Calreticulin は膵癌幹細胞様細胞に高発現している。

氏名 松隈 聰

所属 山口大学大学院 医学系研究科

博士後期課程

応用分子生命科学系専攻

平成29年1月

目次

1.	要旨	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
2.	背景	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
3.	目的	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
4.	方法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
5.	結果	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
6.	考察	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
7.	結語	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
8.	謝辞	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
9.	参考	文	献	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
10.	図表	•	•	•		•	• •	•	•		•	• •		•	•					•				•	•	•	• 17

1.要旨

【背景】膵癌は、化学療法や放射線治療に抵抗性を示し、根治切除後の再発率も高い高悪性度腫瘍である。最近の研究により、癌組織中に少数含まれる癌幹細胞様細胞(cancer stem-like cells: CSLCs)が、治療抵抗性や再発、転移に関わることが示されており、膵癌の根治のためには、CSLCs に対する治療の開発が急務である。

【目的と方法】膵癌 CSLCs(Pancreatic CSLCs: P-CSLCs)のバイオマーカーおよび治療標的を同定する ことを目的とした。膵癌細胞株から誘導した P-CSLCs 豊富な細胞集団と親細胞のタンパク発現を 2 次元電気泳動法で比較し、P-CSLCs に高発現したスポットを切り出し、高発現タンパクを質量分析 法で同定した。同タンパクの P-CSLCs での発現をフローサイトメトリーで解析し、さらに治癒切除 した膵癌症例の切除標本 (n=80)を用いて、免疫染色による同タンパクの発現と予後について Cox 比例ハザード解析を用いて検討した。

【結果】P-CSLCsに高発現しているタンパクとして、Calreticulin (CRT)を同定した。フローサイトメ トリーでは、CRT は主に P-CSLCs の細胞膜上に発現し、P-CSLCs のマーカーの一つである CD44v9 の発現レベルとは独立していた。さらに、CRT^{high}/CD44v9^{low}な細胞集団の ATP binding cassette の活性 は、CRT^{low}/CD44v9^{high}な細胞集団と比較し、有意に高かった。臨床検体の解析では、CRT 発現は、年 齢、術後補助療法と共に独立した予後規定因子であった。

【考察】CRT は P-CSLCs に高発現し、膵癌患者の予後悪化と関連している。CRT を P-CSLCs の表面 マーカーとして用いることにより、複合的な表面マーカーを用いて検索していた P-CSLCs を、単一 の表面マーカーで検索することが可能になった。さらに、CRT 自体が P-CSLCs に対する治療の標的 となりえる。

2. 背景

膵癌は、本邦の部位別がん死亡率第4位に位置し、罹患後の死亡率も高い高悪性度腫瘍である(国 立がん研究センターがん対策情報センター、2014年)。多くの患者が診断時に局所進行あるいは遠隔 転移を伴っており、切除可能膵癌は15-20%とされる¹。さらに、化学療法や放射線治療に対し抵抗 性を示し、根治切除後の高い再発率を特徴とする。 最近の研究で、癌の治療抵抗性および再発、転移には癌組織に少数含まれる癌幹細胞様細胞 cancer stem-like cells (CSLCs)が関与しているということが分かってきた²⁴。膵癌の治療成績向上には、 CSLCs の病態の解明とこれを標的とした治療の開発が極めて重要である。

膵癌幹細胞様細胞 pancreatic CSLCs(P-CSLCs)は、CD24、CD44、epithelial-specific antigen (ESA) といった表面抗原を表出していることが知られている⁵。また、CD133⁶や aldehyde dehydrogenase 1 (ALDH1)⁷、c-Met⁸、doublecortin-like kinase 1 (DCLK1)⁹ も P-CSLCs のマーカーとされている。さら に、最近の研究では、消化器癌の CSLCs に、CD44 の variant isoform である CD44v9 が高く発現して いるといわれている。CD44v9 はグルタチオンの産生を亢進させ、活性酸素腫 reactive oxygen species (ROS) に対する抵抗性を示すことで、癌細胞の生存及び治療抵抗性に関与している¹⁰。

教室では、膵癌細胞株を無血清培地とラミニンコーティングしたシャーレで培養することにより、 P-CSLCs が豊富に含まれる細胞集団を誘導する方法を確立し、報告した¹¹。誘導した細胞集団は、親 細胞と比較し、CD24、CD44、ESA と共に CD44v9 を高く発現していた。

上述したように P-CSLCs に高発現した分子はいくつか発見されているものの、いまだ臨床応用に 至ったものはない。CD44v9 のような P-CSLCs 特異的分子^{10,12}をさらに多く発見し、その機能を解 析することは P-CSLCs に対する治療を開発するために急務であると思われる。

本研究で同定した Calreticulin (CRT) は 46–65-kDa の小胞体に局在するといわれる分子シャペロン で、Ca²⁺ ホメオスターシスや HLA class I の組み立てなど、多様な機能を有している。しかし、細胞 が mitoxantrone や oxaliplatin などの抗癌剤に暴露されると、CRT は小胞体から細胞膜表面に移動し、 マクロファージに認識されることで抗腫瘍免疫に寄与するとされる^{13,14}。

