoh et al., 2008; Tsai et al., 2013). 

3.11 Serine protease inhibitors 

Serpins (serine proteinase inhibitors) constitute a huge family of about 1,500 

identified members. The function of serpins ranges from the regulation of proteinases 

from immune effector cells, blood coagulation and in the complement system in 

mammals (Law et al., 2006). The serpin of E. multilocularis (serpinEmu) was the first 

member described from this class of cestodes (Merckelbach et al., 2003), and sequence 

analysis indicated that it was an intracellular serpin (Merckelbach and Ruppel, 2007; 

Merckelbach et al., 2003). However, the putative amino acid sequences of the parasite 

genome data and the de novo assembled data in the present study (Tsai et al., 2013) 

suggested that serpinEmu with a signal peptide predicted by Phobius (Käll et al., 2007).

In addition, in vitro assays have confirmed that serpinEmu fails to inhibit Cathepsin G 

and chymotrypsin but could readily inhibit trypsin and pancreatic elastase (Merckelbach 

and Ruppel, 2007), both of which are digestive enzymes in the intestines of mammals. 

Therefore, an extracellular role of serpinEmu might be possible. Previous descriptions of 

the ultrastructure of E. granulosus  oncospheres have referred to the penetration gland 

cells (Holcman and Heath, 1997) and proteinases may make up a considerable portion 

of the excreted proteins during the penetration process that is hypothesized to involve 

the secretion that may help the parasite penetrate the intestinal wall of the intermediate 

host (Holcman et al., 1994; Holcman and Heath, 1997; Lethbridge, 1980; Reid, 1948). 

If serpinEmu is excreted by penetration gland during the invasion of oncospheres, it 



might be able to block the proteolytic attack of host digestive enzymes. If so, it may 

even be a target of the intestinal immune system and a vaccine candidate. 

3.12 Tetraspanins 

Tetraspanins (TSPs) are a superfamily of plasma membrane-associated proteins 

consisting of four conserved transmembrane (Seigneuret et al., 2013). They have been 

used as vaccine candidates against schistosomiasis echinococcosis and as diagnostic 

antigens for cysticercosis (Zhu et al., 2004; Hancock et al., 2006; Dang et al., 2009; 

Dang et al., 2012). In addition, it was proven that Tetraspanins in the tegument of 

schistosomula and adult worms can act as receptors for host ligands, including MHC 

molecules, allowing parasites to mask their non-self-status and escape host immune 

responses (Tran et al., 2006). A total of 9 amino acid sequences (Appendix II) showed 

91%-100% identity to the seven published Em-TSPs (Dang et al., 2009). In addition, 

there were two putative Em-TSP3 isoforms (Appendix II), and most mutation sites were 

located at the LEL variable region (Figure 3-2). 

Previous transcriptome data (Tsai et al., 2013) and the present study showed that 

Em-TSP5 is expressed at almost all life-cycle stages and was significantly expressed at 

the stage of Aonc and 4Wmet compared with Nonc (Appendix II). Em-TSP5 was 

intensely stained in sections of the germinal layer of metacestode (Dang et al., 2009). 

Em-TSP5 is closely related to the T24 antigen of T. solium, a diagnostic antigen for 

cysticercosis (Hancock et al., 2006), which suggest that Em-TSP5 may be an important 

diagnostic candidate for detecting early stage infection. 

Em-TSP1, one of the highly protective vaccine candidates (Dang et al., 2009), is 

located at the surface (germinal layer/tegument) of E. multilocularis larvae and the 



tegument of the adult worms. Significantly high expression of Em-TSP1 in early stage 

metacestode compared with Nonc and Aonc was observed (Appendix II). A previous 

study showed that another protective effect vaccine candidate, Em-TSP3, is localized in 

the non-activated oncospheres and protoscoleces and the germinal layer of E. 

multilocularis cysts (Dang et al., 2012); the genome-mapped data in the present study 

showed relative higher expression in Aonc and 4Wmet than in Cmet (no protoscoleces), 

and the expression level of Em-TSP3 varied within Nonc (Appendix II).  



Figure 3-2. Protein alignment of putative Em-TSP3 isoforms with four transmembrane. Fully 

conserved residues are marked with (*), those replaced with amino acids of strongly similar 

properties with (:) and of weakly similar properties with (.) LEL variable region are in the solid line 

box and predicted transmembrane region are in the dashed line box. 



Summary 

Echinococcus multilocularis, a worldwide zoonotic parasite, causes alveolar 

echinococcosis that is of great public health concern. The parasite requires two 

mammalian hosts, a definitive host (carnivores) and an intermediate host (mostly wild 

rodents), to complete its life cycle. For decades, it has been developed as an 

experimental model to study host-parasite interplay. The excretory-secretory (ES) 

proteins of parasites have been found to be crucial for their survival inside and outside 

of the host organisms by acting as virulence factors or host immune responses 

modulators. In addition, transmembrane (TM) proteins, as a group of membrane 

proteins, are involved in many important biological processes. Thus, ES and TM 

proteins received great attention as antigen proteins for vaccine or drug development 

that aimed to cure or prevent E. multilocularis infection. However, only very few 

candidate proteins have been identified due to the lack of systematic understanding of E. 

multilocularis genome and gene expression details. Until recently, the E. multilocularis

genome sequence has been resolved, which largely facilitated the identification of 

antigen families that possess high potentials for developing diagnostic assays, vaccines, 

and drugs. In order to diagnose and prevent the infection of E. multilocularis at a very 

early stage, discovery of/exploring potential antigen candidate proteins that are 

expressed during oncospheres and early metacestode larva stage would be important. 

Thus, it is invaluable to dissect the gene expression profile E. multilocularis at a 

stage-specific manner. In this thesis, we used next-generation sequencing approach to 

investigate gene expression dynamics at different stages of E. multilocularis (Nemuro 

strain).  



In this work, seven E. multilocularis mRNA samples from non-activated oncospheres 

(Nonc), activated oncospheres (Aonc), 4-week immature metacestodes (4Wmet), 

16-weeks mature metacestodes (16Wmet), and in vitro cultivated metacestodes small 

vesicles (Cmet) were collected to profiling the gene expression dynamics at different 

stages of the parasite development. The single-end (s4Wmet and s16Wmet) and 

pair-end (pNonc, pAonc, p4Wmet, pCmet) sequencing gave 700 million clean reads 

with > 90% of all bases having Phred scores above 30. Moreover, most of de novo

assembled contigs could be matched to the reference genome of E. multilocularis,

which indicated that all sequenced reads of the seven samples and the assembled contigs 

of pair-end sequencing samples were reliable. 

The gene expression profile analysis revealed that amyloid beta A4 protein, some 

diagnostic antigen GP50 gene isoforms, antigen EG95 family, major egg antigen 

(HSP20) and Tetraspanin 3 were dominantly expressed in activated oncospheres, while 

Antigen B subunits (EmAgB8/1, 2,3 and 4), Tetraspanin 5 and 6, tegumental protein 

and Antigen 5 family were highly expressed at metacestodes stage.  

