耐塩害用混和材を用いた蒸気養生コンクリートの耐久性[†] _{大和 功一郎*} 石田 剛朗* 山地 功二** 津郷 俊二** 吉武 勇***

Durability of Steam-Cured Concrete Incorporating a High-Resistance Admixture for Chloride Attack

by

Koichiro YAMATO *, Takeo ISHIDA *, Noritsugu YAMAJI **, Shunji TSUGO ** and Isamu YOSHITAKE ***

Since the Great East Japan Earthquake, many concrete seawalls for reconstruction and tsunami prevention are being built. Concrete having high resistance of chloride attack has been demanded for such coastal structures. To reduce future maintenance cost, concrete structures must be highly durable to environmental effects in addition to the chloride attack resistance. The authors have developed a pozzolanic admixture with excellent resistance to chloride attack as well as excellent general durability. The admixture is a mineral fine powder with a BET specific surface area of 10 m²/g of higher. The pozzolanic material (general mixture of 20-40 kg/m³) can be used as an alternative binder of Portland cement like fly-ash. The admixture is useable even in precast concrete factories having fewer storage facilities such as extra silos. The study focuses on properties of steam-cured concrete to consider the use of admixture in such precast concrete production. The experimental study examined various properties of the concrete incorporating the admixture, such as the chloride penetration resistance; compressive strength; dry shrinkage; carbonation; sulfate resistance, and freeze-thaw resistance. Pore distribution of the concrete was also investigated to confirm the effect of the powder material. The test result confirms the excellent higher resistance to chloride penetration of the concrete is comparable with or higher than that of conventional concrete without the admixture.

Key words:

Admixture, Mineral powder, Concrete, Chloride attack resistance, Durability

1 緒 言

東日本大震災の復旧および津波対策のために防潮堤な ど港湾構造物の工事が太平洋沿岸を中心に進められてい る.これらの海岸付近のコンクリート構造物には、特に塩 害対策が求められる.また塩害対策のみならず、今後予想 されるコンクリート構造物の更新費および修繕費の増大 を鑑みれば、ライフサイクルコストの低減のために、コン クリート構造物の高耐久化ニーズは高まるものと考えら れる¹⁾.

これまで、高炉スラグ微粉末・フライアッシュ・シリカ フューム、あるいはこれらをプレミックスしたセメント などが塩害対策として用いられてきた²⁾. このような材料 を取り扱う場合、サイロなどの貯蔵設備が必要となる. 取 り扱うコンクリートの種類が多い生コン工場では、専用 のサイロを準備できる可能性もあるが、限られたコンク リート種類を取り扱うプレキャストコンクリート製品工 場などでは、設備に余裕がない場合が多い. このため、こ れらの混合セメントを導入することが難しく、かぶりを 大きくする、防錆処理を施した鋼材を使用する、あるいは コンクリート表面を被覆するなどの塩害対策²⁾を講じて いることが少なくない. そこで本研究では、貯蔵設備が限られたプレキャスト コンクリート製品工場でも適用できるように、手投入可 能な程度に少量の使用で耐塩害性に効果のある鉱物質微 粉末の混和材を開発した³⁾.この混和材は、ポゾラン反応 性を有し、セメント質量置換で 20~40 kg/m³ 程度用いる ことで、コンクリートの耐塩害性だけでなく、その他の耐 久性向上にも寄与できる可能性もある.

本研究では、主としてプレキャストコンクリート製品 への適用を想定するため、開発した混和材のセメント置 換量を20kg/m³および40kg/m³と変えたコンクリート(蒸 気養生)の塩化物浸透抵抗性や各種耐久性を実験的に評 価した.さらに水銀圧入法による細孔径分布を測定し、細 孔構造について考察を加えた.本論文は、開発した耐塩害 用混和材を用いたコンクリートの耐久性に関する基本的 性質について報告するものである.

2 実験概要

2·1 使用材料

耐塩害用混和材は、SiO₂、Al₂O₃等の化学成分を含むBET 比表面積 13 m²/g 程度の鉱物質微粉末である.耐塩害用混 和材の物理的性質および化学成分を Table 1 に示す.その ほかの使用材料を Table 2 に示す.

