
In situ Determination of Surface Tension-to-Shear Viscosity Ratio
for Quasiliquid Layers on Ice Crystal Surfaces

Ken-ichiro Murata,* Harutoshi Asakawa,† Ken Nagashima, Yoshinori Furukawa, and Gen Sazaki
Institute of Low Temperature Science, Hokkaido University, N19-W8, Kita-ku, Sapporo 060-0819, Japan

(Received 18 September 2015; revised manuscript received 13 November 2015; published 17 December 2015)

We have experimentally determined the surface tension-to-shear viscosity ratio (the so-called character-
istic velocity) of quasiliquid layers (QLLs) on ice crystal surfaces from their wetting dynamics. Using an
advanced optical microscope, whose resolution reaches the molecular level in the height direction, we
directly observed the coalescent process of QLLs and followed the relaxation modes of their contact lines.
The relaxation dynamics is known to be governed by the characteristic velocity, which allows us to access
the physical properties of QLLs in a noninvasive way. Here we quantitatively demonstrate that QLLs, when
completely wetting ices, have a thickness of 9� 3 nm and an approximately 200 times lower characteristic
velocity than bulk water, whereas QLLs, when partially wetting ices, have a velocity that is 20 times lower
than the bulk. This indicates that ice crystal surfaces significantly affect the physical properties of QLLs
localized near the surfaces at a nanometer scale.
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Studies of surface melting (or premelting) have a long
history going back to the pioneering prediction by Michael
Faraday. In 1859, he first hypothesized that thin water
layers, now called quasiliquid layers (QLLs), cover ice
crystal surfaces even at a temperature below the melting
point [1]. This intriguing phenomenon has attracted con-
siderable attention due to a link to various natural phenom-
ena in our daily life: lubrication on ice surfaces, frost heave
by ice columns, the morphological change of snow crystals,
and the electrification of thunderclouds [2]. At present,
surface melting is known to be not limited only to ice but is
common in a wide range of crystalline solids, such as
metals, semiconductors, rare gases, and various inorganic,
organic, and colloidal systems [3–7]. The significance of
surface melting and the resulting quasiliquid layer in
condensed matter is therefore hard to overestimate.
However, the underlying mechanism of surface melting

is still a matter of debate and is far from completely
understood, despite numerous experiments and theories,
including numerical simulations, that indicate its existence
[8–14]. The major bottleneck is the experimental difficul-
ties in the way of direct and accurate observation of QLLs,
whose thicknesses are assumed to be less than tens
of nanometer, under well-controlled conditions of temper-
ature and vapor pressure. So far, various sophisticated
approaches have been attempted to investigate the physical
properties of QLLs, e.g., the thickness, the relaxation time,
and their microscopic structure [15]. Unfortunately, how-
ever, the results obtained exhibit considerable variation,
depending on both experimental methods and researchers
(see Table S1 in Ref. [16] for details).
Recently, we directly visualized the QLLs on ice crystal

surfaces with molecular resolution in the height direction
by using laser confocal microscopy combined with

differential interference contrast microscopy (LCM-DIM)
[16–19]. Contrary to the conventional wisdom that QLLs
statically and homogeneously cover ice surfaces, we
demonstrated that the behavior of QLLs is indeed dynamic
and spatially heterogeneous, and the QLLs have two
distinct wetting morphologies: partial wetting (bulk liquid
droplet: BLD) and complete wetting states (thin liquid
layer: TLL) on bare ice surfaces. This clearly indicates that
conventional spatially averaged techniques, although direct
and accurate themselves, are highly uncertain as they do not
account for the heterogeneous nature of QLLs. Although
laser confocal microscopy combined with spectroscopy
(e.g., Raman [20] and Brillouin [21]) would also be a
promising way to perform in situmeasurements, it is nearly
impossible to extract information only about QLLs since
their thickness is much less than the resolution limit of an
optical microscope. Classically, ice lubrication experiments
in quartz capillaries have also been employed to measure
the viscosity of the lubricating QLL [22]. However, this
kind of measurement, even using modern probe-based
techniques, require contact, inevitably disturbing the native
state of the QLLs [23].
In this Letter, we present an alternative in situ technique

to measure the surface tension-to-shear viscosity ratio
(characteristic velocity) of QLLs. We shed light on their
wetting dynamics, in particular, the motion of the contact
line, which is controlled by the characteristic velocity. We
also determine the thickness of the TLL from the spreading
dynamics of QLLs. Our approach provides an important
clue to understanding not only the nature of QLLs but also,
more generally, quasi-two-dimensional fluid flow on the
nanoscale [24].
In this study, we employed a confocal system (FV300,

