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Abstract 

Preparation and characterization of titanium silicalite-1, RHO zeolite 

and CHA zeolite membranes 

Zeolite membranes have attracted increasing attention in separation and/or 

membrane reactor fields, because of their thermal and chemical stability, and high 

separation performance. The MFI zeolites partially replaced framework Si4+ with 

some heteroatoms, such as titanium silicalite-1 (TS-1), exhibit catalytic activity for 

some reactions. Recently we have developed the membrane reactor through TS-1 

membrane on porous tubular supports, which could combine the catalysis reaction of 

selective oxidation of IPA with H2O2, with the membrane separation through TS-1 

membrane. The selective separation of CO2 from natural gas and flu gas is of great 

potential importance, both in increasing the energy efficiency and in carbon capture. 

RHO and CHA zeolite can separate CO2 from CH4 with the remarkable selectivity on 

the basis of pore diameter and selective adsorption. Zeolite RHO and CHA membrane, 

therefore, have greatly potential for application on CO2 separation.  

In this thesis, we devoted our attention to investigate the preparation and 

application of three types of zeolite membranes such as TS-1, RHO and CHA 

membrane. This thesis was divided into 7 chapters. Introduction section was arranged 

in Chapter 1. Chapter 2 offered a detailed elucidation on the optimization of the 

preparation process of TS-1 membrane and on the catalytic performance of the 

resulting membranes. Chapter 3 and Chapter 4 were concerned with the preparation 

and characterization of RHO membrane in the presence of organic structural directing 

agent (OSDA) and in the absence of OSDA, respectively. Chapter 5 offered a new 

fluoride route that was adopted for the preparation of CHA zeolite (Si/Al = 2.5 3.5) in 

the absence of OSDAs. Chapter 6 displayed a novel post-modification method using 

imidazolium-based room temperature ionic liquids (RTILs) precursors to patch CHA 

membrane defects for improving CO2/CH4 selectivity. Chapter 7 summarized the 

main results and conclusions obtained in this thesis.  
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In chapter 2, the TS-1 membrane with high catalytic activity was prepared on 

porous mullite tubular support by in-situ hydrothermal synthesis with the synthesis 

recipe of SiO2: 0.031Titanium n-butoxide: 0.35Tetrapropylammonium hydroxide: 28 

H2O. Optimized preparation process displayed well reproducibility. Supplementary 

addition of H2O2 to the synthesis solution after removals of bubbles in preparation 

process had great effect on the catalytic performance of as-synthesized TS-1 

membrane. Furthermore, the pretreatment of support may have effect on the 

morphology of surface zeolitic layer of TS-1 membrane.  

In chapter 3, pure RHO membrane with high density and well intergrowth have 

been prepared on the surface of porous -Al2O3 tube support using 18 Crown 6 as 

OSDA. Fluoride salts such as NaF have great effect on the morphologies of RHO 

crystals and lead to well intergrowth of RHO zeolite crystals. Fluoride may favor the 

crystallization of RHO zeolite as a mineralizing agent. Higher content of organic 

template (18C6/Al2O3=5) may lead to form a dense intergrowth RHO zeolite crystal 

layer. 

In chapter 4, an organic template-free route for synthesizing RHO membranes by 

the secondary growth method is provided. RHO zeolite membrane showed CO2/N2

and CO2/CH4 ideal selectivities higher than the Knudsen selectivities. On the other 

hand, the ideal CO2/N2 selectivities were smaller than the reported adsorption 

selectivities. Contribution of non-zeolitic permeation is one reason for the smaller 

selectivity. Diffusivity of CO2 is suspected to be small in RHO zeolitic pores due to 

the strong affinity lowering the CO2-selectivity of RHO membranes. RHO 

membranes showed dehydration performance in water/ethanol and water/isopropanol 

separations. The highest separation factor obtained for water/isopropanol was 1390 at 

an isopropanol feed concentration of 95 wt% with a total flux of 0.77 kg m-2 h-1. The 

membrane showed similar separation properties after 30 hours of total testing time, 

suggesting robustness of the membrane. 

In chapter 5, CHA membranes were prepared in the absence of OSDAs. The 

crystallization kinetics of the fluoride-derived CHA and the effects of gel SiO2/Al2O3

ratio, gel F-/SiO2 ratio, fluoride source and synthesis temperature on the morphology 
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and composition of crystals were investigated. A certain amount of the specific 

fluoride source (NH4F) dominated the crystallization of CHA phase in the competitive 

growth of MER/CHA phases. The fluoride-derived CHA by in-situ synthesis had a 

particle size of 15- -in-gel synthesis increased the crystallization rate 

and resulted in the smaller crystals with higher BET surface area and micropore 

volume. The location of fluorine anion in zeolite framework and the role of fluoride 

salts on CHA crystallization were also demonstrated. 

 In chapter 6, the novel precursors were used for membrane surface modification for 

CHA membranes. Imidazolium-based room temperature ion liquids (RTIL) were 

effectively grafted on membrane surface by silylation reaction in order to reduce the 

numbers and sizes of the defects, and thus CO2/CH4 selectivies of the membranes 

were greatly improved. The influences of the type of the cation of RTILs, the type of 

the balanced anions and treatment conditions on membrane performance were studied. 

CO2/CH4 selectivity of modified membranes was mostly depended on the type of the 

balanced anion of RTILs, which indicates that the adsorption properties of RTILs over 

CO2 are important for CO2/CH4 separation by membranes.
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Chapter 1   General Introduction 

1.1 Zeolite 

Zeolites are porous aluminosilicalite which have uniform, molecular-sized pores 

(0.2-2 nm). The framework is composed of four-connected SiO4 or AlO4 tetrahedral 

as TO4 units, where the tetrahedral framework T atom could also be substituted by B, 

Ge, Fe, P, Ti etc. Zeolite can be classifed as small pore, medium pore and large pore 

microporous materials. Small pore structures have six, eight or nine membered rings, 

medium pore structures have ten membered rings, and large pore zeolites have twelve 

membered rings.[1] Zeolites could application on adsorption, catalytic and 

ion-exchange due to their unique selective adsorption, high surface area, excellent 

chemical and thermal stability. MFI-, LTA- and FAU- type zeolites are common 

structures that attract tremendous interest both in academic and industry. NaA zeolite 

(LTA-type) with an equal framework Si/Al ratio that has extremely hydrophilic 

property, which has been brought into the market for application in dehydration of 

alchol solution by prepared as a supported membrane material. Titanium silicalite-1 

(TS-1) with MFI structure is an excellent catalyst for some oxidation reactions with 

hydrogen peroxide as oxidant under mild conditions.  

Zeolites are usually synthesis from the gel mixture of silica source, aluminum 

source, alkali and/or an organic structure directing agents (OSDA), and the 

mineralizing agents (hydroxyl or fluoride anions) by hydrothermal treated at the 

temperature from 373 to 473 K.[2,3]  

1.1.1  Zeolite Titanium Silicalite-1 

  Titanium Silicalite-1(TS-1) is a crystalline zeotype material in which substitution of 

Si by Ti and formed tetrahedral [TiO4] into silicalite-1 framework with a MFI 

structure.[4] TS-1 was the most noticeable due to its high activity and chemical 
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stability in a wide range of oxidation reactions, such as selective oxidation of small 

molecules of alcohols, alkanes, epoxidation alkenes, hydroxylation of aromatics and 

ammoximation of cyclohexanone to cyclohexanone oxime with H2O2 under mild 

conditions. [5-15] The catalytic activity displays strong size dependence because of 

the catalytic reaction mainly take place inside the zeolite pores. The smaller particles 

(less than 300 nm) lead to higher activity due to its larger specific outer surface area 

and less pore diffusion limitation.[16] TS-1 could be prepared by hydrothermal 

synthesis using tetraethylorthotitanates (TEOT) as titanium source, tetraethyl 

orthosilicalite (TEOS) as silicon source,  tetrapropylammonium hydroxide (TPAOH) 

as organic template.[6] 

Figure 1-1. Framework type MFI viewed along [010].[17] 

1.1.2 Zeolite RHO 

Zeolite RHO has a small pores (0.36 nm ×3.6 nm), a relative low Si/Al ratio (2.5-5) 

and very high pore volume (0.26 cm3 g-1, the pore volumes of 0.36 cm3 g-1 if no pore 

space is taken up by extra-framework cations).[17] A remarkably high CO2/CH4

adsorption selectivity of RHO zeolite is reported, which is originated from the smaller 

zeolitic pore size than the size of CH4 molecule (0.38 nm), strong affinity to CO2 and 

the high pore volume.[18] 

Zeolite RHO displayed good catalytic property for selective synthesis of 
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dimethylamine from ammonia and methanol.[19-24] Zeolite RHO has great potential 

for application as a CO2 selective adsorbent or as a hydrogen storage material due to 

its flexibility framework.[25-28] RHO zeolite could be synthesized through the 

hydrothermal technique both in the presence of organic structural directing agents 

(OSDAs) and in the absence of OSDAs.[28-31] But it is difficult to obtain the pure 

single phase unless under the conditions of free of impurities without using 

18-crown-6 as OSDA. Pure zeolite RHO crystals could be much easily obtained using 

18-Crown-6 ether (1,4,7,10,13,16-hexaoxacyclooctadecane) as OSDA. [28, 31] 

However, OSDAs should be removed beforehand the applications of RHO zeolites. 

High cost and the calcination may leads to the formation of defects in/among crystals.  

Pure RHO zeolite has been synthesized successfully in the absence of cesium cations 

using polydiallyldimethylammonium chloride (PDADMAC) as the template agent. 

However, the crystallization time need as long as 8 60 days.[32] 

Figure 1-2. Framework type RHO viewed along [001].[17] 

1.1.3 Zeolite CHA 

CHA-type molecular sieve framework owns a 3-dimensional interconnected pore 

system with 8-membered ring windows (3.8 Å×3.8 Å) and a relatively low framework 

density (15.1 T/1000 Å3). Low-silica (chabazite), high-silica (SSZ-13) CHA zeolites 

and silicoaluminophosphate-34 (SAPO-34) that belongs to CHA-type molecular 

sieves have attracted many attentions for applications of the separation and catalysis, 



4 

in the form of powder and membrane. SAPO-34 molecular sieve was an important 

catalyst for methanol-to-olefins process. Chabazite and SSZ-13 zeolite were utilized 

to absorb CO2 [33] and to catalysis NOx to NH3.[34] Chabazite, and (K, Na, Li, Mg, 

Ca, Ba) ion-exchanged versions of chabazite, have been used in adsorption based 

processes for air purification and CO2 capture from combustion flue gases by Webley 

and co-workers.[35, 36] Also, in patents assigned to Air Products and Chemicals.[37, 

38] 

Figure 1-3. Framework type CHA viewed along [010].[17] 

1.2  Zeolite membrane

 Zeolite membranes have been investigated in various applications, including gas 

separations, such as carbon dioxide and hydrogen recovery, liquid separations such as 

dehydration, catalysis as membrane reactor due to their uniform, molecular-size pores, 

excellent thermal, high mechanical and chemical stability. MFI type zeolite is the 

most studied type of zeolite membranes for gas separations, [39-48] while various 

other types, such as LTA[49-51], MOR[52-57], FAU[58-62], CHA[63-67], MEL[68], 

AFI[69], FER[70], BEA[71], GIS[72], ANA[73], DON[74], OFF[75] and ATN[75] 

have aslo been employed as separation membranes. 

1.2.1  Synthesis of zeolite membranes 

Zeolite membranes are usually prepared by in-situ hydrothermal synthesis and 

secondary (or seeded) hydrothermal synthesis method. Hydrothermal synthesis 
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involves crystallization of a zeolite layer onto a porous support from a gel that is 

usually composed of water (deionized or distilled water), silica source (colloidal silica, 

tetraethyl orthosilicalite or fumed silica powders), aluminum source (aluminium 

hydroxide, sodium aluminate, aluminium nitrate or aluminum sulfate), organic 

structural directing agents, and sometimes a mineralizing agent (sodium hydroxide, 

potassium hydroxide or fluoride salts). It consists of placing a suitable support in 

contact with a precursor gel or clear solution in an autoclave. The hydrothermal 

reaction time, temperature, and gel composition for crystallization depend on the 

different type of zeolites. Generally, porous mullite, alumina or stainless steel tubes or 

discs are often used as supports. 

In-situ hydrothermal synthesis is the most common method used to prepare 

supported zeolite membranes. Zeolite crystals nucleate on the surface of support and 

then grow to form a continuous zeolite film under hydrothermal conditions. The 

hydrothermal synthesis conditions such as gel compositions, hydrothermal reaction 

temperature and time, and template wipe-off have great effect on the synthesis of high 

quality zeolite membranes. Crystals could also nucleate in the bulk solution, which is 

not preferred as competitive growth and the crystals grow on the surface of support 

may be very difficult.   

The secondary (or seeded) growth method is an effective technique for the 

preparation of high quality supported zeolite membranes. Zeolite nucleation is largely 

decoupled from zeolite growth by depositing or coating or vacuumed seeding a layer 

of zeolite seed crystals for the promotion of nucleation of crystals on the support 

surface. The coating methods include rub-coating zeolite powders by hands or 

dip-coating or vacuumed seeding zeolite particles in suspension with a relative low 

pH environment. Generally, the secondary growth method requires much more dilute 

synthesis solution (a diluted precursor gel or solution may avoided or weaken 

homogeneous nucleation in bulk solution), lower synthesis temperature and shorter 

synthesis time as compared with in-situ hydrothermal synthesis. It is much easy to 

preparation of much dense, well intergrowth and continuous zeolite film on the 
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surface of support using secondary hydrothermal growth technique since it decouples 

nucleation from growth.  

1.2.2  Separation mechanism of zeolite membrane 

Zeolite membranes separate mixtures by molecular sieving, selective-adsorption 

and differences in diffusion rates. For the molecular sieving, larger molecules are 

excluded from the pores due to their size, while smaller molecules can diffuse through 

the pores. As for the selective adsorption, the adsorbed molecules are effectively 

transported through the membrane. The separation mechanism for water/organic 

separations is mainly by selective-adsorption due to the hydrophilic/hydrophobic 

nature of zeolites. The third separation mechanism rely on differences in diffusion 

rates, molecules with high diffusivity may be separated from the slower diffusing 

molecules. 

Figure 1-4. Three mechanisms for separation in a zeolite membrane 

In addition to zeolite pores, zeolite membranes with reasonable separation 

performance have non-zeolitic defects such as inter-crystalline boundaries. The 

adsorption diffusion mechanism also applies to these defects. In addition, Knudsen 

diffusion contributes to transport through pores larger than 2 nm.  
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1.3 Applications of zeolite membranes

1.3.1  Application on gas separation 

High volume discharge of CO2 into the atmosphere due to consumption of large 

amounts of fossil fuels has become one of the most serious global environmental 

problems. Separation and recovery of CO2 from natural gas and flue gas are, therefore, 

of great interest. Due to the membrane separation is energy-efficient, selective 

removal of CO2 from flue gas and natural gas by means of membrane separation has 

been studied very actively. Zeolite membranes grew on porous substrates become 

good candidates for CO2 separation from natural gas due to its unique molecular sieve, 

selective absorption and high thermal and mechanical stabilities. 

CO2 separation has been reported for membranes of different type of zeolite 

frameworks with different pore size and adsorption properties. Many kinds of zeolite 

membranes such as FAU-type (12-ring large pore), MFI-type (10-ring medium pore) 

and ERI-type, DDR-type and CHA-type (8-ring small pore) were reported to 

application in CO2 separation. Hasegawa et al. [76] reported an FAU-type zeolite 

membrane with a CO2/CH4 selectivity of 28 and CO2/N2 selectivity of 78 at 308K.  

Bernal et al.[77] using stainless steel tubular supported MFI-type (ZSM-5) 

membranes for the separation of CO2/N2 mixtures and obtained a CO2/N2 separation 

factor of 13.7 with a permeance of 2.6 × 10 6 mol (m2 s Pa) 1. Cui et al. [78] reported 

a porous tubular supported T-type zeolite membrane displayed extremely CO2/CH4

separation selectivity of 400 and had a CO2 permeance of 4.6 × 10 8 mol (m2 s 

Pa) 1 at a pressure drop of 0.1 MPa. Tomita et al.[79] prepared a DDR membrane had 

a CO2/CH4 selectivity of 280 and a CO2 permeance of 7 × 10 8 mol (m2 s Pa) 1 for the 

CO2/CH4 mixture. Zhou et al.[67] prepared a SSZ-13 (high silica CHA) zeolite 

membrane displayed a very high CO2/CH4 selectivity of 300 and had a high CO2

permeance of 2.9 at 0.2 MPa feed pressure. 

Zeolite membrane also received great attract for H2 separation. MFI-type zeolite is 
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the most studied type of zeolite membranes for H2 separations due to its pore size and 

ease of preparation. Tang el al.[80] modified a MFI-type zeolite membrane by 

catalytic cracking of methyl diethoxysilane and the modified zeolite membrane 

displayed a H2/CO2 perm-selectivity of 68 and had a H2 permeance of 2.94 × 10 7 mol 

(m2 s Pa) 1. Wang el al. [81,82] prepared a highly stable bilayer MFI-type zeolite 

membrane exhibited H2 permeance of 1.2 × 10 7 mol (m2 s Pa) 1 and H2/CO2, H2/CO 

and H2/H2O vapor selectivity of 23, 28 and 180, respectively.

1.3.2  Application on organic liquid separation

Separation of water from organic component 

General, hydrophilic zeolite membranes are used for dehydration from organics due 

to their strongly water adsorption property, while the hydrophobic zeolite membranes 

are often used to separate organics from water. The LTA-type zeolite membranes are 

highly selective in the separation of water from organic solutions because of their 

extremely hydrophilic and their suitable pore size (smaller than water but larger than 

most organic molecules). The hydrophilic NaA (LTA-type) zeolite membranes with 

excellent pervaporation performance have been applied in industry for dehydration 

from alchol solution by Mitsui Engineering and Shipbuilding Co. Ltd.[83] However, 

NaA zeolite membranes have low acid resistance because of its low framework Si/Al 

ratio. Some kinds of zeolite membranes with much higher Si/Al ratios with fine 

hydrophilicity and relative acid-stability, such as T-, X- , Y-type and ZSM-5 are also 

used for removed water from alchol solutions. However, the fluxes and separation 

factors are generally low because of their medium or larger pore size for these 

membranes. Zeolite membranes with small pores and medium framework Si/Al ratios, 

such as MOR-type (have large channels of 0.67 × 0.7 nm but with hydrophilic small 

channels of 0.26 × 0.56 nm, with a framework Si/Al ratios of 5-6) and CHA-type 

(0.38 nm pore size, with a framework Si/Al ratios of 2- ) zeolite membranes would 

be much preferred for the separation of water in water-rich and acidic surroundings 

mixtures because of their suitable pore size, good hydrophilic property and high 
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chemical stability. 

