Correlation of Liquid–Liquid Equilibria for Alkane + Methanol + Ether Ternary Systems by Using Modified Wilson Equation with Parameters Estimated from Pure-Component Properties

Shigetoshi KOBUCHI (Sustainable Environmental Engineering Section, Department of Engineering, Graduate School of Sciences and Technology for Innovation) Setsuko YONEZAWA (Department of Chemical Engineering, Faculty of Engineering, Kyushu University)

Yasuhiko ARAI (Professor Emeritus of Kyushu University)

Abstract: A useful model, previously proposed, has been applied to calculate liquid–liquid equilibria of alkane + methanol + ether ternary systems from pure-component properties alone. Its prediction performances are evaluated in comparison with UNIFAC widely adopted. In this study, the temperature dependency of multi-component parameter in the model has been examined and discussed.

Keywords: Liquid–Liquid Equilibrium, Correlation, Modified Wilson Equation, Ternary System

Introduction

In a previous paper ¹⁾, a useful model to calculate liquid-liquid equilibria (LLE) has been proposed. The model is termed as GC-MW (Group Contribution model based Modified Wilson equation) and its successful applicability has been acknowledged in calculation of LLE for alkane + methanol + aromatics ternary systems at 25°C. As a continuation, GC-MW has been applied to predict LLE of alkane + methanol+ ether ternary systems at $20 \sim 40^{\circ}$ C. In this study, the temperature dependency of multi-component parameter in GC-MW has been examined and its calculation performances are compared with the modified UNIFAC (Dortmund) $^{2,3)}$.

1. GC-Modified Wilson Equation

LLE can be calculated by the thermodynamic equilibrium condition: $x_i^I \gamma_i^I = x_i^{II} \gamma_i^{II}$ where γ_i means the activity coefficients of component *i*, and x_i denotes the mole fractions of component *i* in both liquid phases I and II. Therefore, LLE can be calculated by using a suitable activity coefficient equation. In this study, GC-MW has been adopted to estimate activity coefficients from pure component properties alone based on group contribution treatments.

1.1 Activity coefficients

Activity coefficients can be briefly given from GC-MW as follows ¹⁾.

$$\ln \gamma_{i} = 1.5 \left[1 - \ln A_{i} - \sum_{j} \left\{ \left(x_{j} / A_{j} \right) \left(A_{ji} - B_{ij} + C_{j} \right) \right\} \right]$$
(1)

where A_j , B_{ij} and C_j are described by

$$A_j = \sum_q \Lambda_{jq} x_q \tag{2}$$

$$B_{ij} = \sum_{q} \tau_{jq} A_{jq} x_{q} D \quad (q = i \; ; \; D = 1) \quad , \quad B_{ii} = 0 \tag{3}$$

$$C_{j} = \sum \tau_{jq} \Lambda_{jq} x_{q} \alpha_{jq} \tag{4}$$

Further, the interaction parameters are defined as

$$\Lambda_{ij} = \exp\left(-\alpha_{ij}\tau_{ij}\right), \quad \Lambda_{ii} = 1$$
(5)

$$\tau_{ij} = (g_{ij} - g_{ii})/RT = R_{ij} / RT, \quad \tau_{ii} = 0$$
(6)

$$\alpha_{ij} = x_j + D \sum_{k} x_k \quad (k \neq i, j), \qquad \alpha_{ii} = 1$$
(7)

1.2 Binay interaction parameters

The binary interaction energies due to attractive force g_{ij} in Eq. (6) can be estimated by Kobuchi *et al.*¹⁾.

$$g_{ij} = -(1-\theta_{ij}) (v_i v_j)^{0.5} \delta_i \delta_j; \qquad \theta_{ii} = 0$$
(8)

where the liquid molar volume v and the solubility parameters δ of pure components at a given temperature *t* can be calculated as follows.