一方で、膵癌組織での CRT 高発現が予後悪化に関与しているという報告¹⁵もあり、癌における CRT の役割はいまだ議論の余地がある領域である。

3. 目的

本研究では、教室で確立した P-CSLCs 誘導法と Proteomics の手法を用いて、P-CSLCs に高発現した分子を同定し、同分子の病態生理学的意義を検討することを目的とした。

4. 方法

4-1. 細胞株と培養方法

教室で樹立したヒト膵癌細胞株 YPK2 および YPK5¹⁶ は、不活化ウシ胎児血清(Life Technologies, Tokyo, Japan)を 10%添加した DMEM-F12 培地 (Sigma-Aldrich Japan, Tokyo, Japan) 内で、37 °C、5% CO₂インキュベーター内で維持した。

4-2. P-CSLCs の誘導

細胞を LIF (Merck Millipore, Darmstadt, Germany)、NSF-1 (Lonza, Tokyo, Japan)、N-acetyl-L-cysteine (NAC; Sigma-Aldrich) を含む無血清培地内で1週間培養して浮遊細胞塊 sphere を誘導した。続いて、 この sphere をラミニンコーティングしたシャーレに移し、B27 supplement (Life Technologies)、EGF (Sigma-Aldrich Japan)、bFGF (Merck Millipore)を含む無血清培地内で培養した。死細胞の除去と栄養 成分の補充を目的として、1週間毎に培地を半分交換した。細胞は徐々に底面に接着し、1-2 か月か けて緩徐に増殖した。これらの細胞を YPK2-Lm、YPK5-Lm と命名した。これらの細胞を用いて、 Proteomics での P-CSLCs 特異分子の同定を行った。

4-3. 2 次元電気泳動

死細胞を Dead Cell Removal MicroBeads (Miltenyi Biotec, Gladbach, Germany)で標識し、MidiMACS™ Separator (Miltenyi Biotec) により除去した。続いて CD44v9 rat IgG (clone RV3, Cosmo bio, Tokyo, Japan)、 ビオチン結合 anti-rat mouse IgG (eBioscience, San Diego, CA, USA) 、microbeads 結合 anti-biotin mouse IgG (Miltenyi Biotec)と MidiMACS™ Separator を用いて、CD44v9 を発現した細胞を分離した。

YPK 親細胞及び YPK-Lm 細胞中の CD44v9 陽性細胞に終濃度 0.2%となるように pharmalyte を加え た後、タンパク質溶解液(5M Urea, 2M Thiourea, 2% CHAPS, 2% SB3-10, 1% DTT)を加えて、総量を 0.34ml に調整した。膨潤用トレイに試料溶液を入れ、18 cm Immobiline Drystrip(pH 3–10, GE Healthcare, Tokyo, Japan)を溶液の上にかぶせ一晩静置した。膨潤した Immobiline Drystrip を Multiphor II Electrophoresis Unit にセットし、CoolPhoreStar IPG-IEF Type-P (Anatech, Tokyo, Japan)を用いて、等電 点電気泳動(500 V、1 分間、3,500 V、7.5 時間)を行った。平衡化バッファーA 液(50 mM Tris-HCl (pH 6.8), 6 M urea, 32% glycerol, 10% SDS, 0.25% DTT)および平衡化バッファーB 液(50 mM Tris-HCl (pH 6.8), 6 M urea, 32% glycerol, 10% SDS, 4.5% ヨードアセトアミド, 0.125% ブロモフェノールブル ー)による平衡化の後、Immobiline Drystripをアクリルアミドゲル(9–18% acrylamide; Towa Environment Science, Osaka, Japan)に載せ ANDERSON ISO-DALT Multiple Electrophoresis System (Hoefer, Holliston, MA, USA)を使用して、80 V で16時間 SDS ポリアクリルアミドゲル電気泳動を 行った。泳動後のゲルは、全タンパク質検出用蛍光染色剤(SYPRO Ruby protein gel stain (S21900; Thermo Fisher Scientific, Waltham, MA, USA))を用いて染色し、蛍光スキャナ(Molecular Imager FX (Bio-Rad, Tokyo, Japan))を用いてイメージを保存し、ImageMaster 2D Platinum software (GE Healthcare) を用いて、数値化解析を行った。それぞれの親細胞と比較し、YPK2-Lm および YPK5-Lm で共通し て、高発現したスポットを切り出した。

4-4. タンパク質同定

切り出したゲル片に100 mM 炭酸水素アンモニウムを加え20 分振盪し、アセトニトリルで脱水し、 真空遠心機で乾燥させた。50 mM 炭酸水素アンモニウム、5 mM 塩化カルシウム、0.01 µg/µl トリプ シンを加えて、37℃で16 時間静置した。5% TFA で反応を停止し、5%TFA、50%アセトニトリルを 加えて20 分振盪し、ペプチドを抽出した。同様の操作を3 回繰り返した後、ペプチド抽出液が10µl になるまで真空遠心機で濃縮させた。サンプルを ZipTip C18 pipette tips (ZTC18S960, Merck Millipore) に吸着させ、50%アセトニトリル、0.1%TFA でペプチドを抽出した。サンプル溶液1µl を同量のマト リクス溶液 ((0.3 g/l alpha-cyano-4-hydroxycinnamic acid, 33% acetone, 66% ethanol) と混合し、target plate (MTP Anchorchip 600/384, Bruker Daltonics, Bremen, Germany)に滴下し、質量分析器 (Ultraflex TOF/TOF; Bruker Daltonics) で解析した。得られた MS/MS スペクトラは NCBInr のデータベースで Mascot database search engine (Matrix Science, London, UK) を用いて検索を行った。