Furthermore, heat shock proteins 70 family and antigen II/3(elp) are constantly 

expressed in all stages. And apomucin analysis showed that MUC-2 sub-family 

transcripts were present in all sequenced stages and some of them were highly 

expressed in oncospheres, especially in Aonc. However, MUC-1 family transcripts only 

present in metacestodes. Functional annotation of E. multilocularis transcripts revealed 

that 769 predicted ES and 1980 predicted TM proteins were enriched with gene 

mbrane transporter 

. And it was shown that the up-regulated genes in metacestodes were 



many molecular that took part in the host-parasite interfaces were highly expression in 

the metacestodes to regulate the immune response for establishing the chronic infection. 

Strikingly, 97% (938/968) of the predicted trans-splicing genes were expressed at 

oncospheres and metacestodes, though 20% (2,177/10,669) genes in reference 

transcriptome were almost no expression. Furthermore, the protease analysis showed 

that there were 257 proteases and 55 proteases inhibitor in the reference transcriptome 

and most of these proteases had relatively higher expression levels in 16Wmet, which 

indicated they might play important roles in regulating host immune response during the 

chronic stage of larval echinococcosis. In contrast, proteases inhibitors, especially 

Kunitz-type protease inhibitors (I02), were highly expressed in oncospheres, suggesting 

they might play important roles to block the proteolytic attack in the host alimentary 

tract. 

The results clearly showed that the expression dynamics of antigen candidates, ES 

proteins, TM proteins, and proteases in E. multilocularis at different developmental 

stages/growth phases were differentially regulated. These large sets of detailed and 

systematical results might provide novel insights for studying host-parasite interaction 

at different stages of the life cycle. In addition, it also serves as an invaluable resource 

for future experimental studies that aim to develop new intervention tools, including 

vaccines and drugs, against this parasite at its early infection phase. 
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Appendix I 

Predicted protease of E. multilocularis 

Transcript ID Description Protease ID KO ID pNonc1 pNonc2 pAonc s4Wmet p4Wmet pCmet s16Wmet 

EmuJ_000970500.1 cathepsin d lysosomal aspartyl protease A01A K01379 64  97  96  187  88  285  196  

EmuJ_000780700.1 presenilin A22A K04505 54  13  44  17  25  56  44  

EmuJ_000084000.1 Minor histocompatibility antigen H13 A22B K09595 337  515  217  197  271  314  182  

EmuJ_000955800.1 signal peptide peptidase 2A A22B K09596 35  19  51  27  37  48  30  

EmuJ_000898400.1 protein ddi1 2 A28A K11885 67  62  93  49  46  133  49  

EmuJ_000201800.1 RNA directed DNA polymerase reverse transcriptase A28B  2  0  0  10  0  0  1  

EmuJ_000696400.1 conserved hypothetical protein A28B  2  0  2  0  0  0  0  

EmuJ_000676400.1 RNA directed DNA polymerase reverse transcriptase A28B/A02D  0  0  3  0  0  0  0  

EmuJ_000790200.1 cathepsin b C01A K01363 8  3  139  417  299  1085  336  

EmuJ_000477200.1 cathepsin L C01A K01365 82  63  401  125  157  973  211  

EmuJ_000790300.1 cathepsin b C01A K01363 8  7  61  32  24  36  24  

EmuJ_000989200.1 cathepsin l cysteine peptidase C01A/I29 K01365 73  73  101  32  77  133  66  



EmuJ_000967900.1 cathepsin L C01A/I29  1  0  0  0  0  4  10  

EmuJ_000654500.1 cysteine protease C01A/I29 K01365 0  0  1  0  0  0  0  

EmuJ_000654100.1 cathepsin l cysteine peptidase C01A/I29 K01365 0  0  0  0  0  0  0  

EmuJ_000654200.1 cathepsin L cysteine protease C01A/I29 K01365 0  0  0  0  0  0  0  

EmuJ_000654600.1 cysteine protease C01A/I29 K01365 0  0  0  0  0  0  0  

EmuJ_000654800.1 cathepsin L cysteine protease C01A/I29 K01365 0  0  0  0  0  0  0  

EmuJ_000719700.1 calpain C02A K08585 128  74  193  252  314  1242  400  

EmuJ_000911200.1 calpain A C02A K08585 206  67  76  284  339  1134  304  

EmuJ_000319100.1 family C2 unassigned peptidase (C02 family) C02A K08585 21  11  43  71  75  296  72  

EmuJ_001000650.1 calpain 7 C02 family C02A K08576 73  17  66  51  52  76  36  

EmuJ_000205500.1 calpain 5 C02A K08574 53  22  36  20  42  55  37  

EmuJ_002206900.1 family C2 unassigned peptidase (C02 family) C02A  0  0  3  0  50  0  6  

EmuJ_000253150.1 hypothetical protein C02A  1  1  4  10  9  5  23  

EmuJ_000765200.1 Transglutaminase C110  7  0  25  58  78  346  49  

EmuJ_000836300.1 ubiquitin protein ligase BRE1 C110  19  15  30  66  48  169  43  



EmuJ_000656610.1 putative aldehyde dehydrogenase C110  13  0  6  9  15  9  9  

EmuJ_000765300.1 Transglutaminase C110  1  0  3  7  2  13  5  

EmuJ_001029600.1 ubiquitin carboxyl terminal hydrolase isozyme C12 K05609 199  364  204  257  271  419  147  

EmuJ_000141500.1 ubiquitin carboxyl terminal hydrolase isozyme C12 K05610 149  163  143  114  172  528  86  

EmuJ_000151200.1 ubiquitin carboxyl terminal hydrolase BAP1 C12 K08588 15  5  9  14  20  31  16  

EmuJ_000869600.1 GPI anchor transamidase C13 K05290 112  196  112  81  90  126  122  

EmuJ_000462900.1 caspase 3 apoptosis cysteine peptidase C14A K02187 92  62  100  24  98  191  117  

EmuJ_000417900.1 caspase 8 C14A  1  3  19  29  34  90  40  

EmuJ_000113100.1 caspase 2 C14A K02186 33  11  28  7  14  22  27  

EmuJ_001067200.1 caspase C14A  4  2  7  0  8  30  15  

EmuJ_001067500.1 caspase 3 C14A  0  0  0  0  0  0  1  

EmuJ_000217600.1 Peptidase C15 pyroglutamyl peptidase I C15 K01304 253  305  133  39  46  26  23  

EmuJ_000337400.1 Peptidase C19 ubiquitin carboxyl terminal hydrolase 2 C19 K11833 495  507  375  64  181  196  94  

EmuJ_000837800.1 ubiquitin carboxyl terminal hydrolase 4 C19 K11835 89  133  141  122  101  123  111  

EmuJ_000314400.1 expressed protein C19  177  106  123  55  77  98  38  



EmuJ_000580300.1 ubiquitin carboxyl terminal hydrolase 14 C19 K11843 65  67  141  21  53  124  51  

EmuJ_000875300.1 ubiquitin carboxyl terminal hydrolase 7 C19 K11838 63  10  50  59  114  142  70  

EmuJ_000167900.1 ubiquitin carboxyl terminal hydrolase 36 C19 K11855 100  25  71  39  62  128  52  

EmuJ_000915600.1 ubiquitin carboxyl terminal hydrolase 12 C19 K11842 95  39  48  14  52  145  46  

EmuJ_000627400.1 u4:u6.u5 tri snrnp associated protein 2 C19 K12847 98  25  63  29  35  116  71  

EmuJ_000175500.1 ubiquitin specific peptidase c family C19 K11841 38  10  79  36  52  125  51  