$$v_t = v_{25} + \beta(t - 25), \qquad \beta = (v_b - v_{25})/(t_b - 25)$$
 (9)

$$\delta_t = \left(v_{25} / v_t \right) \delta_{25} \tag{10}$$

To represent LLE (mutual solubility) of partially miscible binary systems such as alkane (1) + methanol (2), the binary interaction parameters θ_{ij} between unlike molecules have been found to be dependent on temperature and they are approximated by a linear function of temperature as follows.

$$\theta_{ij} = \phi_{ij} (t-25) + \theta_{ij} (25^{\circ} \text{C}) : \text{ LLE}$$
(11)

where the constant θ_{ij} (25°C) and the coefficient ϕ_{ij} can be empirically expressed by the following equations.

$$\theta_{ij} (25^{\circ} \text{C}) = a_{ij} + b_{ij} t_{b,1} + c_{ij} \delta_{25,1}^{2}$$
(12)

$$\phi_{ij} = d_{ij} + e_{ij} t_{b,1} + f_{ij} \delta_{25,1}^2$$
(13)

The coefficients $a_{ij} \sim f_{ij}$ should be determined by LLE data regression.

On the other hand, the interaction parameters θ_{ij} for miscible binary mixtures such as alkane(1) + ether(3) and methanol(2) + ether(3) can be evaluated from experimental vapor-liquid equilibria (VLE) at usually 101.3 kPa and are ascertained to be independent on temperature. Therefore, they can be empirically given by

$$\theta_{ij} = a_{ij} + b_{ij} t_{b,i} + c_{ij} t_{b,j} + d_{ij} \delta_{25,i}^2 + e_{ij} \delta_{25,j}^2 : \text{VLE}$$
(14)

2. Coefficients to estimate θ

To calculate LLE of alkane(1) + methanol(2) + ether(3), θ_{ij} (LLE) for alkane(1) + methanol(2) and θ_{ij} (VLE) for alkane(1) + ether(3) and methanol(2) + ether(3) are required. The values of coefficients $a_{ij} \sim f_{ij}$ in Eqs.(12) and (13) for LLE are shown in the previous paper¹). Further, θ_{ij} (VLE) for the binary systems containing ether have been determined, in this study, by using VLE data at 101.3 kPa and they are presented in **Table 1**. The calculation performances for these binary systems from the coefficients given in Table 1 are shown in **Table 2** and **Table 3**. As shown in these tables, good calculation performances can be obtained.

3. LLE of alkane(1) + methanol(2) + ether(3)

To calculate LLE of alkane(1) + methanol(2) + ether(3), the binary parameters θ_{ij} (LLE) and θ_{ij} (VLE) are needed and they are determined as mentioned above. Further, the multi-component parameter *D* in Eq. (7) is required. It can be empirically expressed by

$$D = a_0 + \sum_i b_i t_{b,i} + \sum_i c_i \delta_{25,i}^2$$
(15)

where the coefficients a_0 , b_i and c_i should be

determined by using experimental LLE data of the multi-component mixtures. Those coefficients for alkane(1) + methanol(2) + ether(3) have been evaluated by using LLE data at 25°C by Higashiuchi et al.^{4, 5)} and they are presented in Table 4 and its correlation performances are given in Table 5. Further, correlation performances at other temperatures are also shown in the table. The correlation performances by UNIFAC^{2, 3)} are included in Table 5 for comparison. And, typical illustrations are shown in Figure 1 and Figure 2. As shown in Table 4 and these figures, good correlation performances are obtained. It should be noted that correlated results in Table 4 for LLE at 20, 30 and 40° C are obtained by using Eq. (15) with the coefficients determined from LLE data at 25°C. Namely, the multi-component parameter D may be almost insensitive to temperature.

