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Abstract 

The rapid developing global economy makes energy requirements becoming more 

and more urgent. On the one hand, the need for alternative gasoline and diesel fuels is 

becoming more urgent. Anhydrous ethanol is being used by mixing with gasoline as a 

better clean fuel. However, there is a minimum-boiling azeotrope during 

ethanol/water distillation. Thus, it is necessary to remove water from ethanol by 

special processes to obtain anhydrous ethanol. On the other hand, fossil fuels are the 

mainly demanded energy today. To reduce greenhouse effect mainly caused by a 

combustion product CO2, CO2 separation is necessary. Moreover, to avoid producing 

CO2 and using other kinds of fuels, H2 is a proper energy to be used because it is 

clean and high efficient. Therefore, it is an urgent task to realize H2 purification and 

separation with cost effective and efficient means.  

Due to the controllable hydrophilicity and pore size, zeolite membrane is a good 

candidate for ethanol dewatering, CO2 separation and H2 separation. For zeolite 

membranes, many parameters play a very important role in membrane crystallization, 

such as seed crystal size, orientation of zeolite crystals in membranes, membrane 

morphology, crystal component and crystal structure. 

In this respect, we focused to optimize synthesis conditions and permeation 

measurement conditions of zeolite membranes. This dissertation is composed of seven 

chapters. 

The first chapter is the introduction of zeolite membranes. 

The second chapter of this dissertation is mainly on sodalite crystal preparation. 

Higher synthesis temperature as 200 oC induced uniform sodalite crystals with 

particle size of (100-200) nm. Pure sodalite can be obtained under a wide 

n(Na2O/SiO2) and n(Al2O3/SiO2) ranges. The crystal size was as small as 50 nm under 

high n(Na2O)/n(SiO2) of 2.0, but it was not uniform. Effect of n (Al2O3/SiO2) on 

crystallite size was obvious and the crystal size became smaller with lower Si4+

concentration. In addition, high water concentration can not induce pure sodalite 



crystals. Specific surface areas of silica sources affected crystallite size but had no 

effect on crystallinity. Finally, crystals prepared at 200 oC for 24 induced a pure 

sodalite membrane successfully. 

The third section is about sodalite membranes. Effects of composition of synthesis 

solution, synthesis temperature and crystallization time on the formation of sodalite 

membranes were studied. Ethanol/water and iso-propanol/water mixtures with 

different concentrations were used and PV was carried out at 75 oC. Under the same 

crystallization condition, thinner and more compact sodalite membrane layer was 

obtained with water concentration in precursor of n(H2O)/n(SiO2) = 50, When 

synthesis time was 6 h and 12 h, gap between crystals was smaller. Lower operation 

temperature facilitated water adsorption. 

In the fourth section, a thin and well-intergrown zeolite T membrane with high CO2

permeability and selectivity was prepared by the two-step varying-temperature 

hydrothermal synthesis process. The influence of synthesis parameters such as 

synthesis temperature and crystallization time during the two-step durations on 

crystals growth and separation performance was investigated systematically. 

Compared with the conventional hydrothermal synthesis at a constant temperature, 

the two-step method was more effective to synthesize a thin and continuous zeolite 

membrane layer in short time. It was found that a lower crystallization temperature 

favored nucleation, while a higher temperature promoted crystallization during the 

two-step method, thus improving zeolite T crystal growth and membrane separation 

properties. Under the optimized conditions, CO2 permeance and CO2/ CH4 selectivity 

of the membrane reached 6.2×10-8 mol·m-2·s -1·Pa-1 and 80 for the CO2/CH4 mixture 

(50/50) at 35 °C, respectively.

The fifth section is about characterization and single gas permeation performances 

of silicalite-1 membranes prepared in fluoride mediate. Synthesis parameters such as 

synthesis time, synthesis temperature, silica source, seed crystal size and supports 

were discussed. Silicalite-1 membrane prepared using TEOS was thinner. The H2 

permeance and permselectivity of this membrane was 9.99×10-7 mol·m-2·s-1·Pa-1 and 

50.0, respectively. Silicalite-1 membranes prepared at higher temperatures were favor 



of high H2 permeance. When larger seed crystals were used, the crystals were (101) 

oriented. When smaller seed crystals were used, c-axis orientation becomes stronger 

and the random oriented membranes had higher H2 permeance. Membranes formed on 

mullite and NS-1 supports showed high H2 permenace. H2 and SF6 permeation 

performance in this work was comparable to data in papers. Finally, the silicalite-1 

membrane on mullite prepared at 185 oC for 14 h showed a good H2 permeatino 

stability within 203 days. 