EmuJ_000102100.1 Zinc finger MYND type C19  66  61  68  39  52  55  46  

EmuJ_000095700.1 ubiquitin carboxyl terminal hydrolase 5 C19 K11836 32  11  40  28  31  191  41  

EmuJ_000957900.1 ubiquitin carboxyl terminal hydrolase 8 C19 K11839 80  51  68  41  40  30  51  

EmuJ_000065800.1 ubiquitin carboxyl terminal hydrolase 4 C19  46  9  21  56  43  80  26  

EmuJ_000199000.1 SET and MYND domain containing protein 3 C19 K11426 26  26  30  43  46  66  31  

EmuJ_000711400.1 Ubiquitin carboxyl terminal hydrolase 48 C19 K11858 46  8  28  55  32  25  62  

EmuJ_000696800.1 ubiquitin carboxyl terminal hydrolase C19 K11840 39  9  35  42  45  39  19  

EmuJ_000929000.1 ubiquitin carboxyl terminal hydrolase 16 C19 K11844 33  8  33  33  44  29  42  

EmuJ_001005800.1 ubiquitin carboxyl terminal hydrolase 7 C19 K11838 26  3  20  31  41  45  36  



EmuJ_000729100.1 ubiquitin specific protease 41 C19 K11833 85  27  22  11  13  27  12  

EmuJ_000570500.1 ubiquitin carboxyl terminal hydrolase 20 C19 K11848 28  6  20  6  23  31  23  

EmuJ_000042300.1 ubiquitin carboxyl terminal hydrolase 22 C19 K11366 28  8  8  23  12  12  13  

EmuJ_000915300.1 ubiquitin carboxyl terminal hydrolase 4 C19 K11835 0  0  0  7  7  6  20  

EmuJ_000695600.1 ubiquitin carboxyl terminal hydrolase 24 C19  9  3  3  3  4  3  6  

EmuJ_001182600.1 ubiquitin carboxyl terminal hydrolase 47 C19 K11869 4  1  4  0  14  0  1  

EmuJ_001164900.1 ubiquitin specific peptidase 42 C19 family C19  0  0  0  0  0  0  0  

EmuJ_001198000.1 GMP synthase glutamine hydrolyzing C26 K01951 84  73  133  120  149  249  168  

EmuJ_000849200.1 CTP synthase 1 C26 K01937 46  16  88  61  61  135  50  

EmuJ_000097800.1 Glutamine:fructose 6 phosphate aminotransferase C44 K00820 51  54  212  557  572  485  133  

EmuJ_000644000.1 glutamate synthase C44 K00264 6  1  55  282  188  557  68  

EmuJ_000668900.1 asparagine synthetase domain containing protein C44  57  28  128  64  57  94  128  

EmuJ_001200300.1 hedgehog C46  0  1  0  15  8  10  52  

EmuJ_000304000.1 expressed protein C48 K14764 97  65  104  90  114  57  93  

EmuJ_000060300.1 sentrin specific protease 7 C48 K08596 53  29  94  35  41  53  58  



EmuJ_000338300.1 sentrin specific protease 1 C48 K08592 34  11  14  27  19  54  28  

EmuJ_001069800.1 sentrin specific protease 8 C48 K08597 6  13  13  24  0  24  17  

EmuJ_002197000.1 sentrin specific protease C48 K03345 0  0  0  0  0  0  0  

EmuJ_000702900.1 separin C50 K02365 18  7  19  27  19  47  35  

EmuJ_000458100.1 cysteine protease atg4b C54 K08342 70  24  65  95  59  48  58  

EmuJ_000098800.1 Peptidase C54 C54 K08342 38  16  27  26  3  39  27  

EmuJ_000135900.1 protein DJ 1 C56 K05687 481  845  468  896  747  1561  735  

EmuJ_000999800.1 ES1 protein mitochondrial C56  97  180  110  297  211  427  278  

EmuJ_001071800.1 Zinc finger RanBP2 type C64 K11862 56  10  14  29  41  85  21  

EmuJ_000540000.1 Ubiquitin thioesterase otubain protein C65 K09602 170  156  216  136  230  376  103  

EmuJ_000586500.1 Ufm1 specific protease 2 C78 K01376 20  15  53  36  36  57  31  

EmuJ_000799700.1 ufm1 specific protease 1 C78 K01376 17  13  35  0  32  25  14  

EmuJ_000255400.1 phytochelatin synthase C83 K05941 46  9  35  29  14  54  32  

EmuJ_000728500.1 OTU domain containing protein 6B C85A K18342 158  73  174  69  97  101  59  

EmuJ_001090200.1 OTU domain containing protein 5 A C85A K12655 47  22  99  50  39  134  70  



EmuJ_000725600.1 OTU domain containing protein 3 C85A K13717 8  0  34  11  35  29  26  

EmuJ_000825650.1 zinc finger C2H2 type C85B K13719 14  16  43  58  67  62  34  

EmuJ_001174800.1 Atxn3 protein C86 K11863 99  92  230  114  129  157  158  

EmuJ_000701300.1 josephin 2 C86 K15235 207  176  83  37  81  144  45  

EmuJ_000220500.1 LAMA protein 2 C95  163  94  38  41  34  206  51  

EmuJ_000438500.1 PPPDE peptidase domain containing protein 2 C97  45  44  88  99  76  173  60  

EmuJ_000378500.1 PPPDE peptidase domain containing protein 1 C97  29  9  44  51  0  57  41  

EmuJ_000061400.1 agrin I01 K06254 0  0  1  16  15  24  27  

EmuJ_000278400.1 expressed protein follistatin I01 K04661 2  5  2  0  0  21  44  

EmuJ_001136900.1 amyloid beta A4 protein I02  60128  123301  16480  0  1429  15  0  

EmuJ_000419100.1 Kunitz protease inhibitor I02  284  666  483  22  11  22  47  

EmuJ_001181950.1 Papilin I02  41  60  215  102  123  352  104  

EmuJ_000077800.1 Papilin I02  282  290  59  20  30  60  25  

EmuJ_001137100.1 expressed protein I02  0  0  0  32  0  0  443  

EmuJ_000929500.1 SPONdin extracellular matrix glycoprotein I02  2  0  1  64  4  115  163  



EmuJ_000534800.1 expressed protein I02  53  30  80  0  0  18  137  

EmuJ_000077700.1 Kunitz:Bovine pancreatic trypsin inhibitor I02  122  109  29  0  0  0  1  

EmuJ_000302900.1 expressed protein I02  0  1  3  56  0  56  86  

EmuJ_001136500.1 WAP kazal immunoglobulin kunitz and NTR I02  35  102  6  0  0  0  0  

EmuJ_000225800.1 Papilin I02  0  0  5  6  2  18  10  

EmuJ_001137200.1 collagen alpha 3VI chain I02  0  0  17  0  0  0  3  

EmuJ_001137000.1 Kunitz protease inhibitor I02  0  14  0  0  0  0  0  

EmuJ_000548800.1 collagen alpha 1XXVIII chain I02  0  0  0  0  0  0  8  

EmuJ_000549400.1 collagen alpha 1XXVIII chain I02  0  0  0  0  0  0  3  

EmuJ_001136700.1 proteinase inhibitor I2 Kunitz metazoa I02  0  0  0  0  0  0  1  

EmuJ_001136800.1 WAP kazal immunoglobulin kunitz and NTR I02  0  0  0  0  0  0  1  