Conclusion

A useful model GC-MW based on a modified Wilson equation¹⁾ has been successfully applied to calculate LLE of alkane + methanol + ether ternary systems at 20~40°C. It is noted that the parameters needed in calculation can be estimated from the knowledges of molecular structures and the normal boiling points and solubility parameters obtained from the group-contribution treatments. The correlation performances of GC-MW have been acknowledged to be comparable or slightly better in comparison with the modified UNIFAC (Dortmund) ^{2, 3)} widely used. Further application of GC-MW to other mixtures still remains in the future work.

Nomenclature

D	= multi-component parameter	[-]
8	= interaction energy due to attractive	e force
		$[J \cdot mol^{-1}]$
р	= total pressure	[Pa]
p°	= vapor pressure of pure component	[Pa]
R	= gas constant [.	$\mathbf{V} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$
Т	= absolute temperature	[K]
t	= temperature	[°C]
v	= liquid molar volume	$[cm^3 \cdot mol^{-1}]$
x	= mole fraction of liquid phase	[-]

 Table 1
 Coefficients of Eq. (14) for binary systems containing ether ^a

Binary system $(i) + (j)$	aij	b_{ij}	Cij	d_{ij}	eij
	aji	b_{ji}	Сјі	d_{ji}	eji
Alkane + ether	-0.2645	2.550×10^{-3}	-2.551×10^{-3}	2.815×10^{-3}	-1.714×10^{-3}
Alkalle + etilel	0.4530	-2.549×10^{-3}	2.110×10^{-3}	-2.669×10^{-3}	8.878×10^{-4}
Alcohol ^b + ether	0.9922	-3.167×10^{-3}	2.813×10^{-3}	5.223×10 ⁻⁴	2.664×10^{-3}
Alcohol* + ether	0.6265	6.565×10^{-4}	-2.442×10^{-3}	-2.656×10^{-4}	-3.609×10^{-4}

^a VLE data at 101.3kPa have been adopted of which data sources are given in previous papers^{6,7)}.

^b Alcohol contains methanol.

Binary system $(1) + (3)$		Eqs. ((14) ^b	Dev. ^c		
binary system (1) + (5)	Ν	θ_{13}	θ_{31}	$\Delta y_1[-]$	$\Delta t [°C]$	
2-Methylbutane + diethyl ether	19	0.0329	0.0134	0.0056	0.30	
Pentane + diethyl ether	12	-0.0125	0.0434	0.0083	0.29	
2-Methylpenane + methyl <i>t</i> -butyl ether	23	-0.0733	0.0930	0.0015	0.22	
3-Methylpenane + methyl <i>t</i> -butyl ether	21	-0.0810	0.0994	0.0042	0.26	
2,3-Dimethylpenane + methyl <i>t</i> -butyl ether	20	-0.1486	0.1553	0.0044	0.23	
Octane + methyl <i>t</i> -butyl ether	17	-0.2965	0.2606	0.0182	1.38	
2,2,4-Trimethylpenane + methyl <i>t</i> -butyl ether ether	22	-0.1678	0.1727	0.0176	1.13	
2-Methylpentane + ethyl <i>t</i> -butyl ether	20	0.0118	0.0100	0.0114	0.50	
2-Methylpenane + <i>t</i> -amyl methyl ether	18	0.0463	-0.0245	0.0081	0.28	
3-Methylpenane + <i>t</i> -amyl methyl ether	22	0.0386	-0.0181	0.0048	0.23	
2,3-Dimethylpenane + <i>t</i> -amyl methyl ether	21	-0.0290	0.0378	0.0062	0.34	
2,3-Dimethylpenane + diisopropyl ether		-0.0746	0.0834	0.0152	0.73	
			Avg.	0.0088	0.49	

 Table 2
 Correlation performances for VLE of alkane (1) + ether (3) binary systems at 101.3 kPa^a

^a VLE data at 101.3kPa have been adopted of which data sources are given in a previous paper ⁶).

^b The interaction parameters θ_{13} and θ_{31} are obtained by Eqs. (14) with the coefficients given in Table 1.