[↑] 原稿受理 平成28年6月24日 Received June 24, 2016 ©2017 The Society of Materials Science, Japan

^{*} 宇部興産(株)技術開発研究所 〒755-8633 宇部市大字小串字沖の山, Ube Industries, Ltd., Kogushi, Okinoyama, Ube, 755-8633.

^{**} 日本興業(株)開発部 〒730-8701 さぬき市志度, Nihon Kogyo Co. Ltd., Shido, Sanuki, 769-2101.

^{***} 正 会 員 山口大学大学院 〒755-8611 宇部市常盤台, Grad. School of Yamaguchi Univ., Tokiwadai, Ube, 755-8611.

Table 1 Fundamental properties of admixture (Ad).										
Density (g/cm ³)	BET fineness (m ² /g)	SiO ₂ (%)	Al ₂ O ₃ (%)	Na2O (%)	K2O (%)	Cl ⁻ (%)				
2.36	13.3	71.2	23.3	0.27	0.27	0.029				

	Table 2 Materials.								
Cement	Ordinary Portland cement (N)								
	Density 3.16g/cm ³ , Blaine fineness 3280cm ² /g								
	Blast-furnace slag cement (BB)								
	Density 3.04g/cm ³ , Blaine fineness 3720cm ² /g								
	Sea sand (S1)								
Fine aggregate	Density 2.57g/cm ³ , Absorption 1.66%, F.M.								
	2.97								
	Crushed sand (S2)								
	Density 2.68g/cm ³ , Absorption 2.52%, F.M.								
	2.71								
Coarse aggregate	Crushed stone (G), Maximum size 20mm,								
	Density 2.70g/cm ³ , Absorption 0.65%, F.M.								
	6.77								
Chemical	High-range water-reducing agent (HW)								
	(Polyether-based)								
	Antifoaming agent (AF)								
admixture	(Polyalkylene glycol derivative)								
	Air entraining agent (AE)								
	(Alkyl ether-based)								

2・2 コンクリートの配合

コンクリート配合およびフレッシュ性状を Table 3 に示 す. 基準とするセメントは, 普通ポルトランドセメントお よび高炉セメント B 種とした. 耐塩害用混和材を使用し た配合では, セメント質量に対して混和材を 20 kg/m³(約 5%)および40 kg/m³(約10%)置換した.水結合材比(W/B) は全配合で 40%一定とした. 細骨材には海砂(S1)と砕砂

(S2)を混合して使用しており,海砂と砕砂の容積比率を 4:6とした.なお,単位粗骨材量は全配合一定とした. フレッシュ性状は,高性能減水剤および空気量調整剤を 用いてスランプ9±2.5cm,空気量2.0%以下に調整した. プレキャストコンクリート製品は,耐凍害性を考慮する 場合を除いて,美観性から表面気泡を減少させるために 空気を連行させないことが多いため、空気量を2%以下とした.ただし、凍結融解試験を実施する供試体については、AE剤を用いて空気量を4.5±1.5%に調整した.

2・3 コンクリートの練混ぜ

コンクリートの練混ぜには,強制2軸練りミキサ (容量55L)を使用した.練混ぜ方法は,細骨材,セ メント,混和材および水(混和剤含む)をミキサに投 入し30秒間混合した後,粗骨材を投入し120秒間混合 することとした.

2·4 養生方法

コンクリート供試体の養生は蒸気養生とし,前置を 20 ℃で4時間とし,昇温速度10 ℃/h で最高温度60 ℃ まで上げた後3時間保持し,降温速度10 ℃/h で常温とし た.蒸気養生終了後は,材齢1日で脱型し,試験材齢まで 温度20±2℃,相対湿度60±5%の環境で気中養生した.