Separation of organic compounds from water 

Highly hydrophobic zeolite membranes, such as MFI-type (silicalite-1[84], 

ZSM-5[85]), and -type[86] have been used to separate organic compounds from 

water. Hydrophobic silicalite-1 membrane is possible to concentrate bioethanol due to 

its high pervaporation performance in the separation of an ethanol/water mixture, 

which has an important potential to replace the extremely energy consuming 

distillation process. 

Lin et al. [47] reported a tubular supported Silicalite-1 membrane with a 14 mol/m2

h flux and an ethanol/H2O separation factor of 106 for a 5 wt. % ethanol/water feed at 

333 K. Matsuda et al.[87] reported a silicone-coated silicalite-1 membrane with a 

higher separation factor (125), but a significantly lower flux (3.7 mol/m2 h) for a 4 wt.% 

ethanol/H2O feed at 303 K. 

Organic/organic mixtures 

Zeolite membranes have been employed to separate organic mixtures due to its 

selective adsorption and/or suitable molecular size pores. Methyl tert-Butyl Ether 

(MTBE) is an important organic that often used as a gasolines additive. It usually 

made from isobutylene and methanol.[88] MTBE is more organophilic than methanol. 

High hydrophobic silicalite-1(0.55 nm pore size) membrane could be used to separate 

methanol (0.39 nm) from MTBE (0.62 nm) due to molecular sieving and selective 

sorption. Sano et al.[89] prepared a silicalite-1 zeolite membrane that displayed high 

methanol perm-selectivity from methanol/MTBE mixtures. High hydrophilic FAU 

(0.73 nm pore size) zeolite membrane could also be used to separate methanol from 

MTBE due to an adsorption/diffusion mechanism. Kita et al.[90] showed that NaY 

(FAU) zeolite membrane could separate methanol from methanol/MTBE mixture 

with a high separation factor (10,000 ) for a 5 wt.% methanol/MTBE feed at 323 K. 

1.3.3 Application on chemical catalytic reaction 

Zeolite membranes are also promising for catalytic membrane reactor processes 
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where the separation process integrated with catalytic reaction can improve reaction 

selectivity by selectively removing one of the products from the reaction mixture or 

by the controlled addition of a reactant through the membrane. The reaction 

conversion also can be improved by removing one of the products in equilibrium 

limited reaction.  

Jeong et al.[91] reported a porous -Al2O3 tube supported FAU-type zeolite 

membrane used in the selective separation of benzene and hydrogen from 

cyclohexane. The conversion of cyclohexane in the FAU-zeolite membrane reactor 

improved from 32.2% (calculated equilibrium value) to 72.1% at 473K due to the 

simultaneous removal of hydrogen and benzene from the reaction site. Ying et al. [92] 

reported a novel Fe-ZSM-5 zeolite membrane for catalytic wet peroxide oxidation of 

phenol in a membrane reactor. The phenol conversion reached as high as 95% with Fe 

loading around 25% at the temperature of 353 K. Lu et al.[93] reported a titanium 

silicalite-1 membrane for the hydroxylation of phenol to hydroquinone and catechol 

and displayed a high selectivity for phenol (> 95%). Salomón et al.[94] used 

mordenite and NaA zeolite membranes to selective-removal of water produced in the 

esterification of methyl-tert-butyl ether (MTBE) from tert-butanol and methanol. The 

conversions obtained in the zeolite membrane reactor were higher than the 

equilibrium predictions.  

1.4  Scope and objective of this work 

  In this thesis, we will study the preparation and application of titanium silicalite-1 

(TS-1) membrane, RHO membrane and CHA membrane. The research emphasis will 

be of the preparation of TS-1 membrane and the application it in some oxidation. To 

study the PV-aided catalytic performance of titanium silicalite-1 (TS-1) membrane, 

optimization the preparation process of TS-1 membrane, especially to improve the 

reproducibility. These research results and discussions will be listed in chapter 2. 

Zeolite RHO is able to successfully separate CO2 from CH4 with the highest 



11 

selectivity ever observed on the basis of pore diameter and surface polarity as many 

researchers reported, but as we know from literatures that it has yet no open report 

about the preparation of RHO membrane. We will try to prepare RHO membrane on 

porous mullite and -Al2O3 tubular support by hydrothermal method in the presence 

of organic structure directing agent (18 Crown 6 ether) or in the absence of any 

organic template, and its single gas and PV performance will be test. The related 

results will be written in chapter 3 and 4. CHA zeolite (Si/Al=2.5-3.5) will be 

prepared in the absence of organic structural directing agents (OSDAs) by in-situ and 

seeded synthesis. The crystallization kinetics of the fluoride-derived chabazite and the 

effects of gel SiO2/Al2O3 ratio, gel F-/SiO2 ratio, fluoride source and synthesis 

temperature on the morphology and composition of crystals will be investigated. The 

related results will be written in chapter 5. A novel post-modification using 

imidazolium-based room temperature ionic liquids (RTILs) precursors was designed 

to patch CHA membrane defects for improving CO2/CH4 selectivity. The influences 

of the type of the cation of RTILs, the type of the balanced anions and treatment 

conditions on membrane performance will be study. The related results and 

discussions will be written in chapter 6. In chapter 7 the main results and conclusions 

obtained in this thesis will be reviewed.  
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Chapter 2 Catalytic ctivity of Titanium Silicalite-1 Crystals and 
Tubular Supported TS-1Membrane 

2.1 Introduction 

TS-1 zeolite has MFI structure containing Ti4+ in the framework with a media pore 

system (0.55 nm).[1] TS-1 is known as an efficient catalyst for selective oxidation of 

small molecules of alcohols, alkanes, epoxidation alkenes, hydroxylation of aromatics 

and ammoximation of cyclohexanone to cyclohexanone oxime with H2O2 under mild 

conditions.[2-8] 

However, one disadvantage limit TS-1 zeolite powder application as catalyst, 

which is the difficulty in recovering the nano-size powders from the catalytic reaction 

mixture.[9-12] The supported TS-1 membrane as a catalytic membrane reactor can 

successfully resolve this problem and what s more important is that it can make the 

reaction process continuous. When TS-1 membrane is used for the catalysis reaction 

under pervaporation condition, the substrate molecules are transported to the outer 

surface of a zeolite layer and diffuse into the channels of TS-1 crystal and be adsorbed 

on the active sites, and thus undergo reactions over active sites of the zeolite.[13]  

There are few reports on the supported TS-1 membrane due to the difficulty in 

preparation.[14] TS-1 films and membranes have been prepared on monoliths [15, 16] 

and other supports[17-20] by different synthesis methods. Our group have devoted to 

many efforts on the preparation of porous tubular supported TS-1 membrane for years. 

Nowadays, some results have been sketchily reported, including the separation ability 

of TS-1 membrane prepared by hydrothermal and microwave method and the 

catalytic activity of TS-1 membrane prepared by hydrothermal method.[21, 22] A 

thorough investigation is necessary for further understanding the property of TS-1 

membrane and optimizing the preparation process of TS-1 membrane to improve the 

reproducibility. In this work, the effect of reaction condition of the oxidation of IPA 

on the catalytic activity of TS-1 membrane and the reproducibility of TS-1 membrane 
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was studied. 

2.2 Experiment  

2.2.1 Materials and Instrumental 

Preparation of zeolite membranes was carried out in titanium autoclaves at a certain 

temperature under autogeneous pressure. Silicon and titanium sources were tetraethyl 

orthosilicalite (TEOS, Aldrich, 98wt%), titanium n-butoxide (TBOT, Aldrich, 

97wt%), respectively. Tetrapropylammonium hydroxide (TPAOH, Kanto Chem. Ltd., 

20.3 wt % in H2O) was used as template. Deionized water was obtained from a 

Milipore Mill-Q purification system. 

Mullite tubes with an average 

used as supports. The powders collected from the bottom of the autoclave were 

characterized by X-ray diffraction (XRD, SHIMADZU XRD-

radiation, Fourier transformed infrared (FT-IR, JASCO FT/IR-610) spectroscopy 

using KBr pellets technique and UV vis spectroscopy (JASCO, V-500). 

The compositions of the feed and permeate were analyzed by a gas chromatograph 

(Shimadzu GC-8A) for the IPA oxidation reaction.  

2.2.2 Support tubes pretreatment methods 

Method 1:  

1) Mullite support tubes washed by boiling water for 1h;  

2) Ultrasonic cleaning 10 min for 3 times;  

3) Drying at 353 K for overnight;  

4) Vacuum drying at 473 K for 2h before vertically placed into autoclave for 

hydrothermal synthesis; 
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Method 2:  

1) Polish out surface of the mullite tube supports by NO.600 mesh sand paper; 

2) Ultrasonic cleaning 10 min for 3 times;  

3) Drying at 353 K for overnight; 

2.2.3 TS-1 membrane preparation 

TS-1 membranes were prepared by in-situ method on the surface of porous mullite 

tubes with the synthesis recipe of TEOS: 0.031TBOT: 0.35TPAOH: 28H2O. The 

mixture solution of 3.39g TBOT and 35g water was stirred and cooled to 273 K in an 

ice bath. The TBOT immediately formed a white gelatinous precipitate. After a few 

minutes 20g of 30% H2O2 was slowly added drop-wise into this suspension under 

stirring in ice bath. The white precipitate gradually dissolved under continuous 

stirring in ice bath and the colour of the suspension changed from white via yellow to 

orange. There are amount of bubbles need to remove, which were mainly formed 

during the stirring process for the first 1 hour. About 10g of H2O2 solution was needed 

to supplementary to the clear red orange solution (titanium source) before mixed with 

TEOS and TPAOH solution. A clear deep red orange solution was obtained after 

another 1 hour of stirring under ice bath. Then the above orange solution was added to 

the mixture of 66.9g TEOS, 110.5g TPAOH and 20.3g deionized water which had 

been stirred rapidly for 1 hour at room temperature. The pre-synthesis clear solution 

need stirring at relative low ambient temperature for about 30 minutes (Stirring 

method 1). When the ambient temperature increased relative high as in summer 

season, the pre-synthesis clear solution need stirring in ice bath for 20 minutes and 

then stirred for another 30 minutes at room temperature (Stirring method 2). The 

resultant mixture was clear pale yellow solution. 

The obtained precursor solutions were poured into the titanium autoclave in which 

supports were mounted and crystallized statically at the pre-set temperature for a 

given time in a convection oven. After crystallization, the autoclave was taken out and 

quenched with water. The membranes obtained from autoclave were washed with hot 
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distilled water and dried at 353 K for overnight, and then were calcined in air to 

remove the template at 773 K for 30 h by using a computer-controlled muffle furnace 

with heating and cooling rates of 0.3 and 0.4 °C/min, respectively.

2.2.4 PV-aided catalysis reaction over TS-1 membranes  

The catalytic performance of the as-synthesized TS-1 membranes was tested by 

pervaporation-aided method (Figure 2-1). The feed aqueous solution mixed with IPA 

and H2O2 with a concentration of 1.67 mol L-1(IPA/H2O2 molar ratio of 1:1), and it 

need heated to 323 K under stirring. Under the PV condition, the catalysis reaction 

would take place when the substrates permeated through the membrane from the feed 

side to the permeation side. Samples of feed and permeation were periodically 

collected and analyzed by gas chromatography. During PV, a proper amount of 

substrates were added into the feed solution at intervals to keep the constant feed 

concentration. The total flux (J) and the conversions of IPA (Conv. IPA) were given 

by using the following criteria: 

tA
mhmkgJ ][ 12 (1) 

Conv. IPA= (Mactone)Permeate/(Mactone+MIPA) Permeate  100                      (2) 

 Where m is the mass of the permeate (kg); A is the effective area of the membrane in 

contact with the feed (m2); t is the permeation time (h); Macetone and MIPA represented 

the molar fraction of acetone and IPA in the permeate side;  
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Figure 2-1. PV-aided catalysis reaction experiment apparatus 

2.3 Results and discussion 

2.3.1 Catalysis reaction over TS-1 powders  

TS-1 powders were collected from the bottom of the autoclave, which were used to 

hydrothermal synthesis of TS-1 membranes. 

Figure 2-2. XRD patterns of (a) MFI seed and TS-1 powders of (b) TS-I, (c) TS-II, (d) TS-III and 
(e) TS-IV. 
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Crystal structures of the powder products were identified by x-ray diffraction (XRD) 

using a SHIMADZU XRD-6100 diffractometer wi . The spectra 

were recorded over the range of Bragg angles 5° 2 45° at a scanning rate of 

0.02° per 10 seconds and the XRD patterns of some representative samples are 

presented in Figure 2-2. In all cases, the patterns showed excellent evidence of MFI 

structure as well as high crystallinity under the synthesis conditions examined. In 

comparison with silicalite-1, the patterns of Ti containing samples show a single 

diffraction peak at 2  of 24.45°, indicating a change from a monoclinic symmetry 

(silicalite-1) to an orthoRHOmbic symmetry (titanium silicalite, TS-1). No other 

phases were detected by XRD. 

Figure 2-3. SEM images of TS-1 powders (a) TS-I powder, (b) TS-II powder, (c) TS-III powder 
and (d) TS-IV powder 
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Table 2-1 IPA catalytic by TS-1 powder 

Acid 

pretreatment

Reaction 

temperature(K)

Perm.IPA0 

(wt.%)

Perm.IPA 

(wt.%)

Conv.IPA 

(%)

TS-I Powder1 Without 323 9.17 6.86 25.19

TS-I Powder2 5M H2SO4 323 8.74 3.16 63.84

TS-1I powder 5M HNO3 323 8.27 1.53 81.50

TS-III powder 5M HNO3 323 8.27 1.91 76.90

TS-1V powder 5M HNO3 333 10.0 1.73 82.70

TS-II powder 5M HNO3 333 10.0 1.81 81.90

recation media IPA:10wt.%, IPA/H2O2(mole ratio=1), IPA=1.67mol/L

mixture solution 50ml

TS-1 powder 0.5g recation time 2h

Catalytic activity in liquid-phase IPA by H2O2 has been investigated in a 100 ml 

batch reactor at reflux conditions (approx. 323 K) in deionized water 50 ml, with 0.5 g 

catalyst, 10 g IPA, and 10 ml H2O2 30 % in H2O. Product analysis was performed 

with a gas chromatograph equipped (Shimadzu GC-8A). All of the as-synthesized 

TS-1 powders with the size around 200 - 300 nm displayed high IPA conversions 

after acid pretreatment.  

The high activity of TS-1 for different catalytic oxidations of hydrocarbons is 

attributed to the selective activation of H2O2 by isolated tetrahedral Ti species in the 

crystalline walls.[23] IR spectrum (Figure 2-4a) shows a characteristic absorption 

peak of the transition metal substituted zeolites at 960 cm-1, indicating the 

incorporation of titanium into the lattice framework. The absence of any other 

hetero-phase of titanium oxide is proved by the UV vis spectrum (Figure 2-4b). An 
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absorption band at 190-220 nm was assigned to the charge transfer of tetrahedral Ti 

species was observed, which indicates four-coordinated tetrahedral Ti species in the 

zeolite framework of TS-1.[24] A well defined absorption band around 310-330 nm 

that is attributed to extra-framework octahedral TiO2 [25] was not observed. No other 

peaks are observed, which demonstrates that there is no octahedral Ti or anatase TiO2. 

Figure 2-4. FTIR pattern (a) and diffuse-reflectance UV vis spectrum (b) of TS-1 powder. 

2.3.2 Catalysis reaction over TS-1 membranes 

The process of preparation of gel solution is very important for the titanium to enter 

effectively into the silicalite framework and form isolated tetrahedral Ti species in the 

crystalline walls, while not TiO2 out of the framework, which has been proved that 

only the titanium in the framework is effective for the oxidation reaction with H2O2. 

[21, 23] If there are differences in the relative rates of hydrolysis of the two alkoxides, 

then the precipitation of solid TiO2 or SiO2 can occur. Monomeric SiO4
4- species 

could formed from Si(OC2H5)4 and keep stable in the presence of high concentration 

of TPA + ions, while avoid SiO2 formed in the mixture solution.[26] But titanium ions 

are not stable in the presence of high concentration of TPAOH with high pH, 

Ti-alkoxides may hydrolyze to Ti-hydroxides, which would lead to form solid TiO2

after calcination.[26] 

200 250 300 350 400

a b 

960 

Wave number /cm-1 Wave length /nm 
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Table 2-2 PV catalytic performance of TS-1 membranes for the oxidation of iso-propanol 
with H2O2

No.

Support 

pretreatment

Method

H2O2

Supplementary 

H2O2

Stirring 

method

Mass present in 

permeate

Total 

flux

Acetone 

product flux

Conversion 

of IPA

(g) (g) Acetone IPA (kg/m2h) (kg/ m2h) %

TS-1 1 15 0 1 4.39 43.25 0.8 0.035 9.2 

TS-2 1 15 0 1 4.95 49.38 0.72 0.036 9.1 

TS-3 1 18 0 1 7.59 9.2 1.22 0.093 45.2 

TS-4 1 18 0 1 7.35 6.65 1.12 0.082 52.5 

TS-5 2 20 7.5 1 5.95 1.41 1.00 0.060 80.84 

TS-6 2 20 7.5 1 6.32 1.83 0.92 0.058 79.5 

TS-7 1 20 10 1 8.04 2.01 1.25 0.101 80.00 

TS-8 1 20 10 1 8.96 1.88 1.3 0.116 82.64 

TS-9 without 20 12.7 2 7.43 13.56 0.92 0.068  35.40 

TS-10 without 20 12.7 2 7.88 16.35 0.94 0.074  32.52 

TS-11 2 20 1.0 2 8.42 2.01 1.01 0.085 80.73

TS-12 2 20 1.0 2 8.60 1.96 1.08 0.093 81.44

TS-13 2 20 7.9 1 6.52 2.38 1.02 0.067 73.26 

TS-14 2 20 7.9 1 6.81 2.42 1.10 0.075 73.78 

TS-15 2 20 9.6 2 8.47 1.47 1.13 0.096 85.21 

TS-16 2 20 9.6 2 9.32 1.68 1.04 0.097 84.72 

TS-17 2 20 8.3 2 7.27 2.82 1.03 0.076 72.52 

TS-18 2 20 8.3 2 7.46 2.47 1.09 0.081 75.12 

TS-19 2 20 7.2 2 8.02 1.91 1.11 0.089 80.77 

TS-20 2 20 7.2 2 7.70 1.96 1.04 0.080 79.71 

Note: synthesis recipe: TEOS: 0.031TBOT: 0.35TPAOH: 28H2O 
   Synthesis condition: 423 K, 72 h. 10 cm mullite tube as support. 
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Figure 2-5. Mass transfer model of reactant molecules through TS-1 membrane reactor [13], and 
SEM images of the membrane of run No. TS-7 (a) surface, (b) cross section and (c) inter-section 

inside. 