^c VLE have been calculated from $py_i = x_i \gamma_i p_i^{\circ}$ and

 $\Delta y_1[-] = \frac{1}{N} \sum_{n=1}^{N} \left| y_{1,\text{calc}} - y_{1,\text{exp}} \right|, \ \Delta t[^{\circ}\text{C}] = \frac{1}{N} \sum_{n=1}^{N} \left| t_{\text{calc}} - t_{\text{exp}} \right| \text{ where } N = \text{number of data points.}$

$\mathbf{P}_{\mathbf{r}}^{\mathbf{r}} = \mathbf{P}_{\mathbf{r}}^{\mathbf{r}} + \mathbf{P}_{\mathbf$	λī	Eqs. (14	4) ^b	Dev. ^c		
Binary system $(2) + (3)$	Ν	θ_{23}	heta 32	Δ y2 [-]	$\Delta t [°C]$	
Methanol + diethyl ether	14	-0.1008	0.2945	0.0174	0.73	
Methanol + methyl <i>t</i> -butyl ether	28	-0.0963	0.2512	0.0085	0.34	
Methanol + ethyl <i>t</i> -butyl ether	30	-0.0088	0.2031	0.0276	0.69	
Methanol $+ t$ -amyl methyl ether	17	0.0293	0.1701	0.0019	0.20	
Ethanol + methyl <i>t</i> -butyl ether	54	-0.2102	0.2960	0.0146	0.99	
Ethanol + dipropyl ether	15	-0.0019	0.1961	0.0225	0.91	
Ethanol + diisopropyl ether	14	-0.1349	0.2586	0.0145	0.80	
Ethanol + ethyl <i>t</i> -butyl ether	28	-0.1226	0.2479	0.0114	0.92	
<i>i</i> -Propanol + diisopropyl ether	14	-0.2339	0.2909	0.0103	1.00	
2-Propanol + diisopropyl ether	29	-0.1992	0.2875	0.0244	0.80	
1-Butanol + methyl <i>t</i> -butyl ether	19	-0.3991	0.3544	0.0188	2.49	
1-Butanol + dibutyl ether	19	-0.0158	0.1270	0.0256	0.97	
1-Butanol + <i>t</i> -amyl methyl ether	18	-0.2735	0.2733	0.0043	0.51	
1-Pentanol + diisopropyl ether	20	-0.2741	0.2775	0.0187	1.30	
			Avg.	0.0158	0.90	

 Table 3
 Correlation performances for VLE of alcohol (2) + ether (3) binary systems at 101.3 kPa^a

^a VLE data at 101.3 kPa have been adopted of which data sources are given in a previous papers ⁷).

^b The interaction parameters θ_{23} and θ_{32} are obtained by Eqs. (14) with the coefficients given in Table 1.

^c VLE have been calculated from $py_i = x_i \gamma_i p_i^{\circ}$ and

 $\Delta y_2[-] = \frac{1}{N} \sum_{n=1}^{N} \left| y_{2,\text{calc}} - y_{2,\text{exp}} \right|, \Delta t[^{\circ}\text{C}] = \frac{1}{N} \sum_{n=1}^{N} \left| t_{\text{calc}} - t_{\text{exp}} \right| \text{ where } N = \text{number of data points.}$

Table 4	Coefficients of Eq. (15) for alkane (1) + methanol (2) + ether (3) ternary systems at 25°C
---------	--

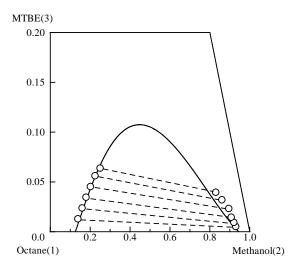
Ternary system $(1) + (2) + (3)^{a}$	a_0	b_1	<i>b</i> ₃	<i>C</i> 1	СЗ
Alkane + methanol + ether	-4.2823	0.008253	0.001905	0.0	0.01593

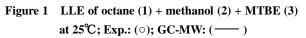
^a LLE data at 25°C have been cited from Higashiuchi et al.^{4,5)}.