Olympus Optical Co. Ltd.) attached to an inverted optical
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microscope (IX70, Olympus Optical Co. Ltd.). To prevent
the generation of interference fringes, a super luminescent
diode (Amonics Ltd., model ASLD68-050-B-FA, 680 nm)
was used as a light source. An observation chamber is
composed of upper and lowerCu plates,whose temperatures
were separately controlled using Peltier elements. At the
center of the upper Cu plate, a cleaved AgI crystal was
attached as an ice nucleating agent. We also prepared other
ice crystals on the lower Cu plate, as a source of water vapor
to the sample ice crystals. Separate control of the temper-
atures of the sample and source ice crystals allows us to
adjust the temperature of the sample (T) and vapor pressure
(p) independently. Note that p is the partial pressure of H2O
in a nitrogen environment. The total pressure is the atmos-
pheric pressure. In this study, the observation of QLLs was
performed on only basal faces of ice crystals. Further details
of the experiments are described in Refs. [16–18].
First, we derive the characteristic velocity of BLDs

from the relaxation modes of their contact lines. To
observe these, we particularly focused on the process
of coalescence of small BLDs with large ones because, for
enough large droplets, coalescence with small droplets
can be regarded as a weak perturbation of the contact lines
[25] (Fig. 1(a) and Video S1 in Supplemental Material
[28]). As suggested in our previous study [16], the contact
angle θ of BLDs is extremely small (a few degrees, see
below), indicating that a flow inside the wedge of BLDs
obeys the lubrication approximation [32], where the flow
field is nearly horizontal. Under these conditions, the
motion of the contact line is intrinsically dominated by the

balance between (i) the viscous force of the wedge,
FV ¼ 3lηθ−1V, and (ii) the deformation force of the
contact line, FE ¼ −γθ2quq. The relaxation process of
the amplitude of contact lines perturbed by a mode with
wave vector q is known to be described by the following
single exponential decay:

uq ¼ uqð0Þ exp
�
−
V�θ3q
3l

t
�
; ð1Þ

where V� ¼ γ=η is the characteristic velocity (γ and η
being the surface tension and shear viscosity of BLDs),
uqð0Þ, an initial value of the amplitude. The logarithmic
factor l ¼ lnðL=aÞ is a cutoff parameter to avoid a
singularity at the contact line and at infinite distance,
where a is the molecular size (3.7 Å for water) and L is
approximately the size of the BLDs. From Eq. (1), the
relaxation time is given by τq ¼ 3l=ðV�θ3qÞ [31].
Actually, we can see that in Fig. 1(b) the change in uq is

well fitted by Eq. (1), yielding τq ¼ 15.5� 0.6 s. The
contact angle of BLDs was measured as θ ¼ 2.0� 0.6°
by means of a two-beam interferometer [16]. Employing
q−1 ∼ uqð0Þ ¼ 26.9� 0.6 μm (from the fitting result) and
l ¼ 12.5� 0.1 (L ¼ 100� 10 μm) as a set of input param-
eters, we obtainedV� ¼ 2� 1 m=s. Note that the value ofL
is the size of a largeBLDhaving an almost flat contact line in
Fig. 1(a) (see t ¼ 29.4 s).We further analyzed relaxations of
other contact lines (see Video S1 in the Supplemental
Material [28]) and obtained the average V� as 2� 1 m=s,
the value of which is an order of magnitude smaller than that
of bulk water, 42.21 m=s. Because τq includes the θ3 term,
leading to a large variation, a good value of θ is crucial in the
precise determination of V�. Thus, to obtain a more precise
value, further development of our advanced microscopy
system, more specifically, the combination of LCM-DIM
and awell-controlled interferometer, will be highly required
in the future.
Before discussing the V� of TLLs, we focus on the

spreading dynamics (a transformation from a BLD to a
TLL) in order to evaluate the thickness of TLLs (Fig. 2(a)
and Video S2 in the Supplemental Material [28]). The
thickness is an essential quantity for the determination
of the V� of TLLs, as discussed below. As shown in
Fig. 2(b), here we sampled six droplets spreading without
coalescence with other QLLs for long periods of time. In
Fig. 2(c), we show the time evolution of the radius of QLLs
during the spreading at T ¼ −0.2 °C and p ¼ 578.9 Pa.
The wettability (or spreading coefficient) of QLLs depends
on both temperature and vapor pressure. In this case, the
transformation was induced by changing the vapor pressure
at a constant temperature (T ¼ −0.2 °C). Two dynamic
regimes are confirmed in the whole process: in the early
stage, the radius slowly increases with time and then more
rapidly in the late stage (the purple region). The former