The membrane of run No.TS-7 (as seen in Figure 2-5) has large size (larger than 10 

m) and well intergrowth crystals and dense zeolitic layer, which should be 

unfavorable to the catalysis reaction due to the high diffusion resistance and less 

catalytic activity surface area. TS-1 is a silicalite-1 structure that has strong 

hydrophobic property. Larger size of TS-1 crystals or dense zeolitic layer would 

preferential adsorb IPA molecules in TS-1 channel and make some catalytic active 

sites be deactivated due to its dense and thick zeolite membrane layer with IPA 

selective permeantion. This deactivation could be effectively avoided if the size of 

TS-1 crystals were quite small (less than 300 nm), because smaller crystals should 

have higher hydrophilic property resulted from the silanol groups on their larger 

specific surface. As seen in Figure 2-6, the membrane of run No.TS-6 has smaller 

crystals (about 1.5 m) in the surface of mullite support, no zeolitic layer formed and 

the nano-size crystals dispersed well in all vacant spaces, which nearly had an 

equivalent IPA and H2O2 permeation.  
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Figure 2-6. Mass transfer model of reactant molecules through TS-1 membrane reactor [13], and 
SEM images of the membrane of run No. TS-6 (a) surface, (b) cross section and (c) inter-section 

inside. 

2.3.3 Influence of H2O2 concentration 

It is well known that MFI-type zeolites can be crystallized using a wide range of 

H2O/SiO2 ratios. Since TS-1crystals are formed from the solution phase with high 

TPAOH content and low water concentration, the concentration of the active nuclei 

may change on dilution with water.

The addition of 30 wt. % H2O2 solution not only as a role lead titanium n-butoxide 

hydrolysis as stable Ti4+ in the mixture solution, but also as part role of water 

concentration since very low water concentration in the synthesis composition. 

During the process of preparation of titanium source, large amount of bubbles need to 

be removed, which were mainly formed during the stirring of titanium source for the 

first 1 hour. In order to keep constant of water concentration, amount of H2O2 solution 

was needed to supplementary to the clear red orange solution (titanium source) before 

mixed with TEOS and TPAOH solution.  
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Table 2-3 PV catalytic performance of TS-1 membranes for the oxidation of iso-propanol 
with H2O2

No.
H2O2

(g)

Supplementary 
H2O2

Mass present in 
permeate

Total flux
Acetone 
product 

flux

Conversion 
of IPA

(g) Acetone IPA (kg/m2h) (kg/ m2h) %

TS-1 15 0 4.39 43.25 0.8 0.035 9.2
TS-2 15 0 4.95 49.38 0.72 0.036 9.1
TS-3 18 0 7.59 9.2 1.22 0.093 45.2
TS-4 18 0 7.35 6.65 1.12 0.082 52.5
TS-5 20 7.5 5.95 1.41 1.00 0.060 80.84
TS-6 20 7.5 6.32 1.83 0.92 0.058 79.5

Note: synthesis recipe: TEOS: 0.031TBOT: 0.35TPAOH: 28H2O 
     Synthesis condition: 423 K, 72 h. 10 cm mullite tube as support. 

To analysis the PV catalytic performance of as-synthesized TS-1 membranes for 

the IPA conversion from table 2-3, we found that membrane of run No.TS-1 prepared 

by addition few amount of 30 wt. % H2O2 solution (15g) displayed low IPA 

conversion (9.2 %). The membrane of run No.TS-4 was prepared by addition much 

more amount of H2O2 (18g) in the solution of titanium source, which displayed much 

higher IPA conversion (52.5 %). The membrane of run No.TS-5 was prepared by 

further increased the amount of H2O2 from 18g to 20g and supplementary relevant 

amount of H2O2 after remove the bubbles, which displayed relative higher catalytic 

activity with the IPA conversion of 80.84 %. 
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Figure 2-7. SEM images of as-synthesized TS-1 membranes. Surface of (a) TS-1, (b) TS-4 and (c) 
TS-6; Cross section of (d) TS-1, (e) TS-4 and (f) TS-6; Inter section of (g) TS-1, (h) TS-4 and (i) 

TS-6. 

Figure 2-7 shows the SEM images of the as-synthesized TS-1 membranes prepared 

by different H2O2 concentrations. For the membrane of run No.TS-1 (as seen in 

Figure 2-7a), large crystals with size more than 10 m was found on the support 

surface which should be unfavorable to the catalysis reaction due to the high diffusion 

resistance and less catalytic activity surface area. It is not clear why large crystals 

formed on the surface of support with low concentration of H2O2 as the membrane of 

run No. TS-1.  The concentration of the active nuclei may increased since an amount 

of water removed through removals of bubbles. The crystallization rate of the crystals 

may increased and the crystals growth on the surface of support may significantly 

influenced. By comparison with the membrane of run No.6, the membrane of run 

No.TS-4 displayed lower IPA conversion. As seen in Figure 2-7b, e and h, it is 

strange that the membrane of run No.TS-4 existed smaller crystals in surface, no 
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zeolitic layer formed in the surface of mullite support and the nano-size crystals also 

dispersed well in vacant spaces inside the porous mullite support, which should has 

high catalytic activity. For the preparation of the membrane of run No.TS-6, much 

more amount of H2O2 was added and still supplementary H2O2 during the process of 

preparation of pre-synthesis reaction solution, which may lead titanium to enter 

effectively into the silicalite framework and form isolated titanium with four valences 

and also keep constant of water concentration. 

2.3.4 Influence of support pretreatment method 

Table 2-4 shows the IPA oxidation over as-synthesized TS-1 membranes with H2O2. 

The as-synthesized TS-1 membranes prepared by using the un-pretreatment mullite 

support always displayed relative lower IPA conversion. TS-1 membranes with high 

catalytic activity by using the pretreated mullite supports displayed well 

reproducibility. The surface of the mullite tubular support was relative rough so it had 

better to pretreat the out surface of the mullite support. What one seeks to pursue in 

zeolite membrane synthesis, well intergrowth and high density zeolitic layer are aim 

to high quality zeolite membrane with good separation performance. But TS-1 

membrane are used to application as catalysis for selective activation of H2O2 under 

mild conditions. It plays a direct role in the catalytic reaction not as membrane-assisted 

reactors with separation function.  

Well intergrowth and thick zeolitic layer should be unfavorable to the catalysis 

reaction due to the high diffusion resistance and less catalytic activity surface area. 

Pretreatment the support may have effluence on the surface morphology of TS-1 

membrane on the out surface of tubular support, especially for the surface crystal size 

(as seen in Figure 2-8a, 2-8b and 2-8c). 
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Table 2-4 PV catalytic performance of TS-1 membranes for the oxidation of iso-propanol 
with H2O2

No.
Support 

pretreatment
Method

H2O2 

(g) 

Supplementary 
H2O2

Mass present 
in permeate

Total flux
Acetone 
product 

flux

Conversion 
of IPA

(g) Acetone IPA (kg/m2h)
(kg/ 
m2h)

%

TS-7 1 20 10 8.04 2.01 1.25 0.101 80.00
TS-8 1 20 10 8.96 1.88 1.3 0.116 82.64
TS-5 2 20 7.5 5.95 1.41 1.00 0.060 80.84
TS-6 2 20 7.5 6.32 1.83 0.92 0.058 79.5
TS-9 without 20 12.7 7.43 13.56 0.92 0.068 35.40

TS-10 without 20 12.7 7.88 16.35 0.94 0.074 32.52
Note: synthesis recipe: TEOS: 0.031TBOT: 0.35TPAOH: 28H2O 
     Synthesis condition: 423 K, 72 h. 10 cm mullite tube as support. 

Figure 2-8. SEM images of as-synthesized TS-1 membranes. Surface of (a) TS-6, (b) TS-7 and (c) 
TS-9; Cross section of (d) TS-6, (e) TS-7 and (f) TS-9; Inter section of (g) TS-6, (h) TS-7 and (i) 

TS-9. 
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Figure 2-9. The IPA conversions of as-synthesized TS-1 membranes 

The IPA conversions of as-synthesized TS-1 membranes are shown in figure 2-9. 

The porous tubular supported TS-1 membranes with high catalytic activity were 

prepared by in-situ hydrothermal synthesis through the optimized preparation process 

and displayed good reproducibility. 

2.4 Conclusions 

The porous tubular mullite support titanium silicalite-1 membrane with high 

catalytic activity was prepared by in-situ hydrothermal synthesis with the synthesis 

recipe of SiO2: 0.031 TBOT: 0.35 TPAOH: 28 H2O. Optimized preparation process 

displayed well reproducibility. Supplementary addition of H2O2 to the synthesis 

solution after removals of bubbles in preparation process had great effect on the 

catalytic performance of as-synthesized TS-1 membrane. Furthermore, the 

pretreatment of support may have effect on the morphology of surface zeolitic layer of 

TS-1 membrane.   
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Chapte 3 Preparation of RHO Membrane in the Presence of 18 
Crown 6 

3.1 Introduction 

Zeolite membranes have been investigated in various applications, including gas 

separations, such as CO2/CH4 and hydrogen recovery, and liquid separations such as 

dehydration. MFI type zeolite is the most studied type of zeolite membranes for gas 

separations, while various other types, such as A(LTA)[1], Y(FAU)[2,3], T[4], 

DDR[5] and CHA[6,7] membranes have also been reported for their unique 

CO2-selective permeations.  

RHO zeolite is an aluminosilicate zeolite firstly reported by H.E Robson et al.[8], 

-cages via double eight-rings (D8Rs).[9] 

Zeolite RHO has a small pores (3.6 Å ×3.6 Å), a relative low Si/Al ratio (2.5-5) and 

very high pore volume (0.26 cm3 g-1, the pore volumes of 0.36 cm3 g-1 if no pore 

space is taken up by extra-framework cations).[10-12]  

A remarkably high CO2/CH4 adsorption selectivity of RHO zeolite is reported,[13] 

which is originated from the smaller zeolitic pore size than the size of CH4 molecule 

(3.8 Å), strong affinity to CO2 and the high pore volume. The size of RHO zeolitic 

pore is larger than the size of water but smaller than the size of alcohols and other 

organics. Accordingly, RHO membrane is expected to show high separation 

properties in e.g. CO2/CH4 and water/organics mixture separations. However, RHO 

membranes have not been reported in our knowledge. 

With the use of 18-crown-6 ether as organic template agent, the high crystallinity 

and pure RHO zeolite crystals were success to be prepared. RHO zeolite membranes 

were also prepared in the presence of 18Crown6 on the porous mullite, NS-1 and 

-Al2O3 supports. Some key synthesis parameters such as hydrothermal temperature 

and time, different type of support tubes, gel compositions and template wipe-off 

were preliminary investigated. Fluorides (F-) as sole mineralizing agent or the 
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combinative one were reported to accelerate the crystallization of high-silica and 

all-silica zeolites and decrease the crystal defects. The crystallization rate for both 

powdery and membranous zeolites together with crystal morphologies depended on 

the addition amount of fluoride salts. The RHO membrane were prepared by using 

different fluoride salts (NaF, NH4F, HF and KF). The alkalinity has strong influence 

on film growth and crystallinity. The effects of alkalinity of zeolite growth were 

investigated using synthesis solutions containing a mixture of CsOH and NaOH. The 

Cs2O/Al2O3 ratio of the initial gel was kept constant at 0.3, while the concentration of 

OH- was systematically varied. Single gas (H2, CO2, N2, CH4) permeation test were 

utilized to evaluate the separation performance of as-synthesized membranes under 

0.1 MPa at 308 K. 

3.2 Experiment 

3.2.1 Synthesis of RHO zeolite by using 18 Crown 6 as organic structure 

directing agent. 

Zeolite RHO was prepared from a mixture of colloidal silica, sodium aluminate, 

sodium hydroxide, cesium hydroxide, and distilled water using hydrothermal 

synthesis. The starting mixture was prepared by dissolving the organic species (18 

Crown 6, Wako Pure Chemical Industries, Ltd) in distilled water. Sodium hydroxide 

(Wako Pure Chemical Industries, Ltd), the cesium source (Sigma Aldrich, 50 wt. % 

solution) and sodium aluminate (Wako Pure Chemical Industries, Ltd) were 

successively added. After complete dissolution, the colloidal silica (LUDOX HS-40, 

40 wt. % suspension in water) was slowly poured in the thoroughly stirred solution. 

The gel formed was aged at room temperature for 24 h in a closed polypropylene 

bottle under continuous stirring. The composition of the final mixture was prepared 

with a molar ratio of 10 SiO2:1Al2O3:1.8 Na2O:0.3 Cs2O:0.5 18C6:100 H2O. The pH 

of the starting mixture was higher than 13. The crystallization was carried out under 
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static conditions in PTFE-lined stainless-steel autoclaves at 383 K for 48 to 96 hours. 

After hydrothermal treatment, the solids obtained were filtered, washed with distilled 

water until the pH of the filtrate was neutral and then dried at 353 K overnight. 

3.2.2 Synthesis of RHO zeolite by organic template-free method 

The organic template-free RHO crystals were prepared with a synthesis recipe of 

10.8 SiO2:1 Al2O3:3 Na2O:0.4 Cs2O:110 H2O. At first, a certain amount of sodium 

hydroxide was added to deionized water and the mixture was stirred for about 10 min 

for complete dissolving. While stirring, a sufficient amount of cesium hydroxide 

according to the gel formula was added to the solution. Then sodium aluminate was 

added to the solution and was stirred for another 10 min. After that, a sufficient 

amount of colloidal silica was added to the solution, the gel was stirred for 24 hours at 

ambient temperature. Then, the prepared gels were poured into PTFE autoclaves for 

heating 4 days. The products were washed with distilled water until the pH of the 

filtrate was neutral and then dried at 353 K overnight, and then were calcined in air to 

remove the template at 723 K for 6 h by using a computer-controlled muffle furnace 

with a same heating and cooling rate of 1.2 °C/min. 

3.2.3. Synthesis of RHO zeolite membrane. 

The outer surface of porous 10-cm-long mullite and -Al2O3 supports were 

rub-coated with RHO zeolite seeds. The gel was prepared by mixing 18 Crown 6 

(Wako Pure Chemical Industries, Ltd), sodium hydroxide(Wako Pure Chemical 

Industries, Ltd), sodium aluminate(Wako Pure Chemical Industries, Ltd), aqueous 

cesium hydroxide solutions (Sigma Aldrich, 50 wt.% solution), colloidal silica 

(LUDOX HS-40, 40 wt.% suspension in water)  and deionized water. The resulted 

precursor gel had a molar ratio of 10 SiO2:1Al2O3:1.8 Na2O:0.3 Cs2O:0.5 18C6:600 

H2O. After 6 h aging, 300 g gel was placed in an autoclave and two seeded supports 

were vertically immersed into the gel. The hydrothermal synthesis was carried out at 

383 K for a given time. After synthesis, the autoclave was cooled down to room 
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temperature and the as-synthesized membranes were washed using deionized water 

for several batches until the solution become neutral, and dried at 353 K overnight, 

and then were calcined in air to remove the template at 723 K for 6 h by using a 

computer-controlled muffle furnace with heating and cooling rates of 0.2 and 

0.3 °C/min, respectively.

3.2.4 Characterization 

Crystal structures of the powder products and RHO membranes were identified by 

x-ray diffraction (XRD) using a SHIMADZU XRD-

radiation. The spectra were recorded over the range of Bragg angles 5° ° at a 

scanning rate of 0.02° per 10 seconds. The morphology of RHO zeolite powders and 

membranes were observed using the field emission scanning electron microscopy 

(FE-SEM, JEOL JSM 6335F). 

3.3 Results and discussion 

3.3.1 Characterization of RHO crystals and RHO membranes 

Figure 3-1 shows the XRD patterns of as-synthesized solid powders, there is no 

impurity peaks appear in the XRD figure indicated that all of the powders are pure 

RHO crystals. RHO-1 and RHO-3 were prepared by using 18 Crown 6 as organic 

structure directing agent with the gel composition of 10 SiO2:1Al2O3:1.8 Na2O:0.3 

Cs2O:0.5 18C6:100 H2O at 383 K for 2 days, which the difference is that RHO-3 was 

prepared by adding RHO-1 as seeds. It is well known that adding seed crystals of 

directed phases to starting synthesis gels increases the rate of crystallization, and 

shortens the time required for the crystallization to be completed. So, the addition of 

seed crystals to crystallization system can enhance the crystallization rate and 

improve the purity of crystal product. From the XRD and SEM characterization, RHO 

crystals (RHO-3) showed much higher crystallinity by seed-assisted method.  
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Figure 3-1. XRD patterns of as-synthesized powders (a) RHO-1, (b) RHO-2, (c) RHO-3 and (d) 
RHO-4. 

RHO-2 and RHO-4 were obtained from organic free method with the synthesis 

recipe of 10.8 SiO2:1 Al2O3:3 Na2O:0.4 Cs2O:110 H2O at 363 K for 6 days and 373 K 

for 4 days, respectively. Pure RHO phase could be obtained at synthesis temperatures 

from 363 to 373 K. The synthesis time decreased with the increased of synthesis 

temperature for the samples. The size of crystals increased from 0.6 m to 0.8 m as 

the synthesis temperature increased from 363 to 373 K, as shown in Figure 3-2b and d. 