4-5. フローサイトメトリー

YPK2-Lm および YPK5-Lm とそれぞれの親細胞における CRT、CD44v9、CD47 の発現解析はフロ

ーサイトメトリーで行った。細胞を 50ml チューブに集め、2%不活化ウシ胎児血清含有 PBS で洗浄 した後、2×10⁵ cells/100 μl に濃度調整した。

(1) 細胞膜表面の染色

細胞を1次抗体及び対応する isotype コントロール抗体と20分間、4℃でインキュベートした。 以下の1次抗体を用いた。

①rat anti-CD44v9 (clone RV3, Cosmo bio, Tokyo, Japan)

②mouse Alexa Fluor 488 標識 anti-CRT (clone #326203, R&D systems, Minneapolis, MN, USA)

③ヒト化 Vioblue 標識 anti-CD47 (#130-101-359, Miltenyi Biotec, Gladbach, Germany)

CD44v9 の発現解析は、さらに 2 次抗体(allophycocyanin 標識 donkey anti-rat IgG;(eBioscience)) を用いた。

(2) 細胞内 CRT の染色

細胞膜上の CD44v9 を染色した後、細胞を Fix/Permeabilization buffer (eBioscience)内で 20 分間 インキュベートした後、 PBS で洗浄。続いて、permeabilization buffer (eBioscience) で 10 分間イ ンキュベートした。Blocking buffer (2% normal rat serum in permeabilization buffer)でブロッキング を行った後、Alexa Fluor 488 結合 anti-CRT 抗体 (clone 326203, R&D systems) あるいは対応する isotype control 抗体と暗室内で 20 分間インキュベートした。Permeabilization buffer と、2% FBS 含 有 PBS で洗浄した後、MACSQuant analyzer (Miltenyi Biotec) で解析を行った。

フローサイトメトリーの結果は必要に応じて、Relative fluorescence intensity (RFI)

= [mean fluorescence intensity (MFI) - MFI of corresponding isotype control]/MFI of corresponding isotype control¹⁷で解析した。

4-6. 細胞分離

YPK-Lm 細胞膜表面の CRT, CD44v9 を染色した後、BD FACSAriaII (BD Biosciences, San Jose, CA, USA)を用いて、CRT^{high}/CD44v9^{low}、 CRT^{low}/CD44v9^{high}、CRT^{high}/CD44v9^{high} の3つの細胞集団を分離し、続く ATP 結合カセット輸送体の解析に用いた。

4-7. ATP 結合カセット輸送体(ABC トランスポーター)の解析

ABC トランスポーターの活性上昇は、薬剤耐性癌細胞の特徴¹⁸であり、マウスの血液幹細胞にお ける side population (SP) (ABC トランスポーターの活性が高い細胞集団) は Hoechst 33342 の排出能 がある¹⁹といわれている。ABC トランスポーターの活性を解析するため、YPK2-Lm、YPL5-Lm とそ れぞれの親細胞を 5% FBS 添加 DMEM 内で、5 µg/ml の Hoechst 33342 (Sigma-Aldrich Japan) と 30 min 分間インキュベートした。洗浄した後、BD LSRFortessa X-20 cell analyzer (BD Biosciences)で解析した。 Hoechst 33342 は 375-nm trigon violet laser で励起し、蛍光は 450/20 (Hoechst 33342-Blue) と 670 LP (Hoechst 33342-Red) フィルターで検出した。

4-8. 免疫組織化学染色

(1)対象症例

山口大学医学部附属病院(2001年6月—2013年6月)および大阪大学医学部附属病院(2007 年3月—2012年10月)で、D2以上のリンパ節郭清²⁰を伴う肉眼的根治切除が施行された浸潤性 膵管癌症例を対象とした。周術期死亡、他臓器癌合併、漿液性嚢胞性腫瘍、粘液性嚢胞性腫瘍、 IPMN 由来浸潤癌、病理学的断端陽性、術前療法により癌細胞が消失していた症例は除外した。本 研究は、山口大学医学部附属病院、大阪大学医学部附属病院の倫理委員会から承認を受けた(承認 番号 H27-007)。

(2)免疫組織化学染色

薄切したパラフィン包埋標本は、脱パラフィン化した後、10 mM Target Retrieval Solution, pH 6.0 (Dako, Tokyo, Japan) 内で抗原賦活した。過酸化水素水含有メタノールで内因性ペロキシダー ゼ活性をブロックした(CRT は 3% H₂O₂含有メタノールで 10 分間、CD44v9 は 0.3% H₂O₂含有 メタノールで 5 分間)。Protein block serum-free (Dako)を用いて、非特異反応をブロックし、洗浄 した後、1 次抗体、2 次抗体との反応を行った。以下の抗体および条件を用いた。

 1 次抗体: mouse anti-CRT monoclonal antibody (clone FMC75, Abcam, Cambridge, MA, USA):希釈濃度 1:6000、室温 1 時間
2 次抗体: House raddish peroxidase (HRP)結合 anti-mouse IgG 抗体 (Dako) : 室温 30 分間

② 1 次抗体: rat anti- CD44v9 monoclonal antibody (clone RV3, Cosmo bio)

:希釈濃度 1:200,4 °C, overnight

2 次抗体: HRP 結合 anti-rat IgG 抗体 (Nichirei Biosciences, Tokyo, Japan).