0.00 s 9.80 s

19.6 s 29.4 s

(b)

(a)

FIG. 1 (color). (a) Pattern evolution of the contact line of the
BLD on an ice crystal surface at T ¼ −0.4 °C and p ¼ 603.3 Pa.
(b) Temporal change of its amplitude uq. The data are fitted well
by Eq. (1) (the red solid line). The black bar corresponds to
20 μm. See also Video S1 in the Supplemental Material [28].
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corresponds to the spreading whereas the latter to the
growth of the TLLs by supersaturation.
To analyze the spreading dynamics, we introduced the

following power law (see the Supplemental Material [28]),
r ¼ Aðtþ t0Þ1=4, where A is Lð4S=3LlηÞ1=4 (S being the
spreading coefficient) and t0 is conveniently introduced to
represent the initial condition. As shown in the inset of
Fig. 2(c), the radial evolution of these six droplets nicely
collapses onto a single line by this scaling. Strictly speak-
ing, the whole system in this thermodynamic condition is in
a weakly nonequilibrium state (off vapor/ice equilibrium or
supersaturation), leading to the growth of both QLLs and
ice crystals [33]. In particular, as QLLs decrease their
height and approach the TLL state due to spreading, the
growth in the direction normal to the surface is limited and
consequently the lateral growth is greatly enhanced over
that of BLDs capable of isotropic growth. This effect breaks
down the scaling relation of the spreading (see the deviation
from the single line in the purple region of the inset).
Regarding the BLD as a spherical cap, we can estimate

its volume as Vb ¼ ðπh=6Þð3r2b þ h2Þ ∼ ðπ=4Þθr3b, where
rb and h are the radius and height of the droplets,
respectively [h=rb ≪ 1 and h ¼ rb tanðθ=2Þ ∼ θrb=2].
By contrast, the volume of the TLL is simply written as
Vt ¼ πr2t em by regarding it as a disk, where rt and em are
the radius and height of the TLL, respectively. From the
above scaling, we can access rt without the contribution
from the growth by supersaturation. Among the six droplets
[Fig. 2(b)], we observed a complete transformation into the
TLL state in sample No. 1 (at tcp ¼ 554 s) and No. 2 (at
tcp ¼ 404 s), where tcp is a completion time of the trans-
formation. The value of rt purely coming from the radial
change due to spreading is written as rt ¼ Aðtcp þ t0Þ1=4
and estimated as 5.27 μm and 5.89 μm for sample No. 1
and No. 2, respectively. Because of volume conservation
during the spreading (Vb ¼ Vt), we can represent em as

θr3b=4r
2
t and consequently obtained the average value of em

as 9� 3 nm.
Interestingly, this thickness agrees well with that of the

minimum of the van der Waals potential, estimated by
Elbaum and Schick [34] with the Lifshitz theory (3.6 nm).
Thus, TLLs can be regarded as the state where QLLs are
trapped by this potential minimum whereas the BLDs are
QLLs substantially unaffected by this potential, due to
h ≫ em. Conversely, our results provide experimental
evidence for the existence of the local minimum in the
effective interfacial potential.
Finally, we evaluate V� of TLLs in the same way as the

case of BLDs. Unlike BLDs, however, the hydrodynamic
dissipation for TLLs, having a pancake shape, is dominant
not near the wedge but inside the body of the fluid. The
viscous force for the pancake, moving with V, is given by
FV ¼ 3ηVζ=em [31,35], where ζ is the size of the pancake.
In our system, focusing on the contact line perturbation by
the absorption, ζ and V in FV correspond to uqð0Þ and
duq=dt, respectively [36].
In contrast, the precise evaluation of the elastic energy of