The kinetic of crystallization increased with increase of synthesis temperature, which 

could be the reason for that synthesis time decreased and particle sizes were 

increased.
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Figure 3-2. SEM images of RHO zeolite powder (a) RHO-1, (b) RHO-2, (c) RHO-3 and (d) 
RHO-4. 

  Figure 3-3 shows the XRD patterns of zeolite RHO and tubular RHO membrane. 

Pure and high crystallinity RHO membrane could be prepared with the synthesis 

recipe of 10SiO2:1.0 Al2O3:1.8 Na2O:0.3 Cs2O: 0.5 18C6: 500 H2O: 0.5 NaF at 383 K 

for 6 days. The morphology of membrane was observed with SEM. As shown in 

Figure 3-4, after hydrothermal synthesis, a relative dense zeolite film with a thickness 

of 3 m formed on the outer surface of -Al2O3 tube. The zeolitic layer is composed 

of well intergrown crystals. But unfortunately, some pinholes are clearly to be found 

in the surface of RHO zeolite membrane, which has great influence on the light gas 

separation. As revealed in XRD patterns (Figure 3-3), the membrane only exhibited 

the typical peaks of the RHO structure and -Al2O3, which indicated that the pure 

RHO membrane was prepared by using 18 Crown 6 as organic structure directing 

agent. 
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Figure 3-3. XRD patterns of (a) simulated RHO-type framework, (b) as-synthesized zeolite 
RHO-3 and (c) as-synthesized membrane of RHO-17. 

Figure 3-4. SEM images of the membrane of RHO-17 (a), (b) surface and (c), (d) cross section. 
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Table 3-1 Synthesis compositions and single-gas performance of as-synthesized RHO 
membranes. 

No Support SiO2 Al2O3 Na2O Cs2O 18C6 H2O

Synthesis 

conditions 
F- 

source
F- Seed Phase (XRD)

Single gas Permeance 
Ideal selectivity 

(10-7mol m-2 s-1 Pa-1) 

T (K) Time(d) He H2 CO2 N2 CH4 CO2/N2 CO2/CH4

RHO-1 Mullite 10 1 1.8 0.3 1 600 373 7 -- 0 RHO-1 RHO Leaked 

RHO-2 Mullite 10.8 1 1.8 0 0.5 500 383 6 -- 0 RHO-4 RHO 6.88 12.39 4.01 5.08 5.57 0.79 0.72 

RHO-3 Mullite 10 1 1.8 0.3 0.5 600 393 3 -- 0 RHO-1 RHO Leaked 

RHO-4 Mullite 10 1 1.8 0.3 0.5 600 423 3 -- 0 RHO-1 CHA 

RHO-5 Mullite 10 1 1.8 0.3 0.5 600 383 4 NaF 0.5 RHO-1 RHO  27.74 10.64 15.53 14.92 0.69 0.71 

RHO-6 Mullite 10 1 3 0.4 0.5 600 383 3 -- 0 RHO-2 RHO 11.87 23.14 12.31 17.9 20.05 0.69 0.61 

RHO-7 Mullite 10 1 1.8 0.3 0.5 600 383 3 NaF 0.5 RHO-3 RHO Leaked 

RHO-8 Mullite 10 1 1.8 0.3 1 600 383 3 -- 0 RHO-2 RHO 25.05 1.87 3.17 4.69 0.59 0.4 

RHO-9 Mullite 10 1 1.8 0.3 0.5 600 383 4 NaF 1 RHO-2 RHO 28.94 10.2 14.91 15.82 0.68 0.64 

RHO-10 Mullite 10 1 1.8 0.3 0.5 600 383 4 NaF 2 RHO-2 RHO 28.83 8.96 13.44 15.59 0.67 0.57 

RHO-11 Mullite 10 1 1.8 0.3 0.5 600 383 4 NH4F 0.5 RHO-2 RHO 18.1 6.03 9.29 12.11 0.65 0.50 

RHO-12 Mullite 10 1 1.8 0.3 0.5 600 383 4 HF 0.5 RHO-2 RHO 20.88 5.21 9.72 11.98 0.54 0.43 

RHO-13 Mullite 10 1 1.8 0.3 0.5 600 383 4 KF 0.5 RHO-2 RHO 12.7 1.82 4.14 4.8 0.44 0.38 

RHO-14 Mullite 10 1 3 0.3 0.5 600 383 3 NaF 0.5 RHO-2 RHO 9.32 2.8 3.18 3.5 0.88 0.8 

RHO-15 Mullite 10 1 4 0.3 0.5 600 383 4 NaF 0.5 RHO-2 RHO+CHA

RHO-16 Mullite 10 1 5 0.3 0.5 600 383 4 NaF 0.5 RHO-2 RHO+CHA

RHO-17 a-Al2O3 10.8 1 1.8 0.3 0.5 500 383 6 -- 0 RHO-4 RHO 5.03 6.14 2.09 1.04 0.5 2.02 4.18 

RHO-18 NS-1 10.8 1 1.8 0.3 0.5 500 383 6 -- 0 RHO-4 RHO 6.09 10.31 3.21 3.19 3.98 1.00 0.80 

RHO-19 a-Al2O3 10 1 3 0.3 1 600 383 3 NaF 0.5 RHO-2 RHO 3.25 6.1 1.66 3.73 4.09 0.45 0.41 

RHO-20 a-Al2O3 10.8 1 1.8 0.3 5 500 383 6 NaF 0.3 RHO-4 RHO 0.41 0.66 0.3 0.13 0.16 2.31 1.88 

3.3.2 Single-gas permeance 

Single-gas permeances of He, H2, CO2, N2, CH4 and SF6, measured at 308 K and 

0.1 MPa feed pressure for the membrane of RHO-17, are shown as a function of 

kinetic diameter in Figure 3-3. Since the kinetic diameter of CH4 and SF6 are larger 

than the RHO pore size so that the permeance of them through the membrane of 

RHO-18 mainly by the defective non-zeolite pores contribution. The SF6 permeance 

is 1.12×10-8 mol m-2 s-1, which indicted much amount of defects exist in the zeolite 
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layer.

Figure 3-5. Single gas permeance of the membrane of RHO-17 as a function of kinetic diameter at 
308 K and 0.1 MPa feed pressure.

The pressure dependence of the single-gas permeances for He, H2, CO2, N2, CH4

and SF6 from 0.1 MPa to 0.6 MPa through the membrane of RHO-17 is shown in 

Figure 3-5. As seen in Figure 3-6, the ideal separation factors of CO2 from CH4

determined as the ratio of the single component permeances is 4.18 at the pressure of 

0.1 MPa, which exceed the corresponding Knudsen coefficients (0.60 ). The CO2

permeance decreased slightly with increasing pressure, whereas the CH4 permeance 

increased slightly. The CO2/CH4 ideal selectivity decreased from 4.18 to 0.97 as the 

pressure increased from 0.1 MPa to 0.6 MPa. The CH4 permeance increased slightly 

as the pressure increased, which indicated the relative high concentration of the large 

non-zeolite pores was existed in the membrane of RHO-17.
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Figure 3-6. CO2 and CH4 permeances and CO2/CH4 ideal selectivity for the membrane of RHO-17 
as a function of pressure at 308 K. 

3.3.3 Effect of different synthesis temperature 

Figure 3-7 shows XRD patterns of as-synthesized membranes synthesized at 373, 

383, 393 and 423 K. The results of XRD patterns indicate that zeolite RHO phase are 

formed at synthesis temperatures from 373 to 393 K. Pure and high crystallinity RHO 

zeolitic layer was formed at the synthesis temperature of 383 K for 4 days. As 

synthesis temperature increased to 393 K, the intensity of XRD peaks significantly 

decreased. So, it can be said that synthesis temperature of 393 K is higher than the 

temperature needed to form RHO phase for 4 days of synthesis. Pure CHA phase 

were obtain from the same gel composition at a higher temperature of 423 K. High 

temperature may lead to phase transformation since RHO is a metastable phase.  



51 

Figure 3-7. XRD patterns of as-synthesized membranes prepared as a function of different 
synthesis temperature (a) 373 K-RHO-1, (b) 383 K-RHO-2 (c) 393 K-RHO-3 and (d) 423 

K-RHO-4. 

3.3.4 Effect of coating different crystal seeds 

It is much easy to form continuous zeolitic film by using seeded method, since it 

decouples nucleation from growth by the coated seeds on the surface of supports. The 

morphology and crystal size have great effect on the synthesis of zeolitic layer in the 

surface of porous tube. The mullite tube with 12 mm outer diameter, 1.5 mm 

thickness, 1.3 m average pore size and 10 cm length. Table 3-2 shows the single-gas 

performance of as-synthesized RHO membranes prepared by using different crystal 

seeds. The membrane of RHO-2 displayed relative higher CO2/CH4 ideal selectivity 

and lower CO2 permeance through single gas test, which was prepared by using 

RHOmbus RHO-4 crystal as seeds. From the results of XRD and the SEM 

characterization, RHO-2 and RHO-4 show high crystallinity and has RHOmbus 

morphology with size of 0.6 m and 0.8 m, respectively, whereas the RHO-1 and 

RHO-3 show relative low crystallinity and spheroidal morphology with size of 1.0 m 

and 1.2 m, respectively. It seems that RHOmbus seeds lead to form high crystallinity 

RHO crystals and much dense zeolitic layer in the suface of mullite tube, and the 

mullite tube with 1.3 m average pore size may much match to the RHOmbus seeds 
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with size of 0.8 m.

Table 3-2 Single gas performance of as-synthesized RHO membranes prepared by using 
different crystal seeds at 308 K and 0.1 MPa feed pressure. 

No. Seeds

Synthesis 

conditions Phase(XRD)

Single gas Permeance 

(10-7mol m-2 s-1 Pa-1)
Ideal selectivity

T (K) Time(d) He H2 CO2 N2 CH4 CO2/N2 CO2/CH4

RHO-5 RHO-1 383 4 RHO 27.74 10.64 15.53 14.92 0.69 0.71 

RHO-6 RHO-2 383 3 RHO 11.87 23.14 12.31 17.9 20.05 0.69 0.61 

RHO-7 RHO-3 383 3 RHO Leaked

RHO-2 RHO-4 383 6 R 5.03 6.88 12.39 4.01 5.08 5.57 0.79 

Note: Synthesis recipe:  1.0Al2O3:1.8Na2O:0.3Cs2O:10SiO2:0.5 18C6:500 H2O:0.5NaF. 

3.3.5 Effect of fluoride salts 

It is well known that the addition of fluoride into the starting gel favored the 

crystallization of high-silica zeolites as a mineralizing agent and/or a 

structure-directing agent. It is interesting that different fluoride source may have 

difference effects on synthesis of zeolitic materials. The NaF remaining in the 

MOR-type zeolite crystals considerably reduces the thermal stability while the NH4F 

remaining in the beta (BEA) zeolite crystals relatively improves the thermal stability. 

The addition of NH4F in synthesis of beta zeolite needs much longer synthesis time, 

but on the contrary, the crystallization rate of zeolite T was greatly improved by 

added NaF. In order to gain defect-free or decrease defect druing preparation of RHO 

membrane, we attempted to synthesis of RHO membrane by using different fluoride 

salts, such as NaF, NH4F, HF and KF. 
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Table 3-3 Single gas performance of RHO membranes prepared by using different fluoride 
salts and different F- /Al2O3 ratios at 308 K and 0.1 MPa feed pressure. 

No. 
F- 

source 
F- 

Synthesis 

conditions
Phase 

(XRD)

Single-gas permeance (10-7mol m-2 s-1

Pa-1) 
Ideal selectivity 

T(K) Time(d) He H2 CO2 N2 CH4 CO2/N2 CO2/CH4

RHO-8 - 0 383 3 RHO - 25.05 1.87 3.17 4.69 0.59 0.4 

RHO-5 NaF 0.5 383 4 RHO - 27.74 10.64 15.53 14.92 0.69 0.71 

RHO-9 NaF 1.0 383 4 RHO - 28.94 10.2 14.91 15.82 0.68 0.64 

RHO-10 NaF 2.0 383 4 RHO - 28.83 8.96 13.44 15.59 0.67 0.57 

RHO-11 NH4F 0.5 383 4 RHO - 18.1 6.03 9.29 12.11 0.65 0.50 

RHO-12 HF 0.5 383 4 RHO - 20.88 5.21 9.72 11.98 0.54 0.43 

RHO-13 KF 0.5 383 4 RHO - 12.7 1.82 4.14 4.8 0.44 0.38 

Note: Synthesis recipe:  1.0Al2O3:1.8Na2O:0.3Cs2O:10SiO2:0.5 18C6:500 H2O 

Figure 3-8. XRD patterns of RHO membranes prepared by using different fluoride salts as (a) 
NaF-RHO-5 (b) NH4F-RHO-11 (c) HF-RHO-12 and (d) KF-RHO-13. 

Figure 3-9. SEM images of RHO membranes prepared by using different fluoride salts as (a) 
NaF-RHO-5 (b) NH4F-RHO-11 (c) HF-RHO-12 and (d) KF-RHO-13. 
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Table 3-3 shows the single gas performance of RHO membranes prepared by using 

different fluoride salts and different F- /Al2O3 ratios. As showed in Figure 3-8, typical 

peaks of RHO structure are observed from the XRD patterns of as-synthesized 

membranes. Compare the intensity of the XRD peaks of the RHO membrane prepared 

by using different fluoride salts, the membrane of RHO-5, which were prepared by 

using NaF as fluoride salt displayed relative higher degree of crystallinity. As seen in 

Table 3-3, the membrane of RHO-5, which were prepared by using NaF as fluoride 

salt also displayed a relative higher CO2/CH4 ideal selectivity. Figure 3-10. Showed 

the XRD patterns of RHO membranes prepared as a function of different NaF/Al2O3

ratios. The intensity of the XRD peaks of the RHO membranes synthesis with 

different NaF/Al2O3 ratios is similar.  

Figure 3-10. XRD patterns of RHO membranes prepared as a function of different NaF/Al ratios 
of (a) 0-RHO-8 (b) 0.5 RHO-5 (c) 1.0 RHO-9 and (d) 2.0-RHO-10. 

NaF have effect on the morphologies of RHO crystals and lead to well intergrowth 

of RHO zeolite crystals (as shown in Figure 3-11b and f). However, there were nearly 

no change for the thickness of the as-synthesized RHO zeolitic layer by increased the 

NaF concentrations in initial gel (as seen in Figure 3-11f, g and h). Fluoride may 

favor the crystallization of RHO zeolite as a mineralizing agent.
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Figure 3-11. SEM images of RHO membranes prepared as a function of different NaF/Al2O3 
ratios of (a, e) 0-RHO-8, (b, f) 0.5-RHO-5, (c, g) 1.0-RHO-9 and (d, h) 2.0-RHO-10.

3.3.6 Effect of different Na2O/Al2O3

Among the synthesis variables, initial alkalinity has strong influence on film 

growth and crystallinity. Figure 3-12 illustrates the XRD patterns of RHO membranes 

prepared as a function of different Na2O/Al2O3 ratios. By increased the Na2O/Al2O3

ratios from 1.8 to 3 (as shown in Figure 3-13a and b), the synthesis time reduced 

significant but lead to a relative lower crystallinity. Higher alkalinity may lead to 

slower deposition and poorer crystallinity. Furthermore, zeolite dissolution is known 

to occur at high alkalinity. As the Na2O/Al2O3 ratios further increased, the impurity 

CHA crystal observed (as seen in Figure 3-9c and d). 

Figure 3-12. XRD patterns of RHO membranes prepared as a function of different Na2O/Al2O3
ratios of (a) 1.8-RHO-2, (b) 3-RHO-14, (c) 4-RHO-15, and (d) 5-RHO-16. 
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3.3.7 Effect of different support tubes

For the preparation of supported zeolite membranes, the mismatch in the expansion 

coefficient between the zeolite membrane and the surface of supports have great 

effluence on the quality of zeolite membranes. Figure 3-14 illustrate the SEM images 

of RHO membranes prepared by using different support tubes. As seen in Figure 

3-14e and f, RHO crystals could be well intergrowth on -Al2O3 tube and NS-1 tube. 

RHO zeolite layer growth on the NS-1 porous tube showed well intergrowth but exist 

huge defect as large amount of big cracks, which lead to low CO2/CH4 ideal 

selectivity(as show in Table 3-4). As seen in Figure 3-14b and e, pure RHO 

membrane with high density and well intergrowth has been prepared on the out 

surface of -Al2O3 porous tube support.

Table 3-4 Single gas performance of as-synthesized RHO membranes prepared by using 
different support tubes at 308 K and 0.1MPa feed pressure. 

No. support

Synthesis 

conditions Phase(XRD)

Single gas Permeance 

(10-7mol m-2 s-1 Pa-1)
Ideal selectivity

T (K) Time(d) He H2 CO2 N2 CH4 CO2/N2 CO2/CH4

RHO-2 Mullite 383 6 RHO 6.88 12.39 4.01 5.08 5.57 0.79 0.72 

RHO-17 -Al2O3 383 6 RHO 5.03 6.14 2.09 1.04 0.5 2.02 4.18 

RHO-18 NS-1 383 6 R 6.09 10.31 3.21 3.19 3.98 1.00 0.80 

Note: Synthesis recipe:  1.0Al2O3:1.8Na2O:0.3Cs2O:10SiO2:0.5 18C6:500 H2O:0.5NaF   
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Figure 3-13. XRD patterns of as-synthesized RHO membranes prepared by using different 
support tubes (a) RHO-2 by using mullite support, (b) RHO-17 by using a-Al2O3 tube and (c) 

RHO-18 by using NS-1 tube. 

Figure 3-14. SEM images of RHO membranes prepared by using different support tubes. (a) and 
(d) surface and cross-section of RHO-2 by using mullite tube; (b) and (e) surface and cross-section 
of RHO-17 by using a-Al2O3 tube, (c) and (f) surface and cross-section of RHO-18 by using NS-1 

tube. 

3.3.8 Effect of different 18 Crown 6 content 

Table 3-4 showed the single gas performance of as-synthesized RHO membranes 

prepared by different 18 crown 6 (OSDA) content at 308 K and 0.1 MPa feed pressure. 