EmuJ_000419200.1 trypsin inhibitor I02  0  0  0  0  0  0  1  

EmuJ_001136600.1 Kunitz protease inhibitor I02  0  0  0  0  0  0  0  

EmuJ_001137300.1 collagen alpha 3VI chain I02  0  0  0  0  0  0  0  

EmuJ_001137400.1 collagen alpha 3VI chain I02  0  0  0  0  0  0  0  



EmuJ_000255800.1 egf domain protein I02/I08  3  0  12  26  25  135  47  

EmuJ_000488100.1 60S ribosomal protein L38 I04 K02923 456  1554  735  491  570  799  388  

EmuJ_000824100.1 Estrogen regulated protein EP45 I04 K13963 38  11  251  90  279  324  25  

EmuJ_001193100.1 serine protease inhibitor I04 K13963 318  564  45  0  12  27  8  

EmuJ_001193200.1 serine protease inhibitor I04 K13963 218  296  38  0  12  12  3  

EmuJ_000824000.1 Estrogen regulated protein EP45 I04  9  19  50  27  7  3  30  

EmuJ_000068100.1 laminin I15  0  0  5  17  16  46  25  

EmuJ_001132400.1 laminin I15 K05637 17  6  7  11  13  23  22  

EmuJ_000119200.1 neuroendocrine protein 7b2 I21  45  43  57  8  4  16  14  

EmuJ_000159200.1 Cystatin B Stefin B I25A K13907 195  320  290  357  249  512  477  

EmuJ_000698600.1 inhibitor of apoptosis protein I32  412  227  179  1023  849  2664  990  

EmuJ_001004100.1 baculoviral IAP repeat containing protein I32 K08731 40  14  24  0  16  16  30  

EmuJ_000641100.1 alpha 2 macroglobulin I39  45  16  14  46  62  311  63  

EmuJ_000610100.1 cd109 antigen I39  1  0  2  0  1  9  3  

EmuJ_000060000.1 mitochondrial ribosomal protein L38 I51 K17419 112  27  105  48  121  157  76  



EmuJ_000677600.1 phospholipase A2 receptor 1 I63 K06560 67  16  60  150  140  200  79  

EmuJ_000392700.1 protein jagged 2 I84  134  33  141  24  24  15  40  

EmuJ_000951400.1 stomatin protein 2 I87  86  63  122  110  135  123  80  

EmuJ_000764700.1 mechanosensory protein 2 I87 K17286 1  0  1  30  30  49  52  

EmuJ_000194700.1 stomatin I87 K17286 7  2  1  14  29  0  7  

EmuJ_000382000.1 mechanosensory protein 2 I87 K17286 5  2  1  16  4  8  12  

EmuJ_000450500.1 MEChanosensory abnormality family member I87 K17286 13  8  11  6  0  0  6  

EmuJ_000469900.1 mechanosensory protein 2 I87 K17286 0  0  0  0  0  12  29  

EmuJ_000205700.1 mechanosensory protein 2 I87 K17286 1  1  3  0  0  0  22  

EmuJ_000523300.1 mechanosensory protein 2 I87 K17286 0  0  0  0  14  0  8  

EmuJ_000636500.1 frizzled I93 K02842 5  2  4  25  4  60  50  

EmuJ_000682100.1 frizzled I93 K02432 8  1  5  23  8  16  46  

EmuJ_000085700.1 frizzled 10 I93 K02842 0  0  1  17  0  0  54  

EmuJ_001023000.1 secreted frizzled protein 5 I93  1  3  3  0  0  7  26  

EmuJ_000838700.1 secreted frizzled protein I93 K02176 1  0  3  6  0  3  16  



EmuJ_000996400.1 frizzled 5 I93 K02375 3  2  5  4  0  2  11  

EmuJ_000438200.1 frizzled 4 I93  0  0  2  0  0  2  1  

EmuJ_000972400.1 leukotriene A 4 hydrolase M01 K01254 103  60  78  130  79  262  99  

EmuJ_000101000.1 transcription initiation factor TFIID subunit 2 M01 K03128 26  7  32  19  28  44  52  

EmuJ_000350500.1 puromycin sensitive aminopeptidase M01 K08776 2  0  8  42  30  92  16  

EmuJ_000356700.1 puromycin sensitive aminopeptidase M01 K08776 5  1  1  21  20  20  24  

EmuJ_001105200.1 puromycin sensitive aminopeptidase M01 K08776 2  0  3  3  12  50  12  

EmuJ_001063900.1 aminopeptidase N M01 K11140 13  3  12  11  10  7  16  

EmuJ_000350600.1 puromycin sensitive aminopeptidase M01 K08776 0  0  0  3  3  8  3  

EmuJ_000350300.1 puromycin sensitive aminopeptidase M01 K08776 0  0  0  0  0  0  1  

EmuJ_001105000.1 puromycin sensitive aminopeptidase M01 K08776 0  0  0  0  0  0  0  

EmuJ_000466300.1 oligopeptidase M03A K01414 59  15  33  53  41  99  56  

EmuJ_000491800.1 mitochondrial intermediate peptidase M03A K01410 15  3  16  35  50  45  27  

EmuJ_000839500.1 invadolysin M08 family M08 K13539 15  7  30  12  20  6  17  

EmuJ_000939100.1 matrix metallopeptidase 7 M10 family M10A  0  0  4  29  29  39  26  



EmuJ_000640700.1 Tolloid protein 1 M12A K09608 0  0  3  42  35  14  29  

EmuJ_001195900.1 astacin protein M12A  1  0  2  5  0  0  15  

EmuJ_000832900.1 subfamily M12B unassigned peptidase M12B  99  27  41  52  59  139  65  

EmuJ_001069300.1 disintegrin and metalloproteinase M12B K06704 21  4  12  45  31  68  28  

EmuJ_000347500.1 adam M12B  2  1  7  20  18  54  52  

EmuJ_000892800.1 adam 17 protease M12B K06059 7  2  25  14  12  11  19  

EmuJ_001046600.1 a disintegrin and metalloproteinase with M12B  7  5  27  6  4  5  5  

EmuJ_000892700.1 Blood coagulation inhibitor Disintegrin M12B K06059 0  0  0  0  0  4  1  

EmuJ_001177500.1 endothelin converting enzyme 1 M13 K01415 19  11  18  50  58  201  48  

EmuJ_000814400.1 subfamily M14A unassigned peptidase M14A  10  11  6  0  33  42  35  

EmuJ_000421900.1 Zinc carboxypeptidase family protein M14B K01294 5  7  4  96  32  80  68  

EmuJ_000352300.1 cytosolic carboxypeptidase 1 M14B  6  2  9  10  6  11  23  

EmuJ_001068000.1 cytosolic carboxypeptidase protein 5 M14B  0  0  1  0  0  1  1  

EmuJ_000765600.1 insulin degrading enzyme M16A K01408 36  22  100  40  27  148  52  

EmuJ_002210500.1 nardilysin M16A  0  0  0  0  0  0  0  



EmuJ_000113700.1 mitochondrial processing peptidase beta subunit M16B K17732 271  191  439  391  470  899  355  