2・5 試験項目および方法

(1) 圧縮強度試験

JIS A 1108「コンクリートの圧縮強度試験方法」に準拠 して圧縮強度試験を行った. 各試験においてシリンダー 供試体(φ10×20cm)3本を用い,その平均値を圧縮強度 として評価した.

(2) 電気泳動試験

JSCE-G571「電気泳動によるコンクリート中の塩化物イ オンの実効拡散係数試験方法 (案)」⁴⁾に準拠して電気泳動 試験を行った. 材齢 28 日から試験を開始した.

(3) 長さ変化試験

JIS A 1129-2「モルタル及びコンクリートの長さ変化測 定方法 第2部:コンタクトゲージ方法」に準拠して長さ 変化試験を行った.10×10×40cmの角柱供試体を用いて, 基長を25cmとし,材齢1日から試験を開始した.

(4) 凍結融解試験

JISA1148「コンクリートの凍結融解試験方法(A法)」 に準拠して凍結融解試験を行った. 10×10×40cmの角柱 供試体を用いて,材齢14日から試験を開始した.

(5) 促進中性化試験

促進中性化試験では、凍結融解試験同様に 10×10× 40cm の角柱供試体を用いて、材齢 14 日から試験を開始 した.JISA 1153「コンクリートの促進中性化試験方法」 に準拠し、温度 20±2℃,相対湿度 60±5%,二酸化炭素

Table 5 Wixture proportions and resh properties.															
		Unit weight (kg/m ³)					Chemical admixture (B×%)			Fresh properties					
Mix. ID	W/B		C Ad					Non AE		AE		Non AE		AE	
	(%)	W		S 1	S2	G		1131/	٨E	Slump	Air	Slump	Air		
								пพ	Аг	пw	AL	(cm)	(%)	(cm)	(%)
Ν	40	168	420	0	298	466	1050	0.55	0	0.55	0.003	10.0	1.4	10.0	5.5
N-20kg			400	20	296	463		0.60	0.010	0.60	0.003	9.5	1.7	8.0	5.2
N-40kg			380	40	294	459		0.65	0.010	0.65	0.006	9.0	1.8	10.0	5.8
BB			420	0	293	458		0.55	0	0.55	0.003	10.0	1.2	10.0	5.2
BB-20kg			400	20	291	455		0.60	0.010	0.60	0.007	10.0	1.7	8.0	5.2
BB-40kg			380	40	289	452		0.65	0.010	0.65	0.009	9.5	1.7	10.0	6.0

Table 3 Mixture proportions and fresh properties.

濃度 5±0.2%の環境で試験を行った.また, JIS A 1152「コ ンクリートの中性化深さの測定方法」に準拠して中性化 深さを測定した.

(6) 硫酸塩溶液浸せき試験

JIS 原案「コンクリートの溶液浸せきによる耐薬品性試験方法(案)」に準拠して硫酸塩溶液浸せき試験を行った. この試験でも 10×10×40cm の角柱供試体を用い,材齢 14 日から試験を開始した.浸せき液には,硫酸ナトリウ ム 10%溶液および比較用として上水道水を用い,測定項 目は,長さ変化率および質量変化率とした.

(7) 細孔径分布の測定

細孔径分布の測定は、各配合のコンクリートを材齢 56 日で 2.5~5.0mm に破砕し、アセトン浸せきと D-dry によ

り水和停止させた試料を用いて,水銀圧入式ポロシメー タによって実施した.

3 結果と考察

3·1 圧縮強度

混和材置換量と材齢 14 日および 28 日における圧縮強 度の関係を Fig.1 に示す.本研究の試験範囲内(置換量 0 ~40kg/m³)では、ベースとなるセメントの種類に関わら ず、各材齢ともに混和材の置換量が多いほど圧縮強度は 高くなった.この混和材は、13 m²/g 以上の BET 比表面積 を有するため、混和材のポゾラン反応に加え、マイクロフ ィラー効果等により圧縮強度が増加したものと考えられ る⁵⁾.なお、材齢 14 日から 28 日の間の強度の増進は比較 的小さいが、これは蒸気養生後に気中養生を行ったため と考えられる.