The membrane prepared by using higher content of organic template lead to lower 
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CO2 permeance but with relative higher CO2/CH4 ideal selectivity. Figure 3-15 

showed the single gas permeance of the membrane of RHO-19 as a function of 

different kinetic diameter at 308 K and 0.1 MPa feed pressure. Before calcination, the 

He permeance was 3.0×10-10 mol m-2 s-1 and the CH4 permeance was 6.9×10-11mol 

m-2 s-1 at 308 K and 0.5 MPa feed pressure. It demonstrated that the membrane of 

RHO-19 with low amount of defects since any slight gas was difficult to pass through 

it even though be dehydrated under a vacuum at 473 K for overnight. Unfortunately, 

the membrane of RHO-19 may be broken during the calcination process since the 

CH4 permeance was increased from 6.9×10-11mol m-2 s-1 to 7.4×10-7mol m-2 s-1. The 

membrane of RHO-19 may be damaged through the calcination process.  

Figure 3-15. Single gas permeance of membrane RHO-19 as a function of kinetic diameter at 308 
K and 0.1 MPa feed pressure. 

Table 3-4 Single gas performance of as-synthesized RHO membranes prepared by different 
18 crown 6 (OSDA) content at 308 K and 0.1 MPa feed pressure 

No. 
18Crown 

6

Synthesis 

conditions
Phase 

(XRD)

Single-gas permeance (10-7mol m-2 s-1

Pa-1) 
Ideal selectivity 

T(0C) Time(d) He H2 CO2 N2 CH4 CO2/N2 CO2/CH4

RHO-17 0.5 110 6 RHO 5.03 6.14 2.09 1.04 0.5 2.02 4.18 

RHO-19 1.0 110 6 RHO 3.25 6.1 1.66 3.73 4.09 0.45 0.41 

RHO-20 5.0 110 6 RHO 0.41 0.66 0.3 0.13 0.16 2.31 1.88 

Note: Synthesis recipe: 1.0Al2O3: 1.8Na2O: 0.3Cs2O: 10SiO2: (0.5-5) 18C6: 500 H2O. 
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Figure 3-16. SEM images of the membrane of RHO-20 (a) surface and (b) cross section. 

3.4 Conclusions 

Pure RHO membrane with high density and well intergrowth have been prepared 

on the outer surface of -Al2O3 porous tube support using 18 Crown 6 as organic 

structure directing agent. NaF have effect on the morphologies of RHO crystals and 

lead to well intergrowth of RHO zeolite crystals. Fluoride may favor the 

crystallization of RHO zeolite as a mineralizing agent. Higher content of organic 

template (18C6/Al2O3=5) may lead to form a dense intergrowth RHO zeolite crystal 

layer. 
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Chatper 4 Preparation of RHO Membrane by Organic 
Template-free Method 

4.1 Introduction 

Zeolite membranes have been investigated in various applications, including gas 

separations, such as CO2/CH4 and hydrogen recovery, and liquid separations such as 

dehydration.  MFI type zeolite is the most studied type of zeolite membranes for gas 

separations, while various other types, such as A(LTA),[1] Y(FAU),[2, 3] T,[4] DDR[5]

and CHA[6,7] membranes have also been reported for their unique CO2-selective 

permeations.  

RHO zeolite is an aluminosilicate zeolite firstly reported by H.E Robson et al.,[8] 

which is consisted by a connection of -cages via double eight-rings (D8Rs).[9]

Zeolite RHO has a small pores (0.36 nm ×0.36 nm), a relative low Si/Al ratio (2.5-5) 

and very high pore volume (0.26 cm3 g-1, the pore volumes of 0.36 cm3 g-1 if no pore 

space is taken up by extra-framework cations).[10-12]  

A remarkably high CO2/CH4 adsorption selectivity of RHO zeolite, 75.2 at approx.. 

100 KPa at ambient temperature, is reported,[13] which is originated from the smaller 

zeolitic pore size than the size of CH4 molecule (0.38 nm), strong affinity to CO2 and 

the high pore volume. The size of RHO zeolitic pore is larger than the size of water 

but smaller than the size of alcohols and other organics. Accordingly, RHO zeolite 

membrane is expected to show high separation properties in e.g. CO2/CH4 and 

water/organics mixture separations. However, RHO zeolite membranes have not been 

reported in our knowledge. 

Pure zeolite RHO crystals could be much easily obtained using 18-Crown-6 as 

OSDA. However, OSDAs should be removed beforehand the applications of RHO 

zeolites. Formation of defects is often reported during the calcination process due to 

the difference in thermal expansion between the zeolite layer and the porous support. 

So we investigated OSDA-free synthesis conditions to prepare tubular supported 
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RHO zeolite membranes. Notably, the OSDA-free method averts calcination. 

Moreover, it also reduces the membrane preparation cost significantly. The properties 

of as prepared membranes were tested in single gas permeation and with 

pervaporation (PV) separations. 

4.2 Experiment 

4.2.1 Synthesis of RHO zeolite seeds 

RHO crystals were prepared by an OSDA-free synthesis gel having a molar 

composition of 10.8 SiO2:1 Al2O3:3 Na2O:0.4 Cs2O:110 H2O.[10] At first, sodium 

hydroxide (Wako Pure Chemical Industries, Ltd) was added to deionized water and 

the mixture was stirred for about 10 min for complete dissolving. Then cesium 

hydroxide (Sigma Aldrich, 50 wt% solution) was added to the solution under stirring, 

after that sodium aluminate (Wako Pure Chemical Industries, Ltd) was added. After 

stirring the solution for another 10 min, colloidal silica (LUDOX HS-40, 40 wt% 

suspension in water) was added to the solution, and the mixture gel was stirred for 24 

hours at ambient temperature. Finally, the prepared gel was poured into PTFE 

autoclaves and heated for 4 days at 373 K. The products were washed with distilled 

water until the pH of the filtrate was neutral and then dried at 353 K overnight. 

4.2.2 Preparation of RHO zeolite membranes 

RHO Zeolite membranes were prepared on the outer surface of 10-cm-length 

porous -Al2O3 tubes porosity: 

43 %, Nikkato Corp.) by OSDA-free secondary growth method. The outer surface of 

porous -Al2O3 supports were rub-coated with water slurry of RHO zeolite seeds. The 

synthesis solution had a molar composition of 10.8SiO2:1Al2O3:3Na2O:0.4Cs2O:110 

(220 or 440) H2O:1HF. At first, sodium hydroxide was added to deionized water and 

the mixture was stirred for about 10 min to dissolve NaOH completely. Then cesium 
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hydroxide was added to the solution under stirring, after that sodium aluminate was 

added. Then the solution, containing aluminum source, was heated  at 353 K for 

about 20 min to dissolve NaAlO2 completely and form a clear solution, then cooled 

down to room temperature. In a separate beaker, hydrogen fluoride was mixed with 

colloidal silica and deionized water. Finally, the aluminum source was mixed with 

silica source. After 12 hours of aging at room temperature, 300 g of gel was placed 

into a stainless steel autoclave. Two pieces of seeded supports were vertically 

immersed into the gel. The hydrothermal synthesis was carried out at 383 K for 6 days. 

After synthesis, the autoclave was cooled down to room temperature and the 

as-synthesized membranes were washed using deionized water for several batches 

until the solution become neutral, and dried at 353 K overnight. 

4.2.3 Characterization 

Crystal structures of RHO membranes were identified by x-ray diffraction (XRD) 

using a SHIMADZU XRD-

were recorded over the range of Bragg angles 5° ° at a scanning rate of 0.02°

per 10 seconds. The morphology of RHO zeolite membranes was observed using the 

field emission scanning electron microscopy (FE-SEM, JEOL JSM 6335F). 

4.2.4 Single gas permeation measurements 

Single-gas permeation was measured as function of pressure using a vacuum 

method for He, H2, CO2, N2, CH4 and SF6, similar to the measurements by Cui et al. 

[4] The effective membrane area was about 19 cm2. The membranes were mounted in 

a stainless steel module, and sealed at each end with three silicone O-rings and two 

stainless steel rings. The feed gas flowed through the gap between membrane outside 

surface and module inside surface. Prior to a series of experiments, the system with 

the membrane was degassed under a vacuum at 473 K for 20 h. The ideal selectivity 

is the ratio of single-gas permeances. 
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4.2.5 Pervaporation

PV performance test for a water/ethanol and water/i-propanol mixtures were carried 

out at 348 K using a PV experimental apparatus described elsewhere.[14] The 

effective membrane area was approximately 22 cm2. The permeated gaseous mixture 

was collected by a cold trap in liquid nitrogen. Composition analysis of the feed and 

permeation were performed using a gas chromatograph (Shimadzu GC-14C) equipped 

with a TCD detector. The membrane separation performance was evaluated by the 

permeation flux [J/(kg m 2 h 1)] and the separation factor ( ). The separation factor 

was determined as A/B = (YA/YB)/(XA/XB) where XA, XB, YA, and YB denote the mass 

fractions of components A and B in the feed and permeate sides, respectively. Specie 

A is preferentially permeated one. 

4.3 Results and discussion 

4.3.1 Characterization of RHO membranes 

The morphology and structure of the RHO seeds and RHO zeolite membrane were 

characterized using SEM and XRD. Fig. 4-1 (b) shows the XRD patterns of 

as-synthesized seeds. All the peaks corresponds to the RHO zeolite (Fig. 4-1 (a)), 

suggesting the seed crystals were free from impurities. The as-synthesized RHO 

crystals displayed a dodecahedron shape with the size of 0.8 m (as seen in Fig 4-2a), 

which is a typical morphology of RHO zeolite prepared from OSDA-free synthesis 

reported in literatures.[10,15] 

RHO zeolites were not formed on the surface of -Al2O3 support when the water 

concentration in the synthesis gel was changed from 110 to 220 and 440 as observed 

by XRD. Dissolution of RHO zeolites seemed to be faster than growth of RHO 

zeolites when dilute solutions were used. On the contrary, RHO zeolite membranes 

synthesized from 10.8SiO2:1Al2O3:3Na2O:0.4Cs2O:110H2O:1HF, only exhibited the 

typical peaks of the RHO zeolite structure and -Al2O3 as shown in Fig. 4-1 (c), 
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which indicated that pure RHO zeolite membrane was successfully prepared from 

OSDA-free synthesis with the synthesis recipe of 

10.8SiO2:1Al2O3:3Na2O:0.4Cs2O:110H2O:1HF. Fig. 4-2b and 4-2c shows the surface 

and the cross-sectional SEM images of RHO zeolite membrane. After hydrothermal 

synthesis, the surface of -Al2O3 tube was completely covered with inter-grown 

crystals. A dense zeolite membrane with a thickness of 1-2 m was formed on the 

support. 

Figure 4-1. XRD patterns of (a) simulated RHO-type framework, (b) RHO seeds, (c) -Al2O3
tubular RHO zeolite membrane and (d) -Al2O3 support. 

Figure 4-2. SEM images of RHO seeds (a), RHO zeolite membrane (b) surface and (c) cross 
section.  

4.3.2 Single-gas performance 

Single-gas permeances of He, H2, CO2, N2, CH4 and SF6, measured at 308 K and 



66 

0.1 MPa feed pressure for the membrane of R1, are shown as a function of kinetic 

diameter in Fig. 4-3. Permeance showed a decrease when the kinetic diameter of the 

gas was close to the pore size of the RHO zeolite, showing the molecular sieving 

effect by the size of zeolitic pores. However, permeation of SF6, having larger kinetic 

diameter than the RHO pore size, was also observed. The result showed the existence 

of two kinds of permeation pathways, zeolitic pores and non-zeolitic pores, in the 

RHO zeolite membrane.  

The ratio of single gas permeances of CH4 and SF6 is about 3.5, which is similar to 

the value expected from the Knudsen mechanism, suggesting both gases mainly 

permeated through the non-zeolitic pores. The contribution of non-zeolitic premeation 

was subtracted from each single gas permeance value by assuming Knudsen 

mechanism and by using the SF6 permeance as a standard. The subtraction was done 

by a following equation: 

, where i, zeolitic is assumed zeolitic permeance of component i, i, total and SF6 are 
the measured permeance of component i and SF6, respectively, and M is a molar 
weigh.  

Figure 4-3. Single gas permeance of the membrane of R1 as a function of kinetic diameter at 0.1 
MPa, 308 K. (closed symbols and solid line: experimental results, open symbols and dashed line: 

estimated zeolitic permeation by subtracting non-zeolitic permeation by assuming Knudsen 
mechanism).  
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A dashed line in the figure shows the permeance values after removing the 

non-zeolitic pore contribution. CO2 permeance through RHO zeolitic pores is 

estimated to be ca. 5.0  10-8 mol m-2 s-1 Pa-1, which is ca. 4-fold smaller compared 

to the reported values with CHA zeolite membranes having similar zeolitic pore size 

as RHO zeolite.[6] RHO zeolite is reported to show CO2/N2 adsorption selectivity 

over 48.9.[16] On the contrary, the ratio of permeance values of CO2 and N2, after 

subtracting the non-zeolitic permeation, is about 2.8. The much smaller CO2/N2

permeation selectivity suggests more than 10 times faster diffusivity of nitrogen than 

CO2 in RHO zeolitic pathways. CO2 diffusion may be limited by the strong affinity of 

CO2 to RHO zeolite. 

Influence of adsorbed water to the zeolitic pores may not be negligible. Reisner [17] 

reported that the Pb-RHO could not completely dehydrated under a gentle heating 

conditions as 473-573 K. In this study, Cs-RHO zeolite membranes were pre-heated at 

473 K under vacuum beforehand the gas permeation tests. The pre-treatment 

temperature was decided by the heat stability of sealing materials. The pre-treatment 

conditions may not be enough to open complete the zeolitic pores, resulting relatively 

low gas permeance.

Figure 4-4. CO2 and CH4 permeances and CO2/CH4 ideal selectivities for the membrane of R1 as 
a function of pressure at 308 K. 

Fig. 4-4 shows the pressure dependence of the single-gas permeances for CO2 and 
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CH4 from 0.1 MPa to 0.6 MPa. The CO2 permeance decreased with increasing the 

feed pressure, suggesting a contribution of surface diffusion. On the contrary, the CH4

permeance nearly kept constant, as it permeated mainly through the non-zeolitic pores 

with a Knudsen mechanism. The CO2/CH4 ideal selectivity decreased from 6.8 to 3.3 

as the feed pressure increased from 0.1 MPa to 0.6 MPa. 

4.3.3 Effect of different support tubes 

Figure 4-5 illustrate the SEM images of RHO membranes prepared by using 

-Al2O3 tube and mullite tube. As seen in Figure 4-5a and 4-5c, pure and thin RHO 

membrane with high density and well intergrowth could be prepared on the outer 

surface of -Al2O3 porous tube support. It was difficult to form a well intergrowth 

zeolitic layer on the surface of mullite porous tube. The RHOmbus RHO crystals 

seems pile together through the cross section of zeolitic layer for the membrane R2, 

which prepared by using mullite tube as support. It is similar for the synthesis of RHO 

membrane by using the organic structure directing agent, -Al2O3 porous tube seems 

much suitable for synthesis of high quality RHO membrane. 

Figure 4-5. SEM images of RHO membranes prepared by using different support tubes (a) and (c) 
surface and cross section of R1 prepared by using -Al2O3 tube; (b) and (d) surface and cross 

section of R2 prepared by using mullite tube. 
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4.3.4 Effect of water concentration

Table 4-1 shows the single-gas performance of RHO membranes prepared on the 

-Al2O3 tubes with different H2O/Al2O3 ratios. Since the initial gel was very dense 

with the H2O/Al2O3 ratios of 110, we try to dilute the synthesis solution for the 

optimization. From Table 4-3, the more diluted synthesis solution was not suitable for 

preparation of the RHO membranes with high separation factors compared with the 

H2O/Al2O3 ratio of 110. The sample prepared with H2O/Al2O3 ratio of 200 was 

leaking after 7 days of hydrothermal treatment, suggesting that under the present 

synthesis conditions the solution was too diluted. It is clear that the high H2O/Al2O3

ratio would not result in a continuous crystal layer because not only fewer nuclei were 

directly formed on the surface or attached onto the support surface from the solution, 

but also the limited nutrients were provided for their crystal growth. On the other 

hand, with a much more diluted H2O/Al2O3 ratio of 440, no crystal was found on the 

support. 

Table 4-1 Single gas performance of RHO membrane synthesis as a function of different 
water contents at 308 K and 0.1 MPa feed pressure. 

No. H2O

Synthesis conditions

Phase(XRD)

Single gas Permeance 

(10-7mol m-2 s-1 Pa-1)
Ideal selectivity

T (0C) Time(d) He H2 CO2 N2 CH4 CO2/N2 CO2/CH4

R1 110 110 6 RHO 0.29 0.57 0.54 0.23 0.08 2.35 6.75

R3 200 110 7 RHO Leaked

R4 440 110 7 -Al2O3 Leaked

Note: synthesis recipe: 10.8 SiO2:1Al2O3:3 Na2O:0.4 Cs2O: (110-440) H2O. 

     10-cm-porous -Al2O3 tubular as support. 

4.3.5 Pervaporation performance 

Even if the zeolitic pores are partially plugged by water during the gas permeation, 
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the plugging of water will not affect the water permeation.[18] Therefore, the 

membrane performances were checked by PV. Table 1 shows PV performance of 

water/organics through RHO zeolite membranes. Results of three membranes are 

shown in the table. All the as-synthesized RHO zeolite membranes showed 

water-selective permeation from water/ethanol and water/isopropanol mixtures.  

Table 4-2 Pervaporation performance of RHO zeolite membranes for 10/90 wt% 
Water/Organics. 

No. Water/Organics 
Water content in 

permeation (wt%) 

Total 

Flux(kg/m2·h)

Separation 

factor 

1 1 

R1 
Water/ethanol 98.04 

0.76 

 (0.72)*

473 

 (503)* 

Water/isopropanol 98.70 0.92 730 

R2 
Water/ethanol 97.93 0.72 450 

Water/isopropanol 98.17 0.89 501 

R3 
Water/ethanol 97.22 0.81 340 

Water/isopropanol 97.61 0.99 389 

Note: * measured at the end of PV tests of different feed compositions 
Synthesis recipe: 10.8SiO2:1Al2O3:3Na2O:0.4Cs2O:110H2O:1HF; Synthesis condition: 383 K, 6 d 

Influence of the feed composition was examined further with the membrane of R1. 