EmuJ_000091700.1 Cytochrome b c1 complex subunit 2 M16B K00415 232  168  316  281  207  615  220  

EmuJ_000058800.1 mitochondrial processing peptidase M16B K01412 41  24  70  26  61  99  65  

EmuJ_000921800.1 nardilysin M16B K01411 43  9  28  22  22  42  40  

EmuJ_000935700.1 nardilysin M16B/M16A K01411 43  12  57  69  47  119  72  

EmuJ_000503400.1 presequence protease mitochondrial M16C K06972 141  50  108  89  125  237  102  

EmuJ_001133600.1 leucine aminopeptidase protein M17 K11142 72  63  157  121  108  315  108  

EmuJ_001031700.1 leucyl aminopeptidase M17 K01255 12  12  86  79  59  69  27  

EmuJ_000855000.1 leucyl aminopeptidase M17 K01255 4  1  33  15  22  37  21  

EmuJ_000374300.1 leucyl aminopeptidase M17 K01255 1  0  1  0  0  0  0  

EmuJ_001083400.1 aspartyl aminopeptidase M18 K01267 88  33  65  84  99  216  74  

EmuJ_000675100.2 0 M20A K14677 5  7  15  25  12  87  42  

EmuJ_000675100.1 aminoacylase 1 M20A K14677 0  0  0  0  0  0  0  

EmuJ_000992300.1 cytosolic non-specific dipeptidase M20F K08660 17  11  55  11  32  16  14  

EmuJ_000820900.1 methionyl aminopeptidase 2 M24A K01265 99  70  173  102  106  100  103  



EmuJ_000923200.1 methionyl aminopeptidase 1 M24 family M24A K01265 27  15  70  13  29  132  34  

EmuJ_000651700.1 methionine aminopeptidase type I M24A K01265 25  23  12  0  8  21  12  

EmuJ_000025900.1 methionine aminopeptidase 1 M24A  3  8  0  0  0  0  0  

EmuJ_000025800.1 methionyl aminopeptidase 1 M24 family M24A K01265 0  0  0  0  0  0  0  

EmuJ_000864100.1 xaa pro aminopeptidase M24B K01262 95  54  122  164  70  166  200  

EmuJ_000621300.1 xaa Pro dipeptidase M24B K14213 39  23  26  33  22  77  91  

EmuJ_001034400.1 Xaa Pro aminopeptidase 3 M24B K01262 53  22  37  46  23  32  30  

EmuJ_000921400.1 xaa Pro dipeptidase M24B K14213 5  0  2  11  0  36  12  

EmuJ_000781200.1 Proliferation associated protein 2G4 M24X  131  322  313  49  187  123  108  

EmuJ_001138800.1 FACT complex subunit SPT16 M24X  43  19  48  45  51  99  57  

EmuJ_002197100.1 proliferation-associated protein 2g4 M24X  0  0  0  0  0  6  1  

EmuJ_000908900.1 n acetylated alpha linked acidic dipeptidase 2 M28B K01301 0  0  0  4  7  128  119  

EmuJ_000253000.1 glutaminyl peptide cyclotransferase M28X K00683 142  40  79  88  62  75  76  

EmuJ_000890300.1 endoplasmic reticulum metallopeptidase 1 M28X  78  19  35  46  99  123  37  

EmuJ_000825400.1 nicalin M28X  51  23  53  34  33  100  54  



EmuJ_000953400.1 dihydropyrimidinase M38 K01464 101  42  98  146  225  1309  222  

EmuJ_000953200.1 dihydropyrimidinase 2 M38  0  0  4  24  14  104  92  

EmuJ_001045500.1 imidazolonepropionase M38 K01468 3  4  0  12  25  59  46  

EmuJ_001020900.1 dihydropyrimidinase protein 4 M38  14  7  19  9  2  9  20  

EmuJ_000616300.1 afg3 protein 2 M41 K08956 90  35  77  128  84  224  106  

EmuJ_000847400.1 ATP dependent zinc metalloprotease YME1 M41 K08955 93  35  95  63  63  124  108  

EmuJ_000927200.1 paraplegin M41 K09552 70  14  37  43  94  85  70  

EmuJ_001023600.1 caax prenyl protease 1 M48A K06013 47  62  103  61  133  126  85  

EmuJ_001028100.1 dipeptidyl peptidase 3 M49 K01277 239  344  234  120  179  320  151  

EmuJ_000468800.1 membrane bound transcription factor site 2 M50A K07765 90  13  47  101  59  135  64  

EmuJ_000796000.1 lys 63 specific deubiquitinase BRCC36 M67A K11864 186  231  344  275  265  283  102  

EmuJ_001166800.1 26S proteasome regulatory subunit N11 M67A K03030 110  182  213  199  257  371  163  

EmuJ_000331200.1 COP9 signalosome complex subunit 6 M67A K12179 217  47  87  88  137  240  80  

EmuJ_000687300.1 26S proteasome non ATPase regulatory subunit 7 M67A K03038 83  119  157  108  143  163  122  

EmuJ_000831400.1 COP9 signalosome complex subunit 5 M67A K09613 43  52  80  54  58  167  108  



EmuJ_000795700.1 26S proteasome regulatory subunit N11 M67A  45  44  105  64  78  84  71  

EmuJ_000723000.1 STAM binding protein M67C K11866 376  290  69  190  188  401  110  

EmuJ_000151700.1 pre mRNA processing splicing factor 8 M67C K12856 58  10  65  75  79  294  67  

EmuJ_000068700.1 eukaryotic translation initiation factor 3 M67X K03249 230  332  186  159  220  460  126  

EmuJ_000117100.1 eukaryotic translation initiation factor 3 M67X K03247 163  232  185  122  197  238  84  

EmuJ_000535900.1 CAAX prenyl protease 2 M79 K08658 57  18  77  37  33  37  55  

EmuJ_000665500.1 cadherin EGF LAG seven pass G type receptor 1 P02A  1  0  2  2  1  1  1  

EmuJ_000168400.1 polycystin 1 P02A  0  0  0  0  0  0  0  

EmuJ_000396200.1 hypothetical protein PKD P02A  0  0  0  0  0  0  0  

EmuJ_000723600.1 polycystin 1 P02A  0  0  0  0  0  0  0  

EmuJ_000622600.1 receptor for egg jelly 6 P02B  0  0  0  0  0  0  0  

EmuJ_000184900.1 glycoprotein Antigen 5 S01A  94  33  14  308  212  2038  1049  

EmuJ_000085400.1 Mastin S01A  7  1  78  136  143  424  220  

EmuJ_000165600.1 enteropeptidase S01A  0  3  9  7  0  11  8  

EmuJ_001046200.1 subfamily S1A unassigned peptidase S01 family S01A  3  2  8  0  0  4  9  



EmuJ_000436600.1 Transcription factor FAR1 lipoprotein receptor ldl S01A  0  0  1  3  0  6  8  

EmuJ_000924600.1 transmembrane protease serine 3 S01A K09634 1  0  3  7  0  0  3  

EmuJ_000820800.1 Peptidase S1 S6 chymotrypsin Hap S01A  0  0  0  0  0  0  2  

EmuJ_000166800.1 peptidase s8 s53 subtilisin kexin sedolisin S08A K01280 23  5  30  30  29  75  38  