 Table 5
 Correlation performances for LLE of alkane (1) + methanol (2) + ether (3) ternary systems a

Ternary system $(1)+(2)+(3)$		I	Binary int	eraction pa	arameters	calculated	b	H	Eq.(15) °	Dev.[%] ^d	
		heta 12	heta 21	$ heta_{13}$	heta 31	heta 23	heta 32	- N-	D	GC-MW	UNIFAC ^e
Heptane+methanol+diethyl ether	25	0.1821	0.1974	-0.2072	0.1934	-0.1008	0.2945	5	0.0849	3.3	5.0
Octane+methanol+diethyl ether	25	0.1066	0.2566	-0.2925	0.2591	-0.1008	0.2945	6	0.3097	2.4	4.7
Heptane+methanol+methyl <i>t</i> -butyl ether	25	0.1821	0.1974	-0.2112	0.1945	-0.0963	0.2512	5	-0.1979	2.0	9.0
Octane+methanol+ methyl <i>t</i> -butyl ether	25	0.1066	0.2566	-0.2965	0.2602	-0.0963	0.2512	6	0.0270	1.9	4.3
Heptane+methanol+diisopropyl ether	25	0.1821	0.1974	-0.1373	0.1227	-0.0211	0.2138	6	0.0558	0.9	5.5
Octane+methanol+diisopropyl ether	25	0.1066	0.2566	-0.2226	0.1883	-0.0211	0.2138	7	0.2806	4.4	4.6
Heptane+methanol+methyl <i>t</i> -butyl ether	20	0.1768	0.2070	-0.2112	0.1945	-0.0963	0.2512	15	-0.1979	2.6	6.6
Heptane+methanol+methyl <i>t</i> -butyl ether	30	0.1875	0.1878	-0.2112	0.1945	-0.0963	0.2512	8	-0.1979	2.6	6.3
Heptane+methanol+methyl <i>t</i> -butyl ether	40	0.1982	0.1686	-0.2112	0.1945	-0.0963	0.2512	8	-0.1979	4.9	7.7
Octane+methanol+methyl <i>t</i> -butyl ether	20	0.1029	0.2642	-0.2965	0.2602	-0.0963	0.2512	13	0.0270	4.0	7.8
Octane+methanol+methyl t-butyl ether	30	0.1103	0.2491	-0.2965	0.2602	-0.0963	0.2512	7	0.0270	3.3	6.5
Octane+methanol+methyl <i>t</i> -butyl ether	40	0.1176	0.2341	-0.2965	0.2602	-0.0963	0.2512	7	0.0270	4.4	9.2
<i>i</i> -Octane+methanol+methyl <i>t</i> -butyl ether	20	0.1818	0.1868	-0.1678	0.1727	-0.0963	0.2512	14	-0.1911	4.6	14.9
<i>i</i> -Octane+methanol+methyl <i>t</i> -butyl ether	30	0.1981	0.1604	-0.1678	0.1727	-0.0963	0.2512	8	-0.1911	5.6	17.9

^a LLE data have been cited from Higashiuchi *et al.*^{4, 5)} and Watanabe *et al.*⁸⁾.


^b Estimated from Eqs. (11) and (14) with the coefficients shown in the previous paper¹⁾ and Table 1.


^c Multi-component parameters obtained by Eq. (15) with the coefficients given in Table 4.

^d Dev. [%] = $100 \left\{ \sum_{i=1}^{3} \sum_{p=1}^{2} \sum_{t=1}^{N} \left(x_{ipt}^{calc} - x_{ipt}^{exp} \right)^2 / 6N \right\}^{0.5}$ where x_{ipt}^{calc} and x_{ipt}^{exp} are respectively the calculated and experimental mole fractions of

component *i* in phase *p* at tie-line *t*, and *N* denotes the number of tie-line data. In the present calculations, an algorithm with *K*-value $(K_i = x_i^{II} / x_i^{I})$ has been adopted and x_3^{II} is given from experimental data under atmospheric pressure.