After several pervaporation experiments, with total test time over 30 hours, the 

water/ethanol PV performance was retested. Both the total flux and separation factor 

showed almost the same values as fresh membranes as seen in Table 4-1, indicating 

that the robustness of a RHO zeolite membrane. Fig.5 shows the change in permeate 

flux and separation factor as a function of the ethanol feed concentration and 

isopropanol feed concentration. The total flux was about 0.83 kg m-2 h-1 at 85 wt% 

ethanol composition and it decreased to 0.62 kg m-2 h-1 at 95 wt% ethanol 

composition with an increase of the ethanol concentration in the feed. But the 

separation factor was increased from 280 to 1010 over the range from 85 to 95 wt% 
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composition. The total mass flux increased as the isopropanol feed concentration 

increases, which is similar as in the water/ethanol systems and a maximum separation 

factor of 1390 is observed at a feed concentration of 95 wt%. The decrease in total 

flux with increasing ethanol concentration is due to a large decrease in ethanol flux. 

The isopropanol flux decreases as the isopropanol concentration increases although 

the changes are very small. It decreases from about 0.015 to 0.012 kg m-2 h-1 when the 

isopropanol concentration increases from 85 to 95 wt%. 

Figure 4-6. Effect of (a) ethanol and (b) isopropanol feed concentration on total flux and 
separation factor. 
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Fig. 4-6 shows permeances of water and alcohols as a function of feed 

concentration in molar ratio. Water permeance values obtained from PV tests with 

ethanol and isopropanol solutions were almost the same, suggesting water permeation 

was not hindered by the co-existing alcohols. The pore size of Rho zeolite is smaller 

than the size of alcohols and, thus, only allows water entering into. As large part of 

water permeated through zeolitic pores, and as alcohols cannot enter the zeolitic pores, 

the influence of co-existing alcohol on water permeance was negligible. Permeation 

of ethanol and isopropanol showed a contribution of non-zeolitic permeation as 

suggested with SF6 permeation. Non-zeolitic pathways may have been generated 

during the drying step at 473K beforehand the gas permeation tests, but the PV results 

showed as-synthesized membranes have some defects already. 

Figure 4-7. Effect of feed water concentration on the water and alcohol (ethanol/isopropanol) 
permeabilities for RHO zeolite membrane. ( :water partial permeance in water/ethanol,

:ethanol partial permeance in water/ethanol, :water partial permeance in water/isopropanol,
:isopropanol parital permeance in water/isopropanol)

4.4 Conclusions 

RHO zeolite membranes (0.36 nm pore diameter) were synthesized by using 

OSDA-free method on the outer surface of porous tubular -Al2O3 supports.  

CO2 permeation through as-synthesized RHO zeolite membrane suggested a 
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contribution of surface diffusion. Accordingly, RHO zeolite membrane showed 

CO2/N2 and CO2/CH4 ideal selectivities higher than the Knudsen selectivities. On the 

other hand, the ideal CO2 selectivities were smaller than the reported adsorption 

selectivities. Contribution of non-zeolitic permeation is one reason for the smaller 

selectivity. Diffusivity of CO2 is suspected to be small in RHO zeolitic pores due to 

the strong affinity, resulting in inversed diffusion selectivity for CO2 and lowering the 

CO2-selectivity of RHO zeolite membranes.  

RHO zeolite membranes showed dehydration performance in water/ethanol and 

water/isopropanol separations. The highest separation factor obtained for 

water/isopropanol was 1390 at an isopropanol feed concentration of 95 wt% with a 

total flux of 0.77 kg m-2 h-1. The membrane showed similar separation properties after 

30 hours of total testing time, suggesting robustness of the membrane. 
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Chapter 5 Synthesis of Low-silica CHA Zeolite Chabazite in 
Fluoride Media without Organic Structural 
Directing Agents and Zeolites 

5.1. Introduction 

CHA-type molecular sieve framework owns a 3-dimensional interconnected pore 

system with 8-membered ring windows (3.8 Å×3.8 Å) and a relatively low framework 

density (15.1 T/1000 Å3). Low-silica (chabazite), high-silica (SSZ-13) CHA zeolites 

and silicoaluminophosphate-34 (SAPO-34) that belongs to CHA-type molecular 

sieves have attracted many attentions for applications of the separation and catalysis, 

in the form of powder and membrane. SAPO-34 molecular sieve was an important 

catalyst for methanol-to-olefins process.[1] Chabazite and SSZ-13 zeolite were 

utilized to absorb CO2 [2] and to catalysis NOx to NH3 [3]. Falconer and Noble group 

fabricated SSZ-13 zeolite [4] and SAPO-34 membranes [5,6] for light gas separation. 

SAPO-34 membrane exhibited a high CO2 permeance [1×10-6 mol/(m2 s Pa)] and 

high CO2/CH4 selectivity (70) even at 4.6 MPa at room temperature [6]. Hasegawa et 

al. reported that chabazite membrane showed excellent dehydration performance for 

water/alcohol mixtures [7].  

CHA-type zeolites were usually synthesized using OH- as mineralizing agent and 

adding either organic-structure-directing agents (OSDAs) or zeolite phases as seeds. 

On the other hand, OSDA-free synthesis shows advantages on cheap preparation 

without a necessity for calcination of the product. The calcination always leads to the 

formation of defects in/among crystals, especially for membranous zeolites. Chabazite 

crystals were also prepared by interzeolite conversion of zeolite HY [8] and 

MER-type zeolites [9], in which all silica and alumina sources came from crystalline 

zeolite phases. Very recently, we modified such interzeolite conversion method and 

utilized a small amount of heterogeneous seeds (i.e. nanosized zeolite T); however, 

this induced the formation of a large amount of amorphous aluminosilicate in the 
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product [10]. Hasegawa et al. [11,12] prepared the supported chabazite membranes by 

secondary growth using a strontium salt as additive. However, the MER-type phases 

always occurred in the crystal layers [12]. To our best knowledge, the OSDA-free and 

zeolites-free synthesis for pure CHA-type zeolite phase have not yet been reported. 

Fluorides (F-) as sole mineralizing agent or the combinative one were reported to 

accelerate the crystallization of high-silica and all-silica zeolites and decrease the 

crystal defects [13-20]. High-silica CHA zeolite [19,20] was also prepared using 

fluoride route in the presence of TMAdaOH. NMR and X-ray diffraction methods 

have been utilized to characterize the location and local structure of the F- ion in the 

as-synthesized high-silica and all-silica zeolites [21,22]. Attfield et al. [23] 

summarized three types of F- ion environments found in siliceous zeolites: (i) as part 

of an ion pair; (ii) in the center of a small cage far from any Si atoms; and (iii) 

coordinated to a Si atom to form a part of a pentacoordinated SiO4/2F- units.

Few studies, however, reported the preparation and especially the role and location 

of F- ion in view of low-silica zeolites. In our previous studies, we made zeolite T and 

mordenite crystals and membranes in fluoride media [24-26]. The crystallization rate 

for both powdery and membranous zeolites together with crystal morphologies 

depended on the addition amount of fluoride salts. In the current study, we reported a 

new fluoride route to in-situ prepare low-silica CHA zeolite (chabazite) in the absence 

of OSDAs and seeds. The role and location of fluoride ion were also clarified. 

5.2. Experiment 

5.2.1. Synthesis of chabazite using fluoride route 

Ammonium fluoride, sodium fluoride and potassium fluoride were purchased from 

Sigma-Aldrich as fluoride source. Unless otherwise especially specified, ammonium 

fluoride was the standard fluoride additive. To prepare the reaction mixtures 

(hydrogels) having the batch molar compositions: 1SiO2: xAl2O3: 0.39K2O: yNH4F: 
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35H2O, where x varies from 0.05 to 0.33, and y varies from 0.1 to 0.5 (see Table 1), a 

certain amount of aluminum hydroxide (Wako Chemicals) was dissolved in alkaline 

solution containing 7.0 g of potassium hydroxide (Shanghai Qinxi Chemicals) and 

67.6 g of demineralized water, under heating at 353 K. After cooling down, a certain 

amount of ammonium fluoride and Ludox TM-40 colloidal silica (Sigma-Aldrich, 40 

wt. % SiO2 water suspension) were added in the clear alkaline aluminate solution. The 

resulting mixture was stirred at room temperature for 6 h to form a milk-like hydrogel. 

The produced hydrogel was then divided among needed number of Teflon-lined 

stainless-steel autoclaves and hydrothermally treated at 433 K for various times (see 

Table 1). After hydrothermal treatment the product was separated by centrifuging, 

washed with demineralized water until pH of centrifuged solution was 7 and dried at 

373 K overnight. Chabazite was also prepared by seeded synthesis by adding 

chabazite seeds with 0.5% of the weight of the entire reaction mixture under the same 

synthesis conditions with reduced synthesis time.  

5.2.2. Ion-exchange of the as-synthesized chabazite 

The as-synthesized chabazite was ion-exchanged to the calcium form. 2 g samples 

were dispersed in 200 ml 2 mol/l calcium chloride solution in a flask equipped with a 

condenser. The ion-exchange procedure was carried out under reflux and stirring for 

24 h at 333 K. The ion-exchanged samples were separated by centrifugation. The 

ion-exchange procedure was repeated three times with the fresh solution. The final 

sample was washed four times with de-ionized water and dried at 373 K overnight. 

The ion-exchanged ratio was expressed by the two times mole ratio of Ca2+ divided 

the sum of two times mole ratio of Ca2+ and mole ratio of K+ in the EDX results of the 

ion-exchanged sample.   
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5.2.3. Zeolite characterization

X-ray diffraction patterns of the solid powders were recorded on a Rigaku Ultima 

IV X-ray diffractometer using Cu-K . The morphology of the crystals was 

observed by field-emission scanning electron microscopy (FE-SEM, Hitachi 

SU-8020). The element analysis of samples was measured by inductively-coupled 

plasma optical emission spectroscopy (ICP, Varian 725ES) and energy dispersive 

X-ray analysis (EDX, Bruker Quantax 200). The relative crystallinity of the solid 

products was calculated by comparing the sum of intensities of the desired sample 

with the standard sample (runs No. 5 in Table 1) for the typical peaks at 2 = 9.4, 20.5 

and 30.5°. 

The 27Al , 29Si and 19F magic-angle spinning nuclear magnetic resonance (MAS 

NMR) spectra of the zeolite powders were recorded at 104.2 , 79.5 and 376.8 MHz, 

respectively, using a zirconia rotor of 4 mm diameter, on a Bruker Advance III 400 

WB spectrometer. The rotor was spun with dry air at 4 kHz for 29Si MAS NMR, at 15 

kHz for 27Al MAS NMR and at 30 kHz for 19F MAS NMR. The spectra were 

accumulated with 3 s pulses, 2 s recycle delay and 1024 scans for 27Al MAS NMR 

and with 4.5 s pulses, 40 s recycle delay and 1024 scans for 29Si MAS NMR. 19F 

MAS NMR was recorded at 2.6 s pulses, 30 s recycle delay and 2000 scans. 

Al(NO3)3·9H2O , Si(CH3)4 (TMS) and CFCl3 were used as chemical shift reference 

for 27Al, 29Si and 19F MAS NMR, respectively.  

5.3. Results and discussion 

5.3.1. The crystallization process of chabazite  

Figure 5-1 shows the XRD patterns of the products prepared using fluoride route as 

a function of synthesis time. The crystallinity of bottom solids increased with 

synthesis time from 0 to 72 h (runs No. 1 to 5; see Table 5-1), and was independent of 

synthesis time from 72 to 120 h (runs No. 5 to 7; see Table 5-1). The typical peaks of 
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crystalline solids were quite close to the peaks of reported CHA framework [11,27], 

which indicated that our products were pure CHA phase. The crystallization processes 

of the CHA-type zeolite prepared by in-situ (runs No. 1 to 7; see Table 5-1) and 

chabazite-seeded (runs No. 8 to 17; see Table 5-1) synthesis were illustrated in Figure 

5-2. The induction period for the in-situ synthesis was as long as 24 h, which was 3 

times longer than that for chabazite-seeded synthesis. Meanwhile, the crystallization 

rate for the seeded synthesis was much higher than that for the in-situ synthesis. It 

suggests that the chabazite seeds supply effective nuclei for zeolite crystallization, by 

which both the nucleation rate and the nuclei number are greatly increased. The 

differences in crystallization curves of this chabazite by the in-situ and seeded 

methods were consistent to those for MFI crystals [28]. This conclusion was also 

supported by their SEM observations in Figure 5-3. Chabazite crystals (run No. 13; 

see Table 1) obtained by the seeded method for 24 h (Fig. 3f) had a walnut-like shape 

and the crystals (run No. 5; see Table 5-1) obtained by the in-situ method for 72 h 

(Figure 5-3b) had the similar shape. However, the crystal size of the former (~7 µm) 

is much smaller than that of the latter (~20 µm). The mass of as-synthesized crystals 

from seeded gel was just 20% higher than that from in-situ gel. The increased mass of 

the product almost corresponded to the added amount of chabazite seeds. Thus, the 

number of the crystals that were prepared by seeded method was much larger than 

that of the crystals prepared by in-situ method, which could be attributed to the nuclei 

effects of the chabazite seeds in gel. Crystal size increased slightly with the increase 

of synthesis time for both kinds of chabazite by in-situ and seeded synthesis. The 

walnut shape for the crystals tended to change to disk-like shape when synthesis time 

increased either from 24 to 72 h by seeded synthesis (Figure 5-3f-h), or from 72 to 

120 h by in-situ synthesis (Figure 5-3b-d). In these two systems, the morphology 

changes occurred just after crystallization equilibrium as observed from Figure 5-2. 

At these courses after crystallization equilibrium, the rate of crystal growth is also 

equal to that of zeolite dissolution. However, the rate of dissolution is in general 

proportional to the surface area of the dissolving solid [29]. The disc-like crystals with 
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less surface area have more chances to survive than the walnut-like crystals when the 

hydrothermal treatment was prolonged.   

Figure 5-1. XRD patterns of (a) simulated CHA-type framework, and fluoride-derived crystals 
prepared by in situ synthesis at 433 K for (b) 24, (c) 30, (d) 36, (e) 48, (f) 72, (g) 96 and (h) 120 h 

(runs No. 1 7; see Table 1), respectively. 

Figure 5-2. Crystallization curves of chabazite by (a) in situ synthesis (runs No. 1 7; see Table 1) 
and (b) chabazite-seeded synthesis (runs No. 8 17; see Table 1). 
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Table 5-1 The summary of synthesis conditions and the properties of as-synthesized solids. 

No. 

Synthesis condition Product 

F-

source 
SiO2/Al2O3

a ratio 
F-/SiO2

a

ratio 
Temp. 
( K) 

Time 
(h) 

Si/Al ratio Size 
( m)b Phasec

ICP EDX 

1 NH4F 5 0.3 433 24 - - - Am 
2 NH4F 5 0.3 433 30 - - - Am (CHA)d

3 NH4F 5 0.3 433 36 2.4 2.2 20-30 CHA (Am) 
4 NH4F 5 0.3 433 48 2.4 2.2 20-30 CHA 
5 NH4F 5 0.3 433 72 2.5 2.3 20-30 CHA 
6 NH4F 5 0.3 433 96 2.4 2.2 20-30 CHA 
7 NH4F 5 0.3 433 120 2.4 2.1 20-30 CHA 
8 NH4Fe 5 0.3 433 6 - - - Am 
9 NH4Fe 5 0.3 433 9 - - - Am 
10 NH4Fe 5 0.3 433 12 - - - Am (CHA) 
11 NH4Fe 5 0.3 433 14 2.4 2.2 5-10 CHA (Am) 
12 NH4Fe 5 0.3 433 18 2.5 2.2 5-10 CHA (Am) 
13 NH4Fe 5 0.3 433 24 2.5 2.3 5-10 CHA 
14 NH4Fe 5 0.3 433 36 2.5 2.3 5-10 CHA 
15 NH4Fe 5 0.3 433 48 2.4 2.3 5-10 CHA 
16 NH4Fe 5 0.3 433 72 2.4 2.2 5-10 CHA 
17 NH4Fe 5 0.3 433 96 2.4 2.2 5-10 CHA 
18 NH4F 3 0.3 433 72 2.2 2.1 1-4 LTL 
19 NH4F 10 0.3 433 72 2.7 2.5 15-20 CHA 
20 NH4F 20 0.3 433 96 - - - Am 
21 NH4Fe 3 0.3 433 120 - - - Am 
22 NH4Fe 10 0.3 433 48 2.7 2.5 5-10 CHA 
23 NH4Fe 20 0.3 433 96 3.5 3.3 5-10 CHA  
24 NH4Fe 30 0.3 433 48 - - - Am 
25 NH4F 5 0.3 393 144 - - - Am 
26 NH4F 5 0.3 413 120 2.5 2.3 10-15 CHA 
27 NH4F 5 0.3 453 60 2.4 2.1 15-20 CHA 
28 NH4F 5 0 433 96 2.0 1.8 20-30 MER 
29 NH4F 5 0.1 433 72 2.1 2.0  MER (CHA) 
30 NH4F 5 0.2 433 72 2.3 2.2  CHA (MER) 
31 NH4F 5 0.4 433 72 2.6 2.5 5-10 CHA (Am) 
32 NH4F 5 0.5 433 72 - - - Am 
33 NaF 5 0.3 433 72 2.2 2.1 20-30 OFF 
34 KF 5 0.3 433 72 2.8 2.3 0.5-2 CHA (MER) 

Note: a Chemical composition in the initial gel; b Determined by SEM; c Determined by XRD and SEM; 
d the phase included in brackets is the minor phase; e with the addition of 0.5 wt.% chabazite (runs No. 
5) in synthesis gel. 
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Figure 5-3. SEM images of fluoride-derived chabazite obtained by in situ synthesis at 433 K for 
(a) 36, (b) 72, (c) 96 and (d) 120 h and obtained by chabazite-seeded synthesis for (e) 14, (f) 24, (g) 

48 and (h) 72 h, respectively. 

5.3.2. NMR characterizations  

The fluoride-derived chabazite (run No. 5; see Table 1) were tested by 27Al, 29Si 
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and 19F MAS NMR to investigate the location of fluoride ion. Only one peak at 

approximate 59 ppm was found in 27Al MAS NMR spectrum in Figure 5-4a, 

corresponding to tetrahedrally-coordinated aluminum in framework. There was no 

extraframework aluminum since no peak was observed at 0 ppm. The 29Si MAS NMR 

spectra in Fig. 4b had four peaks at -109, -104, -98 and -93 ppm. These peaks were 

assigned to Si(0Al), Si(1Al), Si(2Al) and Si(3Al) species, respectively [14,30]. The
19F MAS NMR spectra (Fig. 4c) show one significant peak at around -123 ppm 

together with three spinning sideband peaks at -43, -176 and -203 ppm.