EmuJ_001148400.1 membrane bound transcription factor site 1 S08A K08653 15  7  19  17  4  44  23  

EmuJ_000998900.1 proprotein convertase subtilisin:kexin type 5 S08B K08654 62  13  43  81  51  53  39  

EmuJ_000412100.1 neuroendocrine convertase 2 S08B K01360 2  6  16  68  47  26  27  

EmuJ_000896900.1 furin 1 S08 family S08B K01349 6  5  8  13  10  5  12  

EmuJ_000086100.1 Furin 1 S08B  1  1  2  0  0  2  9  

EmuJ_000896900.2 Uncharacterized protein S08B K01349 0  0  0  0  0  0  0  

EmuJ_000668800.1 prolyl endopeptidase S09A K01322 120  78  186  141  171  337  168  

EmuJ_000297600.1 dipeptidyl aminopeptidaseprotein S09B  32  36  31  6  12  39  27  

EmuJ_000362100.1 Dipeptidyl peptidase 9 S09B K08656 26  6  18  11  4  64  18  

EmuJ_001178900.1 abhydrolase domain containing protein 13 S09C K06889 37  42  137  99  265  550  88  

EmuJ_000958300.1 Phospholipase carboxylesterase S09C  31  26  44  47  50  24  55  



EmuJ_000217800.1 monoacylglycerol lipase abhd12 S09C/S33 K13704 15  33  182  33  54  8  11  

EmuJ_000843300.1 acylamino acid releasing enzyme S09C/S33 K01303 40  18  40  46  35  85  61  

EmuJ_000465300.1 acyl protein thioesterase 1 S09X  156  210  205  167  276  384  199  

EmuJ_000053900.1 acyl protein thioesterase 12 S09X K06130 81  47  108  70  111  157  100  

EmuJ_000445400.1 abhydrolase domain containing protein 16A S09X  55  19  111  51  79  82  81  

EmuJ_000438400.1 S formylglutathione hydrolase S09X K01070 32  24  64  67  63  101  98  

EmuJ_000106200.1 para nitrobenzyl esterase S09X  78  52  129  18  42  15  41  

EmuJ_001075400.1 acetylcholinesterase S09X K01049 20  16  19  4  2  0  3  

EmuJ_000297300.1 BC026374 protein (S09 family) S09X K01050 0  0  0  0  4  7  6  

EmuJ_000845300.1 neuroligin S09X K07378 0  0  0  3  0  0  2  

EmuJ_000962700.1 family S9 non peptidase ue S09 family S09X  0  0  1  0  0  0  0  

EmuJ_000783300.1 carboxylesterase 5A S09X  0  0  0  0  0  0  0  

EmuJ_000966500.1 hormone sensitive lipase S09X/S09C K07188 24  3  10  30  15  68  32  

EmuJ_000732400.1 acetylcholinesterase S09X/S09C K01049 1  3  3  0  4  2  18  

EmuJ_000170200.1 lysosomal protective protein S10 K13289 63  42  86  53  93  344  192  



EmuJ_000939400.1 beta LACTamase domain containing family member S12 K17382 6  1  9  61  3  47  22  

EmuJ_000242400.1 ATP dependent Clp protease proteolytic subunit S14 K01358 90  87  74  88  100  167  107  

EmuJ_000324100.1 Lon protease homolog S16 K08675 50  22  125  65  102  208  76  

EmuJ_001050600.1 mitochondrial inner membrane protease subunit S26A K09647 116  95  107  32  56  81  97  

EmuJ_000341800.1 signal peptidase complex catalytic subunit S26B K13280 257  495  482  236  312  818  190  

EmuJ_001028800.1 Lysosomal Pro X carboxypeptidase S28 K01285 149  91  193  143  172  108  204  

EmuJ_000456150.1 Lysosomal Pro X carboxypeptidase S28 K01276 12  10  28  40  110  61  40  

EmuJ_000190200.1 protein NDRG3 S33  395  466  426  632  573  698  218  

EmuJ_001065500.1 Ndr S33  363  197  89  342  299  1272  383  

EmuJ_000917500.1 lysosomal acid lipase:cholesteryl ester S33 K01052 169  171  92  149  164  379  75  

EmuJ_000295800.1 Alpha S33 K13696 384  271  53  57  64  96  64  

EmuJ_000708700.1 abhydrolase domain containing protein 11 S33 K13703 72  40  100  48  120  110  136  

EmuJ_000955700.1 abhydrolase domain containing protein 8 S33 K13701 190  133  227  7  13  0  2  

EmuJ_000295900.1 Alpha S33 K13696 32  35  83  32  3  93  56  

EmuJ_000947700.1 Ndr S33  11  6  6  15  0  8  30  



EmuJ_000295600.1 Alpha S33 K13696 2  0  16  7  18  11  18  

EmuJ_000684300.1 abhydrolase domain containing protein S33/S09C K13699 23  29  222  86  68  87  64  

EmuJ_000879100.1 protein phosphatase methylesterase 1 S33/S09C K13617 114  22  35  29  47  157  35  

EmuJ_000612200.1 Der1 domain family S54 K11519 119  65  103  54  38  120  74  

EmuJ_001179900.1 inactive rhomboid protein 1 S54  38  9  25  70  83  22  40  

EmuJ_000102400.1 stem cell tumor S54 K02857 68  9  43  40  13  64  27  

EmuJ_000435100.1 presenilin associated rhomboid S54 K09650 38  31  85  15  20  27  22  

EmuJ_001126200.1 stem cell tumor S54 K02857 6  1  8  45  8  37  20  

EmuJ_001034300.1 nuclear pore complex protein Nup98 Nup96 S59 K14297 42  7  19  45  32  51  34  

EmuJ_000569300.1 family S60 non peptidase ue S60 family S60 K06569 0  1  2  0  2  9  12  

EmuJ_000481200.1 proteasome prosome macropain subunit beta T01A K02734 227  612  380  471  363  657  266  

EmuJ_001182700.1 subfamily T1A non peptidase ue T01A K02729 225  350  475  473  434  813  187  

EmuJ_000230600.1 proteasome subunit beta type 6 T01A K02738 286  609  449  224  385  622  210  

EmuJ_001120300.1 proteasome subunit alpha type 2 T01A K02726 227  254  388  368  302  487  220  

EmuJ_000877400.1 proteasome subunit alpha type 6 T01A K02730 292  418  299  307  315  408  206  



EmuJ_000062300.1 proteasome subunit beta type 7 T01A K02739 187  269  563  166  388  476  166  

EmuJ_000864950.1 proteasome prosome macropain subunit alpha T01A K02728 200  363  359  164  212  460  235  

EmuJ_000590200.1 proteasome prosome macropain T01A K02737 143  282  310  121  269  629  134  

EmuJ_000252500.1 proteasome prosome macropain subunit beta T01A K02732 85  149  208  415  234  292  380  

EmuJ_001064900.1 proteasome prosome macropain subunit beta T01A K02735 151  218  286  237  326  326  151  

EmuJ_000196100.1 Proteasome subunit alpha beta T01A K02727 70  135  194  233  181  362  188  

EmuJ_000682700.1 Proteasome subunit alpha type 7 T01A K02731 22  17  38  30  51  51  10  