The sixth section in this dissertation is to modify silicalite-1 membrane surface with 

3-aminopropyltriethoxysilane (APTES). After modification, the membrane surface 

was covered with an amorphous layer of APTES. The effective pore size of 

silicalite-1 membrane was reduced significantly. Single gas permeation mechanism 

was changed to some extent due to the smaller pore size. Permselectivity of H2 and 

SF6 increased from 26.9 to 647, and H2 permeance kept a comparable value of 

2.50×10-7 mol·m-2·s-1·Pa-1. Moreover, the modified silicalite-1 membrane showed 

permselectivities of H2/N2, H2/CH4, CO2/CH4, and CO2/N2 increased to higher than 

Knudsen diffusion factors. It is noted that the modified silicalite-1 membrane also 

showed stable H2 and SF6 permeability for 120 hours. 

Finally, the senventh chapter summarized the main contents of this dissertation. 
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Chapter 1 Introduction 

 1.1 Zeolite membranes 

Membrane techniques have many advantages over other traditional ways, such as 

low energy consumption (A. Alklaibi et al.) [1], cost-efficient, low operating 

efficiency cost (H. Strathmann et al.) [2], compact and low weight equipment (R. 

Klaassen et al.) [3], less floor space and maintenance (B. Atkinson et al.) [4], simple 

to operate (M.T. Ho et al.) [5], simple equipment (Y. Shimizu et al.) [6] and no 

pollution (M. Elimelech et al.) [7]. Therefore, membrane separation is widely used in 

chemical industry (S.P. Nunes et al.) [8], pulp and paper industry (A. S. Jönsson et al.) 

[9], textile industry (G. Ciardelli et al.) [10], pharmaceutical, food and 

biotechnological applications (A. K. Pabby et al.) [11].  Moreover, among the 

applications, gasification-based system is even expected to constitute the energy 

plants for the 21st century (G. J. Stiegel et al.) [12].  

As one kind of membranes, zeolite membranes have been investigated for 

decades, and they are becoming a research hotspot in many fields. Zeolite membranes 

have many advantages, such as uniform pore size (M. Choi et al.) [13], good shape 

selectivity (M.B. Sayed et al.) [14], and good continuous long-term stability with 

inherent mechanical stability, thermal stability and chemical stability (Y. Morigami et 

al., K.S. Park et al. and A. Galarneau et al.) [15-17]. Moreover, zeolite membranes 

have high fluxes, and it is a very promising porous material for membrane catalytic 

reactor (J. Coronas et al.) [18]. Many other applications will be described 

subsequently. 

1.1.1 Preparation of zeolite membranes 

Supported and self-supported zeolite membranes are studied widely. Supported 

membranes are prepared by forming crystals on porous mechanism stable supports 

(porous ceramic, porous metal or porous glass), and separation process is carried out 



through the zeolite layer. Self-supported zeolite membranes only contain zeolite 

crystals and the crystals build a membrane. Nowadays, many groups have made 

supported zeolite membranes. For example, MFI membranes can be prepared on 

porous supports such as stainless steel (E.R. Geus et al.) [19], anodic alumina (Y. 

Chiou et al.) [20], -alumina (K. Kusakabe et al.) [21], -alumina (J.C. Poshusta et al.) 

[22], and glass (M.C. Lovallo et al.) [23]. The membrane layer thickness can be 

controlled from a few hundred to a few micrometers by varying synthesis conditions 

(L. Gora et al.) [24]. Although supports can influence supported membranes obviously, 

supported zeolite membranes are still prior to self-supported zeolite membranes in the 

views of good mechanism properties and reproducibility.  

So far, a lot of zeolite membranes have been discovered, such as T (X.L. Zhang et 

al.) [25], LTA (Y. Morigami et al.) [26], SAPO-34 (M.A. Carreon et al.) [27], , X (S. 

Li et al.) [28], and MFI (J. Hedlund et al.) [29]. The main preparation techniques can 

be summarized as follows: 

(1) In-situ hydrothermal synthesis 

In-situ hydrothermal synthesis can be considered as the most common way to 

prepare zeolite and zeolite membranes. Supports are not pretreated before 

crystallization. However, the