the contact line is rather difficult owing to the lack of
information on the profile of the edges of TLLs. Here, we
simply approximated that the contact angle of the edge is
θ ¼ 90°. It is known that the perturbation of the contact line
with q influences the surface profile of a sessile droplet in
the height direction in the range of q−1 [31]. The thickness
of TLLs is so thin (em ≪ q−1) that the profile of the edge
cannot recover from the perturbation at em. By properly
including this cutoff by em, we obtained the reduced elastic
energy as E ¼ ð1=4Þγqu2qð2qemÞ, where the correction
term 2qem corresponds to the cutoff effect. Thus, the
deformation force for TLLs is represented as FE ¼
−∂E=∂uq ¼ −γq2uqem.
Using the force balance between FV and FE again, we

have the following equation:

(b)(a)

101 s

323 s 554 s

0 s

No. 1

No. 2

No. 6

No. 4

sample No.1
sample No.2
sample No.3
sample No.4
sample No.5
sample No.6

1/4t

(c)

No. 5

No. 3

FIG. 2 (color). (a) Spreading dynamics on the ice basal face at T ¼ −0.2 °C and p ¼ 578.9 Pa. (b) An initial state (t ¼ 0 s) of the
spreading process. We sampled the spreading dynamics of the six droplets indicated by colored circles. The spreading droplet in
(a) corresponds to the sample No. 1. (c) Time evolution of the radius of the droplets. We followed the spreading for the six samples in (b).
The solid lines represent the best fit of the spreading equation, r ¼ Aðtþ t0Þ1=4. The purple region indicates the fast growth regime due
to supersaturation. The inset indicates the scaled plot of (a) (r=A vs tþ t0). The white bars in (a) and the inset of (b) correspond to 10 μm
and 20 μm, respectively. See also Video S2 in the Supplemental Material [28].
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uqðtÞ ¼ uqð0Þ exp
�
−

V�

3uqð0Þ
ðqemÞ2t

�
: ð2Þ

As with BLDs, the contact line relaxation of TLLs
has a single exponential form with a relaxation time,
τq ¼ 3uqð0Þ=V�ðqemÞ2. We show in Fig. 3(a), the temporal
change of the contact line induced by the coalescence of a
small TLL with a large one at T ¼ −1.6 °C (see also Video
S3 in the Supplemental Material [28]). Figure 3(b) shows
its amplitude to be uq. The change in uq is found to be well
fitted by Eq. (2). As a result of fitting, we obtained
τq ¼ 50.7� 1.2 s. Employing em ¼ 9� 3 nm and q−1 ∼
uqð0Þ ¼ 6.32� 0.09 μm (from fitting), we obtained
V� ¼ 0.2� 0.1 m=s. This value is smaller than that of
bulk water, 42.21 m=s. It is worth mentioning that γt
(interfacial tension of TLL/air) is almost identical to γb
(that of BLD/air) due to the presence of coexisting TLLs
and BLDs (see Fig. 5 in Ref. [16]). In this state, the
following force balance holds at the contact line among
TLLs, BLDs, and vapor: γt ¼ γb cos θ0 ∼ γb (θ0 ≪ 1),
where θ0 is a contact angle of BLDs on TLLs. Thus,
although the absolute values of the interfacial tension and
shear viscosity are unknown, the shear viscosity of TLLs is
almost 10 times larger than that of BLDs.
So far, we have ignored water slippage (or a slip length

b) on ices. However, ranging up to tens of nanometers in
some cases, b would be of significance not only to
hydrodynamics on boundaries [37], but also to wetting
dynamics [38]. Here we briefly remark on the validity of

our assumption (b ¼ 0). Recently, Huang et al. [39]
demonstrated in their numerical simulations, a simple
scaling relation between the contact angle of water droplets
and the slip length: b ∝ ð1þ cos θÞ−2, and thus, b ∼ 0 on
hydrophllic surfaces. Hence, b ¼ 0 in QLLs is true because
of θ ¼ 2.0° even for BLDs.
In summary, we have quantitatively evaluated the char-

acteristic velocity of QLLs in both the BLD and TLL states
from in situ observations of the wetting dynamics of QLLs
on ices. We analyzed the relaxation mode of the contact
line. We have demonstrated that the characteristic velocity
of TLLs is approximately 200 times smaller than that of
bulk water while that of BLDs is 20 times smaller than the
bulk value. This implies that the closer QLLs are localized
on the ice surface, the more strongly the dynamics of QLLs
are affected. Furthermore, the spreading dynamics of QLLs
tells us that the thickness of TLLs is 9� 3 nm, which is
experimental support for the existence of the local mini-
mum in the effective interfacial potential [34].
In this study, we characterized the macroscopic nature of