EmuJ_000682300.1 Proteasome subunit alpha type 7 T01A K02731 0  0  0  0  0  0  0  

EmuJ_000682550.1 Proteasome subunit alpha type 7 T01A K02731 0  0  0  0  0  0  0  

EmuJ_001150600.1 proteasome prosome macropain subunit beta type T01X K02736 252  315  280  366  279  408  273  

EmuJ_000750500.1 20S proteasome subunit alpha 6 T01X K02725 100  143  252  207  199  512  157  

EmuJ_000325200.1 N4 Beta N acetylglucosaminyl L asparaginase T02 K01444 21  11  22  38  19  34  73  

EmuJ_000829500.1 threonine aspartase 1 T02 K08657 7  9  15  0  11  11  18  

EmuJ_000761500.1 gamma glutamyltransferase 1 T03  22  16  31  25  26  53  22  

EmuJ_000806300.1 gamma-glutamyltranspeptidase T03 K18592 0  0  1  0  0  2  1  



Appendix II 

The antigen homologues matched to E. multilocularis reference transcriptome 

Transcripts ID Description pNonc1 pNonc2 pAonc s4Wmet p4Wmet pCmet s16Wmet

EmuJ_000364000.1 14-3-3 protein homolog 2 2745 4812 1919 1458 2003 8364 1422 

EmuJ_001192500.1 14-3-3 protein zeta 1733 4117 2462 3000 2727 3986 2245 

EmuJ_000036300.1 ACTI 34252 20266 15162 6288 7838 18887 3311 

EmuJ_000406900.1 ACTI 0 0 35 7 11 907 68 

EmuJ_000407200.1 ACTI 1 0 25 14 22 925 163 

EmuJ_000061200.1 ACTII 0 0 0 123 7 505 354 

EmuJ_000407300.1 ACTII 0 3 1 0 0 0 1 

EmuJ_000701700.1 ACTII 0 0 0 12 18 364 212 

EmuJ_000703300.1 ACTIII 0 0 1 29 22 192 107 

EmuJ_000413200.1 Alpha tubulin 356 110 898 1220 1672 7856 1665 

EmuJ_000886400.1 Alpha tubulin 42 43 435 2191 1739 5280 1129 

EmuJ_000476400.1 Alpha tubulin 4 5 11 0 3 18 8 

EmuJ_000040900.1 Alpha tubulin 7 3 15 12 0 6 4 

EmuJ_000339900.1 Alpha tubulin 6 1 5 6 1 7 4 

EmuJ_000042200.1 Alpha tubulin 1 3 15 0 0 3 2 

EmuJ_002136500.1 Alpha tubulin 2 3 2 5 0 2 1 

EmuJ_000352800.1 Alpha tubulin 1 1 5 0 0 2 1 

EmuJ_000042600.1 Alpha tubulin 1 0 1 6 0 0 0 

EmuJ_000042500.1 Alpha tubulin 2 0 2 0 0 0 1 

EmuJ_000359200.1 Alpha tubulin 0 0 0 4 0 0 0 

EmuJ_001070900.1 Alpha tubulin 0 0 2 0 0 0 0 

EmuJ_000340050.1 Alpha tubulin 0 0 0 0 0 0 1 

EmuJ_000588000.1 Alpha tubulin 0 0 1 0 0 0 0 

EmuJ_000042700.1 Alpha tubulin 0 0 0 0 0 0 0 

EmuJ_000735000.1 Alpha tubulin 0 0 0 0 0 0 0 

EmuJ_001124100.1 Alpha tubulin 0 0 0 0 0 0 0 

EmuJ_000184900.1 Antigen 5 94 33 14 308 212 2038 1049 

EmuJ_000485800.1 Antigen II/3 elp 4994 6465 5166 1694 2662 2058 840 

EmuJ_000672200.1 Beta tubulin 784 861 1180 1761 1783 6685 1514 

EmuJ_000202500.1 Beta tubulin 17 18 327 936 814 3012 251 

EmuJ_000202600.1 Beta tubulin 1 1 11 401 382 1251 389 



EmuJ_001126150.1 Beta tubulin 11 5 18 26 13 4 21 

EmuJ_000569000.1 Beta tubulin 1 0 1 0 6 12 3 

EmuJ_000041100.1 Beta tubulin 4 0 8 0 3 0 3 

EmuJ_001081200.1 Beta tubulin 4 0 8 0 0 0 1 

EmuJ_000955100.1 Beta tubulin 0 0 0 0 0 3 10 

EmuJ_000069900.1 Beta tubulin 0 1 2 0 6 0 1 

EmuJ_000617000.1 Beta tubulin 0 0 0 0 0 3 0 

EmuJ_000601200.1 Calcineurin A 78 18 52 58 54 85 59 

EmuJ_000447500.1 Calcineurin B 148 144 150 260 175 189 168 

EmuJ_000454300.1 Calcineurin B  180 136 127 32 137 129 101 

EmuJ_000920600.1 Cyclophilin 2732 5395 4481 4143 4436 10470 4275 

EmuJ_000009600.1 cytoplasmic antigen 1 0 0 0 0 0 0 1 

EmuJ_000517100.1 EF-1 1432 2701 1272 639 916 1276 575 

EmuJ_000982200.1 EF1a 5598 7644 5178 5789 5220 11147 4723 

EmuJ_000911600.1 EF-2 0 0 1 0 0 0 0 

EmuJ_000342900.1 EG19 3 0 9 128 0 72 2440 

EmuJ_000328500.1 EG95 (Onco1) 9212 19004 9414 121 732 35 0 

EmuJ_000368620.1 EG95 19 78 8422 367 286 0 0 

EmuJ_000710400.1 EG95 4855 15169 6447 0 104 0 1 

EmuJ_000381200.1 EmAgB8/1 0 0 0 19211 5046 22858 26592 

EmuJ_000381100.1 EmAgB8/2 0 0 0 836 752 9748 12075 

EmuJ_000381500.1 EmAgB8/3 10 0 187 8091 13182 51220 9222 

EmuJ_000381600.1 EmAgB8/3 0 0 0 0 0 0 0 

EmuJ_000381700.1 EmAgB8/3 0 0 0 0 0 0 0 

EmuJ_000381400.1 EmAgB8/4 5 0 0 3351 4411 25827 8418 

EmuJ_000381800.1 EmAgB8/5 0 0 0 0 0 0 0 

EmuJ_000393300.1 Em-alp-1 1 0 259 56 44 179 54 

EmuJ_000393400.1 Em-alp-2 18 14 1022 90 118 544 124 

EmuJ_000752700.1 Em-alp-3 0 0 0 0 0 0 0 

EmuJ_000752800.1 Em-alp-4 0 0 0 0 0 0 0 

EmuJ_000362600.1 Em-bruno1 3 2 3 11 5 8 29 

EmuJ_000943000.1 Em-bruno2 2 0 21 25 13 32 118 

EmuJ_000942800.1 Em-bruno3 0 0 0 0 0 0 0 

EmuJ_000790200.1 EmCBP1 8 3 139 417 299 1085 336 

EmuJ_000790300.1 EmCBP2 8 7 61 32 24 36 24 



EmuJ_000654100.1 EmCLP1 0 0 0 0 0 0 0 