PBS で洗浄後、3,3'-diaminobenzidine tetrahydrochloride (DAB; Dako) と3分間インキュベーションし、発色させた後、ヘマトキシリンで対比染色した。

標本は、病理医により判定され、膵癌組織部分の染色程度を既報の方法²¹を変更して、下記の如くスコア化した。

染色強度点数: a) absent / weak:1 点、b) moderate: 2 点、c) strong: 3 点

IHC スコア:染色強度点数×陽性細胞(%)(=1×absent/weak 細胞(%)+2×moderate 細胞(%) +3×strong 細胞(%))

(3) 蛍光免疫染色

citrate buffer (10 mM, pH 6.0) で 95 ℃ 10 分間抗原賦活化した後、5% ヤギ血清と 0.3% Triton X-100 を含む PBS で 60 分間ブロッキングを行った。続いて、CRT と CD44v9 の二重染色のため、 次の手順で抗体とインキュベーションした。Anti-CRT antibody (FMC75, Abcam) :希釈濃度 1:200、 1 時間、Alexa Fluor 488 結合 anti-mouse IgG (#4408, Cell Signaling Technology, Denver, MA, USA) : 希釈濃度 1:1,000、1.5 時間、anti-CD44v9 rat antibody (RV3, Cosmo bio) : 希釈濃度 1:100、1 時間、 Alexa Fluor 555 結合 anti-rat IgG (#4417, Cell Signaling Technology) : 希釈濃度 1:1,000、1.5 時間。洗 净の後、DAPI 含有 ProLong Gold Antifade Reagent (#8961; Cell Signaling Technology)を用いて封入 した。

4-9. 統計学的検討

データは平均値 ± 標準偏差で表示し、Student's t-test あるいは Chi-squared 検定を行った。無再発 生存率および全生存率は Kaplan-Meier 法で算出し、一般化 Wilcoxon test で検定を行った。全生存率 に対する予後因子の検討は Cox 比例ハザード解析を用いた。検定には Statflex ver. 6 (Artec, Osaka, Japan)を用い、p 値 0.05 未満を有意とした。

5. 結果

5-1. Calreticulin の同定

親細胞と比較し、YPK2-Lm 細胞で 4.43 倍、YPK5-Lm 細胞で 5.80 倍、高発現しているスポット (Fig. 1A–D, 矢印) を質量分析器で解析し、Calreticulin (CRT) (NCBI accession No. gi|4757900) (Fig. 1E) を同定した。

5-2. YPK-Lm における CRT、CD44v9 の発現

フローサイトメトリーの解析では、親細胞と比較し、YPK2-Lm 細胞と YPK5-Lm 細胞の膜表面に CRT と CD44v9 が高発現していた (Fig. 2A, B)。さらに、YPK-Lm 細胞は CRT^{high}/CD44v9^{low} と CRT^{low}/CD44v9^{high} の2つの集団に分離していた(Fig. 2C, D)。一方、細胞内の CRT 発現量は YPK-Lm 細胞と親細胞の間で差はなかった (Fig. 2E, F)。

5-3.YPK-Lm における CD47 の発現

CD47 は CRT による "eat me signal" に拮抗する "anti-phagocytic signal" として知られている ²²ため、同分子の発現もフローサイトメトリーで解析した。CD47 は親細胞と YPK-Lm といずれにも発現していたが、発現強度は同程度(Fig. 3A)で、既報 ²²のような CRT 発現と CD47 発現の直線的な関係は認めなかった(Fig. 3B)。

5-4. YPK-Lm 細胞における ABC トランスポーター活性

YPK2 親細胞中の side population (SP)分画の割合は、0.338%であったのに対し、YPK2-Lm 細胞中 では、34.0%であった (Fig. 2G)。同様に、YPK5-Lm 細胞中の SP 分画の割合は 12.9%で親細胞中の SP(1.72%)と比較し、高値であった (Fig. 2H)。さらに、YPK-Lm の CRT^{high}/CD44v9^{low} 集団中の SP 分 画(Fig. 4B, F) の占める割合は、CRT^{low}/CD44v9^{high} (Fig. 4C, G) や CRT^{high}/CD44v9^{high} (Fig. 4D, H)の SP 分画の割合より、著明に高くなっていた。これらの結果は、P-CSLCs、特に CRT^{high}/CD44v9^{low} と いう subpopulation の薬剤耐性能が高くなっていることを意味している。