Similar to our previous works [24-26], the main peak of our fluoride-derived 

chabazite at -123 ppm was due to the presence of F- counterion in zeolite channel as 

the counterion of K+ and H+ cation. The weak peaks at -43, -176 and -203 ppm were 

probably assigned to spinning sidebands [16]. They can be due to either 19F chemical 

shift anisotropy or homo- or heteronuclear dipole interactions [16].  

Figure 5-4. Solid NMR spectra of fluoride-derived chabazite (run No. 5; see Table 1) (a) 27Al 
MAS NMR (b) 29Si MAS NMR and (c) 19F MAS NMR. Spinning sidebands are marked with 

asterisk. 
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5.3.3. Nitrogen adsorption 

Figure 5-5 shows the nitrogen adsorption-desorption isotherms of as-synthesized 

and Ca2+-ion-exchanged samples. Note that the as-synthesized fluoride-derived 

sample (run No. 5; see Table 5-1) shows only a very low nitrogen adsorption amount 

as shown in Fig. 5a. The adsorption amount of nitrogen in Fig. 5b for the crystals after 

Ca2+ ion exchange increased by one order of magnitude. This adsorption-desorption 

curve was classified as typical Type I curves according to the IUPAC classification, 

which indicated their micropore properties. The low nitrogen loading for the 

as-synthesized CHA-type zeolite crystals was probably attributed to the fact that the 

existence of K+ in the 8-ring small channel strongly hindered adsorption of nitrogen. 

It was consistent to the previously reported K+ and Na+ types of chabazite [10]. The 

chabazite (run No. 13; see Table 5-1) prepared by seeded synthesis and after Ca2+ ion 

exchange had the same Type I adsorption-desorption curve and the highest adsorption 

amount of nitrogen. External surface area for the chabazite (run No. 13; see Table 5-1) 

prepared by seeded synthesis after Ca2+ ion exchange was almost twice larger than 

that for the chabazite (run No. 5; see Table 5-1) by in-situ synthesis (as shown in 

Table 5-2). It was mainly attributed to the smaller crystal size for the crystals by 

seeded synthesis. The seeded sample also had the larger BET surface area than the 

in-situ sample. And the difference in BET surface area was close to the difference in 

external surface area between the two samples, indicating the inner surface areas for 

the both samples are quite close. This conclusion was consistent to the crystallinity 

results in Figure 5-2, where both samples had the similar relative crystallinity. 
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Figure 5-5. Nitrogen adsorption desorption isotherms for (a) fluoride-derived chabazite (run No. 
5; see Table 5-1), (b) fluoride-derived chabazite (run No. 5; see Table 5-1) after ion exchange and 

(c) chabazite by seeded synthesis (run No. 13; see Table 5-1) after ion exchange. 

Table 5-2 Adsorption properties of as-synthesized and ion-exchanged CHA-type zeolite 
crystals. 

a Test by EDX. 
b BET method 
c t-Pot method 
d Volume adsorbed at P/P0=0.99 

5.3.4. Effect of gel SiO2/Al2O3 ratios 

Zeolites were prepared by gel SiO2/Al2O3 ratios from 3 to 30 by in-situ and seeded 

Sample Cation
Exchanged 
ratio (%)a

BET 
Surface 

area 
(m2/g)b

External 
surface 

area 
(m2/g)c

Pore volume (cm3/g)

Totald Microporec

F-derived K+ 0 45 20 0.0387 0.0230 

F-derived, Ca2+-exchanged 
K+, 
Ca2+

55.6 
537 24 0.2292 0.2182 

F-derived, Seeded,
Ca2+-exchanged 

K+, 
Ca2+

57.8 
569 69 0.4095 0.2972 
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synthesis as shown in Table 5-1. For the in-situ synthesis, pure chabazite was only 

obtained by gel SiO2/Al2O3 ratios of 5 and 10 (runs No. 4-7, 19, 26 and 27; see Table 

5-1). Figure 5-6 shows the XRD patterns of as-synthesized crystals prepared by 

different gel SiO2/Al2O3 ratios in seeded reaction mixture. Seed-in-gel synthesis 

broadened the crystallization intervals in gel SiO2/Al2O3 ratio (runs No. 13-17, 22 and 

23; see Table 5-1). The framework Si/Al ratio of the as-synthesized crystals increased 

from 2.5 to 3.5 with the increase of gel SiO2/Al2O3 ratio from 5 to 20. The gel 

SiO2/Al2O3 ratio of 30 resulted into the main amorphous phase (run No. 24; see Table 

5-1). The results also showed that prolonged hydrothermal treatment does not affect 

type of zeolite phase, chemical composition and crystal size of chabazite (runs No. 

13-17; see Table 5-1) when the other synthesis conditions are kept constant. It was 

found that pure chabazite would be obtained in the runs No. 13 (SiO2/Al2O3=5, t=24 

h), No. 22 (SiO2/Al2O3=10, t=48 h) and No. 23 (SiO2/Al2O3=20, t=96 h) (see Table 

5-1). The rate of crystallization decreased with the increase of gel SiO2/Al2O3 ratio. 

Hasegawa et al. [12] reported that the gel SiO2/Al2O3 ratio affected the formation of 

chabazite layers on porous substrates. When SiO2/Al2O3 ratio was higher than 35, the 

crystallization rate of chabazite layers became lower and the polycrystalline layer 

could not be formed on the support surface [12]. Our results were also consistent of 

the results of NaY crystallization [31,32]. The Si/Al ratio of NaY crystals increased 

but the rate of crystallization decreased with the increase of gel SiO2/Al2O3 ratio. In 

the case of our seeded synthesis, the lower and upper SiO2/Al2O3 limits for obtaining 

pure chabazite can be defined as: lower limit as 3< SiO2/Al2O3 <5 and upper limit as 

20< SiO2/Al2O3 <30. For the case of gel SiO2/Al2O3 ratio of 3, the in-situ synthesis 

yielded LTL phase (run No. 18; see Table 5-1), but the seed-in-gel synthesis gained 

amorphous phase (run No. 21; see Table 5-1). This result implies that the addition of 

chabazite seeds influences the formation of zeolite precursor and the zeolite 

nucleation, and suppressed the formation of LTL phase. The gel SiO2/Al2O3 ratio of 3 

was beyond the crystallization intervals of chabazite and thus yielded the main 

amorphous phase in presence of chabazite seeds.    
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Figure 5-6. XRD patterns of the solids prepared by seeded synthesis at 433 K with gel SiO2/Al2O3
ratios of (a) 3, (b) 5, (c) 10, (d) 20, (e) 30 , respectively. ( ) represents the peaks of CHA phase. 

5.3.5. Effect of synthesis temperature 

Chabazite was prepared at a temperature range from 393 to 453 K (runs No. 25, 26, 

5 and 27; see Table 5-1) using the standard gel. The amorphous phase was obtained at 

the synthesis temperatures of 373 and 393 K even for 120 h of synthesis time. Pure 

CHA phase could be obtained at synthesis temperatures higher than 413 K. The 

synthesis time decreased much with the increase of synthesis temperature for the 

samples (runs No. 26, 5, and 27; see Table 5-1). Framework Si/Al ratio of crystals 

were independent of synthesis temperature and time. From the SEM observations in 

Figure 5-7, the crystals obtained at 413 K had the walnut-like shape with a better 

symmetry (Figure 5-7a) compared with those crystals (Figure 5-7b and c) prepared at 

higher temperatures of 433 and 453 K. The morphologies of the crystals changed 

from walnut-like to disc-like when the synthesis temperature increased to 433 and 453 

K, as shown in Figure 5-7b and c. The crystallization rate increased with the increase 

of synthesis temperature, which could be the reason for the decreased synthesis time 

and increased particle sizes. On the other hand, the change of crystal morphology with 

temperature is probably caused by the change of crystal growth rate with temperature 

[33]. 



90 

Figure 5-7. SEM images of fluoride-derived chabazite by in situ synthesis for 72 h at 
temperatures of (a) 413, (b), 433 and (c) 453 K (runs No. 26, 5 and 27), respectively. 

5.3.6. Effect of fluoride source 

In order to obtain a better understanding of the role of F- anion on the 

crystallization of CHA-type zeolite, the effects of fluoride concentration and fluoride 

source were investigated for the synthesis of chabazite. Figure 5-8 shows the phase 

choice for zeolites as a function of gel NH4F/SiO2 ratio (runs 28-30, 5, 31 and 32; see 

Table 5-1). The pure MER zeolite phase was crystallized from the fluoride-free gel 

(run No. 28; see Table 5-1). The addition of small amount of NH4F (NH4F/SiO2 ratio 

of 0.1) in the initial gel changed the crystallization process, and caused a new CHA 

phase to form in the products (run No. 29; see Table 5-1). The content of chabazite in 

products increased with fluoride concentration in gel. A pure CHA-type zeolite phase 

with high crystallinity was obtained when gel NH4F/SiO2 ratio increased to 0.3 and 

0.4. Note that the relative crystallinity of products increased from 50 to 80 % when 

synthesis time increased from 72 to 120 h when NH4F/SiO2 ratio was 0.4. However, 

the NH4F/SiO2 ratio of 0.5 in gel caused amorphous phases even if the synthesis time 

increased to 120 h . 
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Figure 5-8. XRD patterns of the solids prepared by in situ synthesis at 433 K for 72 h with gel 
NH4F/SiO2 ratios of (a) 0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4 and (f) 0.5, respectively. ( ) Indicates 

the peaks of MER phase and ( ) represents the peaks of CHA phase. 

Figure 5-9 shows XRD patterns of the as-synthesized products obtained with NH4F, 

NaF and KF as fluoride source (runs No.5, 33 and 34; see Table 5-1), respectively. 

The obtained zeolite phases considerably depended on the type of fluoride salts. The 

addition of NaF yielded pure OFF phase. The main phase MER together with CHA 

phase was gained when KF was used. Pure CHA phase was only obtained by NH4F. 

The differences between alkalinities of F-modified gels before and after synthesis 

were quite high but it was difficult to follow the relation between alkalinities when 

different fluoride source were used, as shown in Table S1. Thus, the phase choice was 

probably attributed to both the type of cations of fluoride salts and the gel alkalinity 

that was changed by the type of fluoride salts.  
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Figure 5-9. XRD patterns of the fluoride-derived solids by in situ synthesis at 433 K for 72 h 
using (a) NaF, (b) KF and (c) NH4F (runs No. 33, 5 and 34; see Table 5-1) as fluoride source, 
respectively. ( ) Indicates the characteristic peaks of OFF phase; ( ) does the peaks of MER 

phase and ( ) represents the peaks of CHA phase. 

In our synthesis system, chabazite crystallization was highly dependent on the 

fluoride source and fluoride concentration. We consider that those influences come 

from both fluoride ion and balanced cations. Fluoride ion is regarded as one of the 

mineralizing agents in our gel to improve the gel dissolution. The fluoride ion is 

easily bonded with Si as SiF6
2- and it could be released since the SiF6

2- undergoes 

hydrolysis [17] in the basic gel. The content of CHA phase in the MER/CHA mixture 

increased from 0 to 100% when gel NH4F/SiO2 ratio increased from 0 to 0.3 as shown 

in Fig. 8. We believe that fluoride ion probably exists in the aluminosilicate hydrates, 

Finally, fluoride ion exists in the channels of the crystals when the nucleation and 

crystal growth further undergo [17]. 19F MAS NMR spectra in Fig. 4c verified the 

existence of fluoride ion in the channel. Because fluoride ion and aluminum 

tetrahedron are both negatively charged, the existence of fluoride ion in the nuclei 

probably restrains the entrance of AlO2
- to a certain extent since our gels are the 

alumina-rich gel. Thus, the as-synthesized crystals had an increased framework Si/Al 

ratio from 2.0 to 2.6 with the increase of gel NH4F/SiO2 ratio from 0 to 0.4 (runs No. 

28-31 and 5; see Table 5-1). In our case, MER phase that was obtained from 
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fluoride-free gel had the lowest Si/Al ratio (2.0) (run No. 28; see Table 5-1). The 

addition of fluoride ion may change the composition of the nuclei and therefore result 

in the CHA phase that had a higher Si/Al ratio. An appropriate concentration of 

fluorine (NH4F/SiO2=0.3 and 0.4) dominates the nucleation of CHA phase and cause 

the pure chabazite product. Because of the repulsive interaction between F- and AlO2
-, 

the stability of the aluminosilicate group at the initial nucleation stage is somewhat 

affected by the concentration of fluoride ions. The increase of fluoride ions in gel 

could take a certain negative effect on chabazite crystallization rate. And the nuclei of 

chabazite might be hardly formed when the concentration of fluoride ion reached a 

certain value (i.e. NH4F/SiO2=0.5). As a result, the crystallization rate of chabazite 

decreased at NH4F/SiO2=0.4 (run No. 31; see Table 1) and amorphous phase as main 

product was formed at NH4F/SiO2=0.5 (run No. 32; see Table 5-1).  

The balanced cation of fluoride salts also had great effect on zeolite crystallization. 

Some literatures reported that the MER and OFF phase were the common impurity of 

CHA phase [34-37]. The dual sodium and potassium cations favored the formation of 

OFF phase [34,35]. In our previous work, we prepared the OFF phase from 

fluoride-derived and fluoride-free gels in the dual sodium and potassium system 

[25,34]. Similarly, our current dual-cation system caused a pure OFF phase. When KF 

replaced NH4F, the mixed phases of MER and CHA were obtained. The possible 

reason could be the differences in gel alkalinity and the concentration of potassium 

cation in gel. 

5.4 Conclusions 

Low-silica CHA zeolite chabazite was prepared in fluoride media in the absence of 

organic structure directing agents. 19F MAS NMR evidence showed the fluoride ion 

was located in the framework channels of chabazite as the balanced ion with H+ and 

K+ cations. A certain amount of NH4F benefited the formation of pure CHA phase 



94 

from the competitive growth of MER and CHA phases; but the further addition of 

fluoride source decreased the crystallization rate. 
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Chapter 6 Gas Separation Properties of the Room-Temperature 
Ionic Liquid Modified CHA Zeolite Membrane 

6.1 Introduction 

High volume discharge of CO2 into the atmosphere due to consumption of large 

amounts of fossil fuels has become one of the most serious global environmental 

problems.[1-5] Separation and recovery of CO2 from natural gas and flue gas are, 

therefore, of great interest. Zeolite membranes grew on porous substrates become 

good candidates for CO2 separation from natural gas due to its unique molecular sieve, 

selective absorption and high thermal pressure stabilities. Microporous silica,[6, 7] 

carbon molecular sieve,[8-10] metal organic frameworks (MOF),[11-13] and zeolite 

membranes[14-16] have been reported for gas (vapor) mixture separation. Because of 

the small pore size as well as excellent thermal and chemical stabilities in harsh 

environments, CHA zeolite membranes (including SSZ-13(high-silica CHA) and 

SAPO-34 membranes) have been widely studied for their potential applications in 

separation of some important industrial gases and organic isomers. 

Boundary defects often appear in zeolite membranes during hydrothermal growth 

and/or calcination process. If the non-zeolitic pores that are larger than the zeolite 

pores, resulting in low separation selectivity due to Knudsen diffusion and viscous 

flow.[17] Therefore, some modification methods have been proposed to enhance 

membrane separation. Hong et al.[18] silylated the B-ZSM-5 and SAPO-34 

membranes by the catalytic cracking of methyldiethoxysilane to increase their 

selectivity for H2 separation. The H2/CO2 separation selectivity at 473 K increased 

from 1.4 to 37 but the H2 permeance decreased more than 1 order of magnitude in the 

B-ZSM-5 membranes. Chen et al.[19] functional defects by grafting polymer groups 

on MOR membranes to improve acid-resistance. Yu et al.[20] modified SAPO-34 

membrane using a molecular layer deposition for H2 separation. The H2/N2 selectivity 

increased from 11 to 550 at 473 K. Kanezashi et al.[21] modified DDR membranes by 
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chemical vapor deposition tetraethylorthosilicate vapor on the surface of membrane to 

eliminate the inter-crystalline micropores. But the H2/CO2 selectivity did not change 

after modification.  

Room-temperature ionic liquids (RTILs) have also been proposed as an alternative 

or next-generation CO2-selective separation media.[22-24] CO2 could be desorbed 

without loss of solvent since the RTIL solvent is nonvolatile. The solubility and the 

selectivity of CO2 in RTILs are independence of the cation and/or anion. [25, 26] 

In the present work, the concept of modifying CHA zeolite with room-temperature 

ionic liquid to increase the CO2 adsorption was applied to CHA membranes to 

increase the CO2 selectivity for the first time. This novel post-modification process 

require moderate operation conditions make the operation easy and are suitable to be 

scaled up. Predominant anion species (X) include hexafluorophosphate (PF6), 

tetrafluoroborate (BF4) and bis(trifluoromethane)-sulfonimide (Tf2N) were chosen for 

discussion. This paper defines RTILs as only those salts whose melting points are 

below ambient temperature. Thus, [C1mim] cations with halide anions do not fit the 

criteria to be included in this discussion. The separation properties for single gas and 

binary CO2/CH4 mixtures were studied. 

6.2 Experiment  

6.2.1 Synthesis of the modification precursors 

  All chemicals were used as received from Sinopharm Chemical Reagent Co., Ltd. 

1-Methylimidazole (8.37 g, 0.102 mol) and 3-Chloropropyltrimethyoxysilane (19.87 g, 

0.1 mol) were mixed (250 mL) in a flask. The reaction was heated at reflux (373 K) 

for 12 h. The imidazolium 3-Chloropropyltrimethyoxysilane was dissolved in a 

hydrous ethanol (250 mL) and NaBF4 (12.08g, 0.110 mol) was added and then an 

anion-exchange reaction occurred. The reaction was heated at reflux (373 K) for 24 h. 

The mixture phase was filtered and the solvent was removed by rotary evaporation. 
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The product was dried under vacuum at 333 K overnight to give [C1mim][BF4] as a 

colorless liquid. The another two modification precursor ([C1min][ Tf2N] and 

[C1min][ PF6]) were synthesis through the similar process. 
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Figure 6-1. The schematic diagram of the synthesis of modification precursors ([C1mim][BF4]).