^e UNIFAC parameters have been cited from Gmehling *et al.*²⁾ and Lohmann *et al.*³⁾.

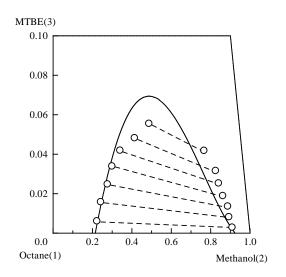


Figure 2 LLE of octane (1) + methanol (2) + MTBE (3) at 40℃; Exp.: (○); GC-MW: (-----)

у	= mole fraction of vapor phase	[-]
γ	= liquid-phase activity coefficient	[-]
δ	= solubility parameter	$[(J \cdot cm^{-3})^{0.5}]$
θ	= interaction parameter between un	ılike
	molecules	[-]
Λ	= Wilson parameter	[-]

Subscripts

b = normal boiling point

calc = calculated value

exp = experimental data

i, j =components i and j

1, 2, 3 =component 1, 2 and 3

 $25 = \text{standard temperature } (25^{\circ}\text{C})$

Superscripts

I = phase I (upper alkane-rich phase)

II = phase II (lower methanol-rich phase)

Acknowledgement

The authors thank Dr. Katsumi Honda for his helpful comments and suggestions.

Literature Cited

 Kobuchi, Shigetoshi; Yonezawa, Setsuko; Arai, Yasuhiko. Correlation of liquid–liquid equilibria for alkane + methanol + aromatics ternary systems by using modified Wilson equation with parameters estimated from pure-component properties. J. Chem. Eng. Japan. 2016, 49, p. 885-893.

- Gmehling, Jürgen; Li, Jiding; Schiller, Martin. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res. 1993, 32, p. 178-193.
- Lohmann, Jürgen; Joh, Ralph; Gmehling, Jürgen. From UNIFAC to modified UNIFAC (Dortmund). Ind. Eng. Chem. Res. 2001, 40, p. 957-964.
- Higashiuchi, Hideki; Sakuragi, Yujiro; Arai, Yasuhiko. Measurement and correlation of liquid–liquid equilibria of methanol + alkane + ether ternary systems. Fluid Phase Equilibria. 1995, 110, p. 197-204.
- 5) Higashiuchi, Hideki; Watanabe, Toru; Arai, Yasuhiko. Liquid–liquid equilibria of ternary systems containing alkane, methanol, and ether. Fluid Phase Equilibria. 1997, 136, p. 141-146.
- 6) Kobuchi, Shigetoshi; Ishige, Kenji; Yonezawa, Setsuko; Fukuchi, Kenji; Arai, Yasuhiko. Correlation of vapor–liquid equilibria of polar mixtures by using Wilson equation with parameters estimated from solubility parameters and molar volumes. J. Chem. Eng. Japan. 2011, 44, p. 449-454.
- 7) Kobuchi, Shigetoshi; Ishige, Kenji; Takakura, Kei; Yonezawa, Setsuko; Fukuchi, Kenji; Arai, Yasuhiko. Prediction of vapor–liquid equilibria for ETBE + ethanol, ETBE + octane, ethanol + octane, and ETBE + ethanol + octane systems by the Wilson equation. Kagaku Kogaku Ronbunshu. 2012, 38, p. 76-79.
- Watanabe, Toru; Honda, Katsumi; Higashiuchi, Hideki; Arai, Yasuhiko. Measurement and correlation for liquid–liquid equilibria of MTBE + methanol + alkane ternary systems. Mem. of Ariake National Coll. of Tech. 2005, 41, p. 143-150.

(平成 29 年 1月 13日受理)