5-5. 臨床検体における CRT および CD44v9 の発現と予後の相関

山口大学医学部附属病院 (n=77) および大阪大学医学部附属病院 (n=64) で手術が施行され、肉眼 的に治癒切除が得られた膵癌症例のうち、61 例を除外し、80 症例が今回の適格症例とした。症例選 択の手順を Fig. 5 に示す。約 1/3 の症例 (n = 26) で術前放射線化学療法が施行され、ほとんどの症 例が(n = 67) が術後補助化学療法あるいは補助免疫療法を受けていた。CRT 発現の代表例を Fig. 6A に示す。CRT は主に正常細胞および癌細胞の細胞質に発現していた。さらに正常組織では、腺房に 高く発現し、ラ氏島細胞や膵管には低発現していた。

CD44v9 発現の代表例を Fig. 6B に示す。CD44v9 は、正常細胞、癌細胞の膜表面および細胞質に発現し、正常細胞における発現は腺房、ラ氏島、膵管細胞で同程度であった。CRT および CD44v9 の IHC スコアは有意な相関が認められた。(相関係数: 0.356 [0.148–0.534], p = 0.0012)

臨床病理学的因子と全生存率の関係を明らかにするため、Cox 比例ハザード解析を行った。共変 数として、治癒切除後の予後因子として報告されている因子(腫瘍径、リンパ節転移、神経叢浸潤、 分化度)²³⁻²⁵の他、TNM 分類における T 因子、切除時の年齢、性別、腫瘍の位置、門脈浸潤、CRT および CD44v9 の IHC スコア、術前後の補助療法の有無を用い、変数選択を行ったところ、CRT の IHC スコア(p < 0.01)、年齢 (p < 0.01) および術後補助化学療法・免疫療法 (p < 0.05) が独立した予 後規定因子であった (Table 1)。

1 年以内再発の予測における CRT IHC スコアの至適カットオフ値は 150 であったので、症例を CRT 高発現群 (IHC score ≥ 150; n = 43) と CRT 低発現群 (IHC score < 150; n = 37) に分類した。同様の方 法で、CD44v9 高発現群 (IHC score ≥ 165; n = 40) および CD44v9 低発現群 (IHC score < 165; n = 40) に分類した。

臨床病理学的因子と CRT 発現の関係を Table 2 に示す。CRT 高発現群では、低発現群と比較し、 T3 以上の症例、Stage II 症例、神経叢浸潤陽性症例、CD44v9 高発現症例が有意に多く、術前化学放 射線療法を行っていない症例が多かった。CRT 高発現群は低発現群と比較し、無再発生存期間 (p = 0.0127) 、全生存期間 (p = 0.0221) ともに予後不良であった (Fig. 7)。 化学療法は CRT の発現及び細胞膜表面への表出を促すと報告されている²⁶にも関わらず、術前化 学放射線療法施行の有無で CRT の IHC スコアおよび CRT の発現部位に差はなかった。我々は術前 化学放射線療法施行から 4-7 週間後に、切除を行っているが、この期間に CRT の発現が低下してい る可能性が考えられた。

5-5. CRT と CD44v9 の共局在

CRT、CD44v9 ともに高発現であった症例で、蛍光免疫染色を行うと、CRT と CD44v9 は、一部の 細胞で共局在が見られた(Fig. 6C)。

6. 考察

本研究では、CRT が P-CSLCs に高発現し、さらに切除標本における CRT 発現が膵癌根治切除後の 生存に関与していることを示した。

CRT は ER に局在する分子シャペロンで、主に Ca²⁺ のホメオスターシスやタンパク折り畳み (folding) の質の管理に関わっている。既報や我々の研究の臨床検体において、正常膵腺房細胞に CRT が高発現していた正確な理由は不明であるが、腺房細胞は体内で有数の多量のタンパク合成を 行っている細胞で、大量の ER を蓄積しており²⁷、CRT が腺房細胞に高発現している理由と考えられ る。化学療法や放射線治療といったストレス因子は、ER 内に fold されないタンパクを蓄積させ、活 性酸素種の増加を介して、CRT を細胞表面に表出させる"unfolded protein response"と呼ばれる反応を 引き起こす²⁶。

臨床検体の免疫染色では、CRT と CD44v9 は膵癌細胞内で一部共存していた (Fig. 6C) が、フロー サイトメトリーの解析では CRT 高発現細胞と CD44v9 高発現細胞は異なる population であった。この 結果の解離には、主に 2 点の理由が考えられる。1 点目は、臨床検体と P-CSLCs を意図的に誘導した 癌細胞株では、P-CSLCs の含有率が決定的に異なるということ。もう一点は、膵癌組織において CRT 高発現とした膵癌細胞では、細胞質に CRT が高発現しており、膜性発現との区別が鏡見上困難であっ たということである。

SP という表現型が CSLCs の特徴の全てではない²⁸ものの、SP に含まれる細胞の一部は腫瘍源性

や薬剤耐性に関与していると考えられている²⁹。本検討では、CRT^{high}/CD44v9^{low} な細胞集団は、 CRT^{low}/CD44v9^{high} と比較し、はるかに多くの SP を含んでおり、CRT は CD44v9 よりも鋭敏な P-CSLCs の表面マーカーである可能性がある。