EmuJ_000654200.1 EmCLP1 0 0 0 0 0 0 0 

EmuJ_000654500.1 EmCLP1 0 0 1 0 0 0 0 

EmuJ_000654600.1 EmCLP1 0 0 0 0 0 0 0 

EmuJ_000654800.1 EmCLP1 0 0 0 0 0 0 0 

EmuJ_000989200.1 EmCLP2 73 73 101 32 77 133 66 

EmuJ_000590100.1 EmDLC 29 100 60 89 223 402 104 

EmuJ_000940800.1 EmDLC 0 0 27 0 44 265 67 

EmuJ_000940900.1 EmDLC 32 31 300 9523 3108 8115 1268 

EmuJ_000941100.1 EmDLC 0 0 76 205 147 2311 179 

EmuJ_000946700.1 EmDLC 475 1153 952 60 76 61 8 

EmuJ_001060400.1 EmDLC 140 320 291 483 639 2038 1279 

EmuJ_000538300.1 EmGST1 1716 2815 2416 4681 4157 9607 2258 

EmuJ_001102300.1 Em-hdac1 85 39 89 83 118 175 114 

EmuJ_000606200.1 Em-nanos 0 0 0 0 6 57 25 

EmuJ_000791700.1 EmTRX 1166 2479 2680 5757 3436 5885 3135 

EmuJ_000355800.1 Em-TSP1 0 0 15 391 347 456 167 

EmuJ_001070300.1 Em-TSP2 33 47 100 197 357 456 560 

EmuJ_001077400.1 Em-TSP3 1399 3778 4156 11 173 12 1 

EmuJ_001077300.1 Em-TSP3 26 20 18 0 0 0 0 

EmuJ_001021500.1 Em-TSP4 33 60 132 617 646 418 119 

EmuJ_001077100.1 Em-TSP5 16 13 903 3631 1514 7559 4800 

EmuJ_001021300.1 Em-TSP6 116 195 123 759 857 1492 994 

EmuJ_000834300.1 Em-TSP7 92 108 169 177 161 601 391 

EmuJ_000328400.1 Em-TSP8 52 104 426 36 90 0 1 

EmuJ_000515900.1 EmY162  0 0 0 0 0 62 34 

EmuJ_000564900.1 EmY162  346 1009 2690 453 825 2931 139 

EmuJ_000550000.1 FABP1 0 0 0 0 398 72 59 

EmuJ_000549800.1 FABP2 0 0 0 162 204 439 80 

EmuJ_002165500.1 FABP2 0 0 0 0 0 0 1 

EmuJ_000905600.1 FBPA 1127 1077 490 1023 1437 8319 1899 

EmuJ_000382200.1 Ferritin 5740 11631 5426 6622 7002 34365 6409 

EmuJ_000254600.1 GAPDH 7746 1411 2707 2805 3751 22243 3630 

EmuJ_000032300.1 GP50 11485 19983 4034 37 671 0 1 

EmuJ_000295100.1 GP50 7356 11796 7346 9 228 0 1 



EmuJ_000289400.1 GP50 3493 6128 1667 0 84 5 0 

EmuJ_000293700.1 GP50 1073 1889 389 0 28 0 0 

EmuJ_000261100.1 GP50 0 0 3100 20 77 0 1 

EmuJ_000050100.1 GP50 628 894 643 0 12 0 0 

EmuJ_000681200.1 GP50 13 16 396 458 682 14 7 

EmuJ_000049700.1 GP50 44 14 799 217 270 0 2 

EmuJ_000512300.1 GP50 0 0 1140 59 100 0 1 

EmuJ_001120900.1 GP50 0 0 4 118 322 0 4 

EmuJ_001120700.1 GP50 0 0 0 83 109 0 5 

EmuJ_000401200.1 GP50 31 10 31 0 0 0 1 

EmuJ_001201600.1 GP50 0 0 0 9 0 0 15 

EmuJ_000515550.1 GP50 6 4 11 0 0 0 2 

EmuJ_000289600.1 GP50 0 0 7 0 0 0 1 

EmuJ_000480200.1 GP50 0 2 2 0 0 0 2 

EmuJ_000566700.1 GP50 0 0 0 0 0 0 3 

EmuJ_000324200.1 GP50 0 0 2 0 0 0 1 

EmuJ_000047000.1 GP50 3 0 0 0 0 0 0 

EmuJ_000304800.1 GP50 0 0 2 0 0 0 1 

EmuJ_000520550.1 GP50 0 0 0 0 0 0 1 

EmuJ_000564000.1 GP50 0 0 0 0 0 0 0 

EmuJ_000743500.1 GP50 0 0 0 0 0 0 0 

EmuJ_000743600.1 GP50 0 0 0 0 0 0 0 

EmuJ_000249600.1 GRP78(HSP70) 195 250 424 297 305 499 234 

EmuJ_000472800.1 Histone H2B 245 605 291 552 512 1224 467 

EmuJ_000566500.1 Histone H2B 3 4 7 39 20 40 9 

EmuJ_000212700.1 HSP20(Onco2) 7699 10552 1705 52 587 252 440 

EmuJ_000723700.1 HSP70 4 2 10 11 0 16 7 

EmuJ_001085100.1 HSP70 248 48 981 313 475 836 295 

EmuJ_001085400.1 HSP70 3141 1825 2949 975 1256 3429 879 

EmuJ_001136500.1 Kunitz 35 102 6 0 0 0 0 

EmuJ_001136800.1 Kunitz 0 0 0 0 0 0 1 

EmuJ_001084300.1 M123 0 0 0 0 0 0 0 

EmuJ_001084400.1 M9 0 5 0 0 0 0 3 

EmuJ_000417100.1 MDH 238 289 610 987 1139 6351 1762 

EmuJ_001185000.1 Mdhm 73 95 465 497 315 614 225 



EmuJ_001185100.1 Mdhm 24 54 236 260 193 277 105 

EmuJ_000742900.1 MUC-1 6 0 13 14540 35610 66669 4624 

EmuJ_000315800.1 MUC-2 0 0 254 0 0 0 0 

EmuJ_000315900.1 MUC-2 0 0 17 0 0 0 0 

EmuJ_000316000.1 MUC-2 0 0 164 0 0 0 0 

EmuJ_000408150.1 MUC-2 0 0 138 0 12 0 1 

EmuJ_000408200.1 MUC-2 211 350 3733 534 1287 12 2 

EmuJ_000653900.1 Myophilin 11 40 8 254 33 818 446 

EmuJ_000861500.1 nanos-like protein 4 3 15 0 0 54 21 

EmuJ_000550800.1 P29 528 716 619 269 628 1845 413 

EmuJ_000763300.1 Paramyosin 1 0 0 9 24 561 195 

EmuJ_000517700.1 PMI 82 64 200 106 252 255 154 

EmuJ_000738700.1 prohibitin protein WPH 735 1261 995 508 832 2925 464 

EmuJ_000450400.1 Pumilio 2 145 32 48 95 53 108 84 

EmuJ_000878100.1 Pumilio 2 50 11 17 11 38 29 22 

EmuJ_001006600.1 Rab-4A 116 85 99 146 141 165 79 

EmuJ_001193100.1 SerpinEmu 318 564 45 0 12 27 8 

EmuJ_001193200.1 SerpinEmu 218 296 38 0 12 12 3 

EmuJ_000882500.1 Severin 922 1358 947 1070 1449 3846 616 

EmuJ_000958100.1 Tropomyosin 210 134 189 248 106 274 413 