QLLs on the basis of in situ experiments. On the other
hand, the microscopic nature (at a molecular scale) and its
link to the dynamical modulation by ice surfaces still
remain elusive. Recently, although at a metal interface,
Limmer et al. numerically demonstrated the slowing down
and dynamical heterogeneity of water molecules associated
with their structural ordering by water-metal interaction
[40], which likely explains the microscopic origin of our
results. Moreover, the coarse-grained (local order param-
eter) approach to ice-water interfaces [14] would provide
insight into the dynamic nature of QLLs. In our system,
similar experiments on prism and other high-index faces
will be a promising way in the next step. The local structure
and dynamics of liquid water at and near ice interfaces are
supposed to be different, depending on the types of faces of
ice crystals, which may affect the value of V� significantly.
Novel experimental approaches allowing direct readout of
the microscopic properties of QLLs, for example, sum
frequency generation microscopy, are also highly desirable
in the future.
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Supplemental Material: In situ determination of surface tension-to-shear viscosity
ratio for quasi-liquid layers on ice crystal surfaces
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THE SPREADING DYNAMICS OF A
QUASI-LIQUID LAYER

It is well-recognized that spreading of non-volatile liq-
uids universally obeys the so-called Tanner’s law [1]. In
this case, the radial evolution of a sessile droplet (con-
tact angle decay) follows a power law form as r ∝ t1/10

(θ ∝ t−3/10), whose small exponent stems from the pres-
ence of a precursor film emerging ahead of the nominal
contact line [2, 3]. For the spreading of QLLs, however,
such a precursor film has not been confirmed in the early
and intermediate stages even though our advanced mi-
croscopy is fully capable of visualizing the film itself. The
absence of the precursor film leads to a change in the ex-
ponent in Tanner’s law. In the followings, we derive a
new equation describing the spreading dynamics without
the precursor film under the lubrication approximation
[4].

We revisit a force, F , acting at a contact line. During
the spreading, the contact line of the droplet is stretched
outward by F = γSV − γSL − γ cos θ, where θ is the
dynamic contact angle during the spreading (Here θ �
1), and γSV , γSL and γ are the solid/ gas, solid/liquid
and liquid/gas interfacial tensions, respectively. Using
the definition of spreading coefficient, S = γSV −γSL−γ,
we can rewrite F as

F = S + γ(1− cos θ) ∼ S +
1

2
γθ2. (1)

Spreading means a transformation into the TLL state (a
complete wetting state, S >0). Here due to θ � 1, we
focus on the case of F ∼ S. This should balance the
viscous force of the wedge, FV = 3lηθ−1V (V being the
velocity of the contact line) [3], which gives V as the
following relation:

V =
θS

3lη
. (2)

The volume of the droplet, Ω = (π/4)θr3, is conserved
during the spreading. Thus, from the relation of dΩ/dt =

0, we obtain the following differential equation:

3

r

dr

dt
= −1

θ

dθ

dt
. (3)

Using the relation of V = dr/dt and r = Lθ−1/3 (L being
(4/π)1/3), Eq. (3) can be rewritten as

dθ

dt
= − S

lLη
θ

7
3 . (4)

Then we obtain as its solution the temporal decay of θ
during the spreading, as

θ =
(4

3

S

lLη
(t+ t0)

)− 3
4

, (5)

where t0 = 3lLη/4Sθ
−4/3
0 is determined by the initial

condition of the droplet (here θ0 being the contact an-
gle at the start point of the spreading). Furthermore,
because of r = Lθ−1/3, we can easily obtain the radial
evolution of the droplet as follows:

r = L
(4

3

S

lLη
(t+ t0)

) 1
4

. (6)

Finally, we note that the precursor film appears in some
of the BLDs as TLL states only in the late stage. How-
ever, here we do not deal with the dynamics in the late
stage due to the complex effects of supersaturation which
significantly assists the radial growth of TLLs(see Fig.
2(c)).
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