膀胱癌や悪性神経芽腫において CRT の細胞表面での発現は、癌細胞と CSLCs で変わらないとする 報告²²があり、CSLCs での細胞膜表面の CRT 発現が高いとする本研究結果とは解離があるものの、 これは癌種の違いによる可能性がある。さらに CRT はアポトーシスに向かう細胞の膜表面に表出さ れているともいわれているが、Chao らは²²細胞膜表面の CRT の有無で腫瘍源性に差はない、と報告 しており、CRT がアポトーシスに向かう細胞のみならず生細胞にも発現しており、何らかの機能を有 しているものと考えられる。

また細胞膜表面に表出された CRT は初期免疫を誘導する"eat-me" signal として知られている¹³が、 一方で我々の報告と同様に CRT 高発現が食道癌³⁰や胃癌³¹、膵癌¹⁵の予後と相関していると報告さ れている。この現象の解離には2つの可能性がある²²。第1に、CRT を表出した細胞は、anti-phagocytic signal である CD47 を同時に表出しているという可能性。我々の検討では、CRT と CD47 発現の直線 的な関係は認められなかったものの、CD47 は親細胞と YPK-Lm で同程度に表出されていた。現状で は、P-CSLCs における CD47 の役割は不明である。第2に細胞膜表面への CRT の表出は、食細胞から の 貪食を凌駕する悪性度を付与しているという可能性である。 CRT は、neuropilin-1, matrix metalloproteinase (MMP)2, MMP9, focal adhesion kinase (FAK)を upregulate することで癌細胞の浸潤能を 活性化しているという報告や³²、さらに phosphoinositide 3-kinase (PI3K)/Akt pathway を活性化して、 細胞の運動性や anoikis (足場を失ったことにより誘導される細胞死)抵抗性に関わっているという報 告³³がある。このように CRT は、癌幹細胞の様々な性質に関与していると考えられるにもかかわら ず、癌幹細胞における機能については十分に明らかになっていない。

CRT が癌細胞の膜表面に表出されると、マクロファージ上の LDL-receptor related protein 1 (LRP1)/CD91 により認識され、癌細胞は貪食される³⁴。しかし、がん微小環境に存在する腫瘍関連マクロファージ tumor-associated macrophages (TAMs) は腫瘍増殖を促進する M2 マクロファージに分化 しているとされ³⁵、CRT は適切に認識されていない可能性がある。

現状では、癌幹細胞様細胞の細胞膜表面に表出した CRT が小胞体ストレスの結果であるのか、それ

以上の機能を持っているのかは不明である。しかしながら、様々な免疫逃避機構を備える癌細胞³⁶に おいて、CRT 表出は数少ない例外的な事象と考えられ、治療の標的となりえると考えられる。

7. 結語

CRT は P-CSLCs に高発現し、膵癌根治切除後の予後と相関していた。CRT を P-CSLCs の表面マー カーとして用いることにより、現状では CD24, CD44, ESA といった複合的な表面マーカーを用いる か、非常に高額な UV レーザーを搭載したフローサイトメーターを用いなければ検索困難であった P-CSLCs を一般的なフローサイトメーターで、かつ単一の表面マーカーで検索可能になると考えられる。 さらに、CRT 陽性細胞について、さらに研究を進めることで、新たな膵癌治療が開発できる可能性が ある。

8. 謝辞

実験の直接指導を頂いた吉村清先生(国立がん研究センター)、小賀厚徳先生(分子病理学)、岡正 朗先生、永野浩昭先生、大阪大学の症例検体・診療情報を提供していただいた長岡慧先生、江口英利 先生に深謝申し上げます。

9. 参考文献

[1] Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014; 371: 1039-49.

[2] Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011; 17: 313-9.

[3] Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008; 100: 672-9.

[4] Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009; 8: 806-23.

[5] Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer research. 2007; 67: 1030-7.

[6] Hermann PC, Herrler T, Aicher A, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007; 1: 313-23.

[7] Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst. 2010; 102: 340-51.

[8] Li C, Hynes M, Dosch J, et al. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology. 2011; 141: 2218-27.

[9] Sureban SM, May R, Qu D, et al. DCLK1 regulates pluripotency and angiogenic factors via microRNAdependent mechanisms in pancreatic cancer. PLoS ONE. 2013; 8: e73940. [10] Ishimoto T, Nagano O, Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer cell. 2011; 19: 387-400.

[11] Watanabe Y, Yoshimura K, Yoshikawa K, et al. A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population. Int J Oncol. 2014; 45: 1857-66.

[12] Yoshida GJ, Saya H. Therapeutic strategies targeting cancer stem cells. Cancer Sci. 2016; 107: 5-11.

[13] Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007; 13: 54-61.

[14] Yamamura Y, Tsuchikawa T, Miyauchi K, et al. The key role of calreticulin in immunomodulation induced by chemotherapeutic agents. Int J Clin Oncol. 2015; 20: 386-94.

[15] Sheng W, Chen C, Dong M, et al. Overexpression of calreticulin contributes to the development and progression of pancreatic cancer. J Cell Physiol. 2014; 229: 887-97.

[16] Yamamoto K, Yahara N, Gondo T, Ishihara T, Oka M. Establishment and characterization of a new human pancreatic cancer cell line, YPK-1. Bull Yamaguchi Med Sch. 2002; 49: 33-42.

[17] Soga F, Katoh N, Inoue T, Kishimoto S. Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol 2007;127:1947-55.

[18] Zhou J, Wang CY, Liu T, et al. Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World J Gastroenterol. 2008; 14: 925-30.