3・2 塩化物イオン実効拡散係数

混和材置換量と塩化物イオン実効拡散係数の関係を Fig.2 に示す. ベースセメントの種類に関わらず混和材の 置換量が多いほど実効拡散係数は小さくなった. これは, マイクロフィラー効果やポゾラン反応等による硬化体の 緻密化が一因と考えられる. 同一混和材置換量では, BB ベースの方が N ベースよりも実効拡散係数は小さいが, 混和材の使用による実効拡散係数の低減効果は N ベース の方が BB ベースよりも大きく, 40kg/m³ 置換した場合の セメント種類による実効拡散係数の差異は小さくなった.

3·3 乾燥収縮

乾燥期間 182 日までの乾燥収縮および質量変化率の経時変化を Fig.3 および Fig.4 に示す. ベースセメントの種類に関わらず, 混和材の置換量が多いほど乾燥収縮は小さくなり, 40 kg/m³置換した場合は, 無置換に比べて 200×10⁶ 程度小さくなった. 質量変化率についても同様に,

Fig.8 Length changes after 10 mass% Na₂SO₄ immersion.

混和材を置換した場合は,無置換に比べて質量変化率が 小さくなる傾向がみられた.これも前記同様に,混和材に より硬化体が緻密化したことが一因と考えられる.

3•4 凍結融解抵抗性

凍結融解試験における相対動弾性係数および質量変化 率の経時変化を Fig.5 および Fig.6 に示す. ベースセメン トの種類に関わらず, 混和材無置換の場合は, 相対動弾性 係数の低下がみられるのに対し, 混和材を置換した場合 は, 相対動弾性係数の低下がみられなかった. 質量変化率 に関しては, BB の混和材無置換の場合は質量減少が大き くなったが, 混和材を用いたものでは質量減少はほとん どみられなかった. なお, いずれの配合も試験開始初期は, 質量が増加している. これは, 凍結融解試験開始までは供 試体を気中養生しているため乾燥状態にあったものが, 試験開始後に水中浸せきの状態となり, 吸水したことが 原因である.

N-40kg

BB-40kg Fig.10 Concrete immersed in Na₂SO₄ (10 % by mass).

3.5 促進中性化

促進中性化期間 365 日までの中性化深さを Fig.7 に示 す. セメントが N ベースの場合は, 混和材使用の有無に 関わらず中性化深さに差異はほとんどみられなかった. BB ベースでは, 混和材を置換した場合は, 中性化深さが 若干大きくなる傾向がみられた.

一般にコンクリート中の細孔溶液の pH は,水酸化カ ルシウムによって保持されると考えられている.この混 和材を使用した場合には,ポゾラン反応による C-S-H の 生成やマイクロフィラー効果による緻密化と,水酸化カ ルシウムを消費することによる pH 保持機能の低下とい う,相反する効果のバランスにより中性化速度は異なる ものと考えられる.このことから,BB ベースでは,水酸 化カルシウムの減少の影響が大きくなったものと推察 される.

3•6 耐硫酸塩性

硫酸ナトリウム 10%溶液に 365 日まで浸せきした場 合の長さ変化率および質量変化率を Fig.8 に,比較用と して上水道水に浸せきした場合の長さ変化率および質 量変化率を Fig.9 に示す.また,Fig.10 に硫酸ナトリウ ム 10%溶液浸せき終了時の写真を示す.浸せき液の種 類および配合の種類に関わらず,浸せき開始後およそ 14日で長さ変化率は 150~250×10⁶程度,質量変化率は 0.7~1.5%程度となった.これは,浸せき開始までは供 試体を気中養生しているため乾燥状態にあったものが, 試験開始後に水中浸せきの状態となり,吸水したこと が原因と考えられる.しかし,それ以降の浸せき期間に おいて,浸せき液の種類および配合の種類による長さ

Fig.12 Total volume of pores (diameter $\leq 0.01 \,\mu$ m).