6.2.2 RTILs modify the CHA membrane 

CHA membranes were prepared by a secondary hydrothermal synthesis method on 

the outer surface of a-Al2O3 tubes (Nikkato, o.d:12 mm, i.d:9 mm, average pore size: 

porosity: 43 %.) with a molar composition of SiO2:Al2O3:K2O:NH4F:H2O = 

1:0.2:0.39:0.3:65. After 6 h aging, 270 g gel was placed in an autoclave and two 

seeded supports were vertically immersed into the gel. The hydrothermal synthesis 

was carried out at 423 K for a given time. After synthesis, the autoclave was cooled 

down to room temperature and the as-synthesized membranes were washed using 

running taping water for 15 min, and soaked into DI water for several batches until 

the solution become neutral, and dried at 353 K overnight. The as-synthesized CHA 

membranes were washed in 5 wt. % hydrochloric acid solution at 303 K for 1 h to 

increase the density of hydroxyl group on the surface of membrane. The fresh 

membranes after drying were immersed in a 5 wt. % [C1mim][BF4] precursor ethanol 

solution. The silanization was carried out at 333 K for 12 h with stirring under oil bath. 

Both ends of the tubes were sealed with solid teflon inserts to eliminate the 

silanization reaction on the inner surface of the support. The silanized RTIL modified 
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membrane was washed using ethanol three times and then dry in vacuum at 373 K for 

overnight. The modification process was illuminated in Figure 6-2. 

Figure 6-2. The schematic diagram of the modification of CHA membrane with RTILs 

6.2.3 Characterization and separation measurements 

The crystal phases of the crystals and membranes were identified by X-ray 

diffraction (XRD, Ultima IV  with 2 from 5° to 45° at a step 

size of 0.05°. Fourier-transform infrared spectroscopy (FT-IR) analysis was carried 

out on a spectrophotometer (Thermo, Nicolet 6700) in the range of 600-4000 cm-1. 

Single-gas permeation was measured as a function of pressure and temperature 

using a dead-end (retentate stream blocked) system without sweep gas for H2, CO2, 

N2, CH4, C2H6 and i-C4H10. The ideal selectivity is the ratio of the single-gas 

permeances. 

Separations were measured using the Wiche-Kallenbach method with hydrogen as a 

sweep gas with a permeate pressure of 0.1 MPa (atmospheric pressure), or a 

pressure-drop was maintained across the membrane and no sweep gas was used. The 

module temperature was controlled between 303 and 363 K and the feed pressure 

could be varied from 0.2 to 1.0 MPa. Mass flow controllers were used to mix pure 

gases in equimolar ratio, and the compositions of the feed, retentate and permeate 

streams were measured by a GC (J-science Lab. Co. Ltd., GC7100T) with a thermal 

conductivity detector. The flow rates for CO2 and CH4 and the H2 sweep gas were 150, 

150 and 400 standard ml/min (SMLPM), respectively. Selectivity is the ratio of 



101 

permeances.

Figure 6-3. The schematic diagram of CO2/CH4 mixture gas separation device. 

6.3 Results and discussion 

6.3. 1 Infrared characterization 

The real capacity of room temperature ionic liquids and silane coupling agent 

grafted on the surface of the porous support membrane is limited. In this work, in 

order to demonstrate that ionic liquid is able to grafting effective on the surface of 

CHA membrane layer, we combined with silane coupling agent and 

imidazolium-based ionic liquids and then grafted on the surface of CHA zeolite 

crystal particles, which the modification procedures for the CHA crystals and 

membranes are the same. Figure 6-4 shows the FT-IR spectroscopy of fresh CHA 

zeolite crystal powder particles and imidazolium-based ionic liquid modified CHA 

zeolite. As seen in Figure 6-4, the characteristic peaks of imidazole ring appeared at 

1302 cm-1 and 832 cm-1 correspond to C-C/ C=N strectching vibration and bending 

vibration, respectively, which confirmed that RTILs grafted on the surface of CHA 

zeolite crystals.  
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Figure 6-4. IR Spectra of (a) as-synthesized CHA zeolite; (b) [C1min][BF4]- modified CHA 
zeolite; (c) [C1min] [Tf2N]- modified CHA zeolite and (d) [C1min] [PF6]- modified CHA zeolite. 

[C1min] represents 1-methylimidazole 

6.3. 2 Single-gas permeances 

Single-gas permeances of H2, CO2, N2, CH4, C3H8 and i-C4H10, measured at room 

temperature and 0.2 MPa feed pressure for the fresh and modified CHA membrane 

ILM-4, are shown as a function of kinetic diameter in Figure 6-5. Both the fresh and 

modified membrane showed the same permeance order: 

CO2>H2>N2>CH4>>C3H8>>i-C4H10. After the membrane was modified, the 

permeances of all light gas decreased but the permeances of C3H8 and i-C4H10

significant decreased by approximately 1 orders of magnitude. Since the kinetic 

diameter of C3H8 and i-C4H10 are larger than the CHA pore size so that the permeance 

of them through CHA membrane mainly by the defective non-zeolite pores 

contribution. Thus, modification may lead to reduce non-zeolite defects on the surface 

of CHA membrane. Even though the kinetic diameter of CO2 is larger than that of H2, 

the CO2 permeance through CHA membrane IML-4 was higher than H2 permeance 

and decreased slightly after modied. The ideal selectivities of the light gases at a feed 

pressure of 0.2 MPa through the fresh and modified membranes ILM-4 are shown in 

Table 6-1. Their high selectivities for C3H8 and i-C4H10 after modified indicate 
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relatively good quality membranes. 

Figure 6-5. Single-gas permeances for the fresh and the [C1min][BF4] modified CHA membrane 
of IML-4 as a function of kinetic diameter at room temperature and a feed pressure drop of 0.2 

MPa without sweep gas. 

Table 6-1. Ideal selectivity of the fresh and the [C1min][BF4] modified CHA membrane 
IML-4. 

Membrane 
Ideal selectivity 

CO2/H2 CO2/N2 CO2/CH4 CO2/C3H8 CO2/i-C4H10

Fresh 2 8 41 69 74 

Modified 3 14 76 183 237 

The pressure dependence of the single-gas permeances for H2, CO2, N2, CH4 and 

C3H8 from 0.2 to 1.0 MPa through modified membrane ILM-4 is shown in Figure 6-6. 

When the feed and permeate pressures were both increased so as to maintain a 

constant pressure drop of 0.2 MPa, the CO2 permeance at room temperature decreased 

slightly with increasing pressure, whereas the CH4 permeance increased slightly. The 

CO2/CH4 ideal selectivity decreased from 76 to 55 as the feed pressure increased from 

0.2 MPa to 1.0 MPa. The permeance of relative smaller kinetic diameter of H2
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increased with increasing pressure, whereas the permeance of relative larger kinetic 

diameter of C3H8 was almost constant. These results indicated the concentration of the 

large non-zeolitic pores was low on the modified CHA membrane ILM-4. 

Figure 6-6. Single-gas permeances of CO2, H2, N2, CH4 and C3H8 through modified membrane 
IML-4 as a function of feed pressure at room temperature. 

6.3.3 Effect of the precursors 

Table 6-2 shows the separation performances of the modified CHA membranes as a 

function of the precursors. Silylation of the CHA membranes had slightly decreased 

the CO2 permeance but increased the CO2/CH4 selectivities. The -chloropropyl 

triethoxysilane (CPTES) should fit into CHA pores with difficulty since the CHA pore 

diameter is 0.38 nm, which is approximately the size of the smallest diameter of 

CPTES, and thus, CPTES would not be expected to modify the CHA pore size. 

However, CPTES could adsorb and react in larger non-zeolitic pores and reduce their 

size. During silylation, CPTES apparently react at acid sites in defects in the CHA 

membranes, and lead to reduce the defect size. Since CH4 is so close to the CHA pore 

size, a large fraction of the CH4 likely permeates through non-zeolitic pores, reducing 

their size decreased the CH4 permeance significantly. Thus, the CO2/CH4 selectivities 

increased after silylation.  
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Table 6-2. Separation performances of the modified CHA membranes as a function of the 
precursors. 

No. Modified materials 

CO2 permeance 10-7

(mol m-2  s-1 Pa-1) 
CO2/CH4 Selectivity 

fresh modified fresh modified 

ILM-1 
-Chloropropyl 

Triethoxysilane 

1.3 0.9 10 26 

ILM-2 2.1 1.1 9 28 

ILM-3 1.9 1.0 12 25 

Average  1.8 1.0 10 26 

ILM-4 -Chloropropyl 

Triethoxysilane + 

[C1min][BF4] 

1.8 1.0 11 89 

ILM-5 2.5 1.3 9 79 

ILM-6 1.8 0.7 13 90 

Average  1.8 1.0 11 87 

When using imidazolium-based ionic liquids [C1min] [BF4] combined with a silane 
coupling agent (CPTES) on the surface of CHA zeolite layer with post-processing 
after modification, the CO2/CH4 mixed gas separation selectivity, on average, 
significantly increased by a factor of 7 (from the initial value of 11 to 87) at room 
temperature and 0.2 MPa feed pressure, and the permeance showed a less than 50% 
decrease compared with the initial value. These results indicated that the 
imidazolium-based ionic liquids [C1min] [BF4] were effectively grafted on the surface 
of the CHA membrane and helps to significantly improve the CO2/CH4 mixed gas 
separation selectivity, but also almost no further sacrifice the CO2 permeance. This 
novel post-modification using RTIL precursors was adopted to effectively patch 
membrane defects and improved CO2/CH4 selectivity and also has good 
reproducibility. 

6.3.4 Effect of the ionic liquid with different anions. 

Table 6-3. shows the separation performance of the ionic liquid ([C1min][X]) 

modified membranes as a function of different anions. Relevant experiments and 

simulation results show that CO2 is more easily dissolved in alkyl imidazolium-based 
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ionic liquids ([Cnmin] [X]). Different kinds of anion of the alkyl imidazolium-based 

ionic liquids may lead to difference CO2 adsorption ability. The modification 

precursors of [C1min] [BF4] lead to has the greatest effect on improving CO2/CH4

selectivity, followed by [C1min] [Tf2N] and [C1min] [PF6]. Modification with RTILs 

increased the CO2/CH4 separation selectivity at room temperature, as shown in Table 

6-3. The CO2 permeance in a CO2/CH4 mixture decreased about 76 %, 58 % and 44 % 

due to modification with [C1min] [Tf2N], [C1min] [PF6] and [C1min] [BF4], 

respectively. Although [C1min] [Tf2N] may has relative high CO2 adsorption ability, 

but it was more likely to sacrifice CO2 permeance of CHA membrane. These results 

indicated that adsorption properties of RTILs over CO2 are important for CO2/CH4

separation

Table 6-3. Separation performance of the ionic liquid ([C1min][X]) modified membranes as a 
function of different anions.  

No. [C1min][X] 

CO2 permeance 10-7

(mol m-2  s-1 Pa-1) 
CO2/CH4 Selectivity 

fresh modified fresh modified 

ILM-7 [PF6]- 2.5 0.6 9 27 

ILM-8 [Tf2N]- 1.2 0.5 11 59 

ILM-4 [BF4]- 1.8 1.0 11 89 

6.3.5 CO2/CH4 separation 

Figure 6-7 shows the 50/50 CO2/CH4 separation performance for the fresh and the 

[C1min][BF4] modified membrane ILM-4 as a function of feed pressure at room 

temperature. This membrane was tested without sweep gas. The CO2/CH4 selectivity 

of modified membrane ILM-4 exhibited a maximum of 81 at feed pressure of 0.2 

MPa and dropped off to 46 at 1.0 MPa, the CO2 permeance was 0.96 10-7 mol m-2 s-1

Pa-1. The CO2 mixture permeances were about 67% of the single gas permeances, 

whereas the CH4 mixture permeances were only about 13 % of the single gas 
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permeances at the range of feed pressure. It may be more strongly adsorbed CO2

inhibited CH4 adsorption, so competitive adsorption increased the CO2/CH4 selectivity. 

Therefore the mixture selectivity was higher than the ideal selectivity. These results 

indicated that although the post-modification using [C1min][BF4] precursors was 

adopted to patch membrane defects and improved CO2/CH4 selectivity. But the 

modified CHA membrane ILM-4 may still has a small number of large pore defects 

since the CH4 permeance increased slightly with increasing feed pressure.  

Figure 6-7. The 50/50 CO2/CH4 separation performance for the fresh and the [C1min][BF4] 
modified membrane ILM-4 as a function of feed pressure at room temperature.  

Figue 6-8. The 50/50 CO2/CH4 separation performance for the fresh and the [C1min][ BF4] 
modified membrane as a function of temperature at 0.2 MPa feed pressure with sweep gas. 
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Figure 6-8 shows the 50/50 CO2/CH4 separation performance for the fresh and the 

[C1min][BF4] modified membrane as a function of temperature at feed pressure of  

0.2 MPa. The CO2/CH4 selectivity of membrane ILM-4 exhibited a maximum 

improvement from 11 to 89 at the temperature of 303 k, the CO2 permeance decreased 

from 1.8 10-7 mol m-2 s-1 Pa-1 to 1.0 10-7 mol m-2 s-1 Pa-1. It indicated that our 

post-modification method dramatically decreases the contributions of non-zeolitic 

defects and improved the gas separation selectivity. As the temperature increased, the 

CO2 permeance slightly decreased and the CH4 permeance slightly increased, so the 

CO2/CH4 separation selectivity decreased with increasing temperature.  

6.4 conclusions 

A novel post-modification using imidazolium-based room temperature ionic liquids 

(RTILs) precursors were adopted to effectively patch the defects of CHA membrane 

and improved CO2/CH4 selectivity. CO2/CH4 selectivity depended on the anion type 

of RTILs, which indicates that the adsorption properties of RTILs over CO2 are 

important for CO2/CH4 separation. [C1min][BF4]-modified membranes had an 

improved CO2/CH4 separation selectivity increased by a factor of 7 (average CO2/CH4

selectivity of 87) for an equimolar CO2/CH4 mixture at room temperature and 0.2 

MPa feed pressure, and the permeance showed a less than 50% decrease compared 

with the initial value (decreased from 1.8 10-7 mol m-2 s-1 Pa-1 to 1.0 10-7 mol m-2

s-1 Pa-1).  
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Chapter 7 Summary 

In this thesis, we devoted our attention to investigate the preparation and 

application of catalytic titanium silicalite-1(TS-1) membrane, RHO zeolite membrane 

and CHA membrane, studying the PV-aided catalytic performance of titanium 

silicalite-1 (TS-1) membrane, optimization the preparation process of TS-1 membrane, 

studying the single gas performance of tubular supported RHO membrane, Synthesis 

of low-silica CHA zeolite chabazite in fluoride media without organic structural 

directing agents and zeolites, modification of CHA membrane by using 

imidazolium-based room temperature ion liquids (RTILs).  

In chapter 2, the TS-1 membrane with high catalytic activity was prepared on 

porous mullite tubular support by in-situ hydrothermal synthesis with the synthesis 

recipe of SiO2: 0.031Titanium n-butoxide: 0.35Tetrapropylammonium hydroxide: 28 

H2O. Optimized preparation process displayed well reproducibility. Supplementary 

addition of H2O2 to the synthesis solution after removals of bubbles in preparation 

process had great effect on the catalytic performance of as-synthesized TS-1 

membrane. Furthermore, the pretreatment of support may have effect on the 

morphology of surface zeolitic layer of TS-1 membrane.  

In chapter 3, pure RHO membrane with high density and well intergrowth have 

been prepared on the surface of porous -Al2O3 tube support using 18 Crown 6 as 

OSDA. Fluoride salts such as NaF have great effect on the morphologies of RHO 

crystals and lead to well intergrowth of RHO zeolite crystals. Fluoride may favor the 

crystallization of RHO zeolite as a mineralizing agent. Higher content of organic 

template (18C6/Al2O3=5) may lead to form a dense intergrowth RHO zeolite crystal 

layer. 

In chapter 4, an organic template-free route for synthesizing RHO membranes by 

the secondary growth method is provided. RHO zeolite membrane showed CO2/N2

and CO2/CH4 ideal selectivities higher than the Knudsen selectivities. On the other 

hand, the ideal CO2/N2 selectivities were smaller than the reported adsorption 
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selectivities. Contribution of non-zeolitic permeation is one reason for the smaller 

selectivity. Diffusivity of CO2 is suspected to be small in RHO zeolitic pores due to 

the strong affinity lowering the CO2-selectivity of RHO membranes. RHO 

membranes showed dehydration performance in water/ethanol and water/isopropanol 

separations. The highest separation factor obtained for water/isopropanol was 1390 at 

an isopropanol feed concentration of 95 wt% with a total flux of 0.77 kg m-2 h-1. The 

membrane showed similar separation properties after 30 hours of total testing time, 

suggesting robustness of the membrane. 

In chapter 5, CHA membranes were prepared in the absence of OSDAs. The 

crystallization kinetics of the fluoride-derived CHA and the effects of gel SiO2/Al2O3

ratio, gel F-/SiO2 ratio, fluoride source and synthesis temperature on the morphology 

and composition of crystals were investigated. A certain amount of the specific 

fluoride source (NH4F) dominated the crystallization of CHA phase in the competitive 

growth of MER/CHA phases. The fluoride-derived CHA by in-situ synthesis had a 

particle size of 15- -in-gel synthesis increased the crystallization rate 

and resulted in the smaller crystals with higher BET surface area and micropore 

volume. The location of fluorine anion in zeolite framework and the role of fluoride 

salts on CHA crystallization were also demonstrated. 

 In chapter 6, the novel precursors were used for membrane surface modification for 

CHA membranes. Imidazolium-based room temperature ion liquids (RTIL) were 

effectively grafted on membrane surface by silylation reaction in order to reduce the 

numbers and sizes of the defects, and thus CO2/CH4 selectivies of the membranes 

were greatly improved. The influences of the type of the cation of RTILs, the type of 

the balanced anions and treatment conditions on membrane performance were studied. 

CO2/CH4 selectivity of modified membranes was mostly depended on the type of the 

balanced anion of RTILs, which indicates that the adsorption properties of RTILs over 

CO2 are important for CO2/CH4 separation by membranes. 
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