[19] Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996; 183: 1797 - 806.

[20] Japan Pancreas Society. General Rules for the Study of Pancreatic Cancer, The 6th Edition, Revised Version edn. Tokyo, Japan: Kanehara, 2013

[21] Lee HJ, Xu X, Choe G, et al. Protein overexpression and gene amplification of epidermal growth factor receptor in nonsmall cell lung carcinomas: Comparison of four commercially available antibodies by immunohistochemistry and fluorescence in situ hybridization study. Lung Cancer. 2010; 68: 375-82.

[22] Chao MP, Jaiswal S, Weissman-Tsukamoto R, et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med. 2010; 22: 2: 63-84.

[23] Chatterjee D, Katz MH, Rashid A, et al. Perineural and intraneural invasion in posttherapy pancreaticoduodenectomy specimens predicts poor prognosis in patients with pancreatic ductal adenocarcinoma. Am J Surg Pathol. 2012; 36: 409-17.

[24] Lim JE, W. CM, Earle CC. Prognostic factors following curative resection for pancreatic adenocarcinoma: a population-based, linked database analysis of 396 patients. Ann Surg. 2003; 237: 74-85.

[25] Richter A, Niedergethmann M, Sturm JW, Lorenz D, Post S, Trede M. Long-term results of partial pancreaticoduodenectomy for ductal adenocarcinoma of the pancreatic head: 25-year experience. World J Surg. 2003; 27: 324-9.

[26] Panaretakis T, Kepp O, Brockmeier U, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. The EMBO Journal. 2009; 28: 578-90.

[27] Ye R, Mareninova OA, Barron E, et al. Grp78 heterozygosity regulates chaperone balance in exocrine pancreas with differential response to cerulein-induced acute pancreatitis. Am J Pathol. 2010; 177: 2827 - 36.

[28] Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer research. 2006; 66: 9339 - 44.

[29] Li D, Su D, Xue L, Liu Y, Pang W. Establishment of pancreatic cancer stem cells by flow cytometry and their biological characteristics. Int J Clin Exp Pathol. 2015; 8: 11218 - 23.

[30] Du XL, Lin DE, Xia SH, et al. Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. J Mol Med. 2007; 85: 863-75.

[31] Chen CN, Chang CC, Su TE, et al. Identification of calreticulin as a prognosis marker and angiogenic regulator in human gastric cancer. Ann Surg Oncol. 2009; 16: 525-33.

[32] Shi F, Shang L, Pan BQ, et al. Calreticulin promotes migration and invasion of esophageal cancer cells by upregulating neuropilin-1 expression via STAT5A. Clin Cancer Res. 2014; 20: 6153-62.

[33] Du XL, Yang H, Liu SG, et al. Calreticulin promotes cell motility and enhances resistance to anoikis through STAT3-CTTN-Akt pathway in esophageal squamous cell carcinoma. Oncogene. 2009; 28: 3714-22.

[34] Gardai SJ, McPhillips KA, Frasch SC, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005; 123: 321-34.

[35] Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009; 86: 1065-73.

[36] Bruttel VS, Wischhusen J. Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front Immunol. 2014; 29: 360.

YPK2 parent

	-		

Start - End		Obse	rved mass C	Calculated mass	Score	Sequence		
25 - 36		1	1410.65	1409.62	35	EQFLDGDGWTSF		
143 - 15	1	1	1147.68	1146.65	53	KVHVIFNYK		
1	MLLSVPI	LLLG	LLGLAVAEPA	VYFKEOFLDG	DGWTSRWIES	KHKSDFGKFV		
51	LSSGKFY	GDE	EKDKGLQTSQ	DARFYALSAS	FEPFSNKGQT	LVVQFTVKHE		
101	QNIDCGO	GYV	KLFPNSLDQT	DMHGDSEYNI	MFGPDICGPG	TKKVHVIFNY		
151	KGKNVLI	INKD	IRCKDDEFTH	LYTLIVRPDN	TYEVKIDNSQ	VESGSLEDDW		
201	DFLPPK	CIKD	PDASKPEDWD	ERAKIDDPTD	SKPEDWDKPE	HIPDPDAKKP		
251	EDWDEEN	DGE	WEPPVIQNPE	YKGEWKPRQI	DNPDYKGTWI	HPEIDNPEYS		
301	PDPSIY	AYDN	FGVLGLDLWQ	VKSGTIFDNF	LITNDEAYAE	EFGNETWGVT		
351	KAAEKQM	MKDK	QDEEQRLKEE	EEDKKRKEEE	EAEDKEDDED	KDEDEEDEED		
401	KEEDEER	RDVP	GQAKDEL					

Fig. 1. 膵癌幹細胞様細胞に高発現している分子、Calreticulinの同定 A-D: YPK2 親細胞(A, C(拡大))と YPK2-Lm 細胞(B, D(拡大))の2次元電気泳動。 E: 質量分析器(MALDI TOF/TOF MS)を用いた calreticulinの同定。一致したペプチド断片を赤字で 示す。

Fig. 2. フローサイトメトリー

A, B: (A)YPK2 親細胞と YPK2-Lm 細胞および(B) YPK5 親細胞と YPK5-Lm 細胞の細胞表面における CRT (左図) および CD44v9(右図)の発現