変化率および質量変化率の明確な差異はみられなかっ た. なお,供試体の外観を Fig.10 から比較すると,Nの 混和材無置換の場合は,供試体の端部に若干のスケー リングがみられたが,それ以外の供試体ではスケーリ ングは認められなかった.なお,普通ポルトランドセメ ントを用いた混和材無置換の供試体(N)について,ス ケーリングが認められるにも関わらず,他の供試体と の長さ変化率および質量変化率の差異が認められない のは,スケーリングが供試体端部のごく表層のみに発 生していることと,スケーリングが微量であることに よると考えられる.これらの結果から,混和材を置換し た場合は,硫酸塩による劣化を抑制できる可能性があ る.

3·7 細孔径分布

各配合の累積細孔容積を Fig.11 に示す. 混和材置換と 無置換を比較すると,各ベースセメントともに総細孔容

Fig.14 Relation between curved path length and Total volume of pores (diameter $\leq 0.01 \, \mu$ m).

Fig.15 Relation between curved path length and effective diffusion coefficient of chloride ion.

積に関しては明確な傾向がみられないものの,混和材置換の場合,0.01 μ m 付近の小さな径の細孔容積が増加している.各配合の0.01 μ m 以下の細孔容積を Fig.12 に示す. 混和材の置換量に応じて0.01 μ m 以下の細孔容積が増加していることがわかる.なお既往の研究のによると、この径に近い0.006 μ m 以下の微細な空隙が多いほど塩化物イオンの拡散が抑制されることが報告されている.

小さい径の細孔容積の増加により,屈曲度や収斂度が 変化していることが考えられる⁷⁾.このため,本研究で は,既往の研究⁶⁾を参考に屈曲経路長を求め,細孔の屈 曲度を評価した.屈曲経路長は,空隙が1本の円筒であ ると仮定して計算された単位体積あたりの屈曲経路の 長さであり,式(1)で表される.細孔径分布の測定結果か ら,空隙表面積については,径ごとに円筒を仮定して算 出した.空隙量については、総細孔容積を用いた.

$$L_e = \frac{S^2}{4\pi\varepsilon} \tag{1}$$

ここに, L_e : 屈曲経路長 (cm/cm³), S : 空隙表面積 (cm²/cm³), ε : 空隙量 (cm³/cm³)を表す.

混和材置換量と式(1)により算出した各配合の屈曲経路長の関係をFig.13に示す.また,屈曲経路長と0.01 μm以下の細孔容積の関係をFig.14に示す.これらの結果より,混和材の置換量が多いほど,屈曲経路長は長くなり,屈曲経路長と0.01 μm以下の細孔容積には概ね線形の相関が認められた.

ここで,屈曲経路長と塩化物イオン実効拡散係数の関係をFig.15に示す.屈曲経路長が長いほど塩化物イオン 実効拡散係数は小さくなる傾向がみられる.細孔の屈曲 度が大きくなるほど物質移動速度が小さくなるため,塩 化物イオン実効拡散係数が小さくなったことが裏付け られる.さらにFig.15より,BBベースに比べNベース の傾きが大きく,すなわち混和材置換量が屈曲経路長に 及ぼす影響が大きいことがわかる.このことが,Fig.2で 示した Nベースの混和材使用による塩化物イオン実効 拡散係数の低減効果が大きいことを裏付けている.

なお、硬化体の塩化物イオン浸透抵抗性は、上述の屈 曲度などの細孔構造に影響を受ける.一方で、セメント 硬化体内部に存在する塩素は、細孔溶液中に存在して拡 散に強く関わる自由塩化物イオンと固定化塩素に分類 される.さらに、固定化塩素については、フリーデル氏 塩として水和物中に取り込まれるもの、および空隙壁面 に吸着するものに分類される.このため、固定化や吸着 の影響も無視できない⁸⁾⁻¹¹⁾.測定原理上、実効拡散係数 には塩素の固定化や吸着の影響は含まれておらず、これ らの影響については、今後さらに詳細に検討すべき課題 である.