C, D: (C)YPK2 親細胞(左図)と YPK2-Lm 細胞(右図)および(D) YPK5 親細胞(左図)と YPK5-Lm 細

胞(右図)における CRT および CD4v9 の発現

E, F: (E)YPK2 親細胞(左図)と YPK2-Lm 細胞(右図)および(F)(E)YPK5 親細胞(左図)と YPK5-Lm 細胞(右図)の細胞内 CRT 発現

G,H: (G)YPK2 親細胞(左図)と YPK2-Lm 細胞(右図)および(H)(E)YPK5 親細胞(左図)と YPK5-Lm 細胞(右図)の Hoechst33342 排出能

Fig.3. CD47 発現

A: YPK 親細胞と YPK-Lm 細胞の CD47 発現に違いはなかった。

B: CRT と CD47 の関連:相関係数 -0.1585 (95% confidence interval: -0.6356 – 0.4063): p > 0.05

Fig. 4. YPK-Lm から sort した細胞集団内の Side population (SP)

(A) YPK2-Lm 細胞は、calreticulin (CRT)^{high}/CD44 variant isoform 9 (CD44v9)^{low} (青丸)、 CRT^{low}/CD44v9^{high}
(赤丸)、CRT^{high}/CD44v9^{high} (緑丸) の3集団に sort し、ATP-binding cassette transporter の活性をそれぞ
れ評価した。(B) CRT^{high}/CD44v9^{low} の SP は 88.5%であった。(C) CRT^{low}/CD44v9^{high} の SP は 2.42%で

あった。(D) CRT^{high}/CD44v9^{high} の SP は 3.32%であった。(E) 同様に YPK5-Lm 細胞も CRT^{high}/CD44v9^{low} (青丸)、 CRT^{low}/CD44v9^{high}(赤丸)、CRT^{high}/CD44v9^{high}(緑丸) に sort し、ATP-binding cassette transporter の活性を評価した。(F) CRT^{high}/CD44v9^{low} の SP は 43.1%であった。(G) CRT^{low}/CD44v9^{high} の SP は 0.78%であった。(H) CRT^{high}/CD44v9^{high} の SP は 12.4%であった。

Fig.5. 症例選択のフローチャート

IHC; immunohistochemistry, 免疫組織化学染色

IPMN; intraductal papillary mucinous neoplasm, 膵管内乳頭粘液性腫瘍

А

В

С

Fig.6: Calreticulin (CRT)および CD44v9 の免疫組織化学染色の代表例と免疫蛍光二重染色

A: 切除標本における CRT の発現。

左上図:正常膵組織内で CRT は腺房に高発現し、ランゲルハンス島に中等度、膵管に低発現していた。 癌組織における CRT 発現は、発現なし(中上図)、低発現(右上図)、中発現(左下図)、高発現(中下図) に分類した。スケールバー:50μm

B: 切除標本における CD44v9 の発現。

左上図:正常膵組織内で CD44v9 は腺房、ランゲルハンス島、膵管に発現していた。

癌組織における CD44v9 発現は、発現なし(中上図)、低発現(右上図)、中発現(左下図)、高発現(中 下図)に分類した。スケールバー:50μm

C: CRT(緑)とCD44v9(赤)は膵癌組織内で部分的に共局在していた(白矢印)。スケールバー:50µm

Table 1. Cox 比例ハザード解析の結果

Variable	β	SE	p-value	Hazard ratio (95% CI)
Age	0.051	0.017	0.002	1.053 (1.019-1.088)
CRT IHC score	0.007	0.002	0.004	1.007 (1.002-1.011)
Post-operative therapy	-0.815	0.365	0.026	0.443 (0.216-0.905)

CRT, calreticulin; IHC, immunohistochemistry; SE, standard error; 95% CI, 95% confidence interval.

Variable	CRT expre	P-value	
	Low (n = 37)	High $(n = 43)$	
Age, years.			
mean \pm SD	68.1 ± 7.6	65.6 ± 9.5	0.199
Gender, No.			
Male	17	18	0.713
Female	20	25	
Tumor location, No.			
Head	24	31	0.487
Body – tail	13	12	
Tumor size, mm			
mean \pm SD	25.7 ± 9.9	29.8 ± 17.8	0.356
Differentiation, No.			
Well	1	5	0.139
Moderate – poor	36	38	
Invasion depth, No.			
T1	5	2	0.013
T2	5	0	
Т3	27	41	
Lymph node metastasis, No.			
Negative	21	20	0.361
Positive	16	23	
TNM stage, No.			
Ι	7	2	0.048
Π	30	41	
Perineural invasion			
Negative	9	3	0.030
Positive	28	40	
Portal invasion			
Negative	24	26	0.685
Positive	13	17	
Pre-operative therapy, No.			
None	20	34	0.017
Performed	17	9	
Post-operative therapy, No.			
None	5	8	0.538

Table 2. CRT 発現と臨床病理学的因子の関連

Performed	32	35	
CD44v9 expression, No.			
Low	25	15	0.004
High	12	28	

Fig.7. 無再発生存曲線および全生存曲線 CRT 高発現群(太線) CRT 低発現群(点線)