4 結 言

本研究では,開発した耐塩害用混和材をセメント(N・ BB)の一部に内割置換したコンクリートの耐久性に関 する基本的性質を調べた.本研究の範囲内で得られた 結論を以下に記す.

- (1) 混和材置換量が大きいほど塩化物イオン実効拡散 係数は小さくなった.同一混和材置換量で比較する と BB ベースのほうが N ベースよりも実効拡散係 数の絶対値は小さいが,混和材使用による実効拡散 係数の低減効果は,N ベースの方が顕著であった.
- (2) 混和材量 0~40kg/m³では、置換量が多いほど圧縮 強度は高くなった。
- (3) 混和材の置換量が多いほど乾燥収縮は小さくなり、
 40kg/m³置換した場合は、無置換に比べて 200×10⁻⁶
 程度小さくなった。
- (4) 凍結融解試験において, 混和材をセメントの一部に 置換しても相対動弾性係数の低下はみられなかっ

たことから,凍結融解抵抗性に及ぼす混和材の影響 は小さいことが確認された.

- (5) Nベースでは, 混和材の使用の有無に関わらず中性 化深さに差はみられなかったが, BBベースでは, 混和材を置換することで, 促進中性化深さが若干大 きくなる傾向がみられた.
- (6) 硫酸ナトリウム 10%溶液に 365 日まで浸せきした コンクリートの長さ変化率では、混和材の使用の有 無による差異は認められなかったが、Nの無置換の 場合にスケーリングが若干認められたことから、混 和材使用の場合、硫酸塩による劣化の進行を抑制で きる可能性がある。
- (7) 開発した混和材を用いたコンクリートは、0.01 µm 程度以下の小径の細孔容積が増加し,推定した屈曲 経路長も大きくなり,硬化体内部での物質移動速度 の低下に寄与できる.

参考文献

- I.Iwaki, "Aiming to extend the long life of the concrete structures", 305th Concrete seminar, Japan Cement Association, pp.29-37 (2015).
- Japan Society of Civil Engineers, "Standard specifications for concrete structures (Materials and construction)", pp.267-270 (2012).
- T.Ishida, K.Yamato, N.Yamaji and S.Tsugo, "Physical properties of concrete using admixture for chloride attack", Proceedings of the Japan Concrete Institute, Vol.37, No.1, pp.733-738 (2015).
- Japan Society of Civil Engineers, "Standard specifications for concrete structures (Test Methods and Specifications)", pp.363-369 (2013).
- 5) Y.Kasai, E.Sakai, "Admixture for concrete", pp.61-76 (2007) Gijyutu-Shoin.
- M.Kikuchi, Y.Suda and T.Saeki, "Evalueation for ion transport in hardened cementitious paste by oxygen diffusion and chloride diffusion", Cement Science and Concrete Technology, No.64, pp.346-353 (2010).
- T.Sugiyama, S.Shimizu, W.Ritthichauy and Y.Tsuji, "Determination of pore structure characteristic of mortar using a steady-state migration test", JSCE Journal of Materials, Concrete Structures and Pavements, No.767, V-64, pp.227-238 (2004).
- N.Yoshida, E.Sakai, M.Mashimo and M.Daimon, "Fixation of chloride ion by the various type of cement in the marine environment", Cement Science and Concrete Technology, No.56, pp.400-405 (2002).
- 9) K.Tabara, K.Miyaguchi, M.Morioka and K.Takewaka, "Hydration behavior and fixation ability of chloride ion by a variety of kinds of hardened cements added with CaO·2Al₂O₃", Cement Science and Concrete Technology, No.65, pp.427-434 (2011).
- 10) K.Mashima, S.Kawahara, M.Kikuchi and T.Saeki, "Chloride ion permeability in hardened cementitious materials using ground granulated blast furnace slag and silica fume", Cement Science and Concrete Technology, Vol.66, pp.452-458 (2012).
- T.Ishida, S.Miyahara and T.Maruya "Cl binding capacity of mortars made with various portland cement and admixtures", Doboku Gakkai Ronbunshuu E, Vol.63, No.1, pp.14-26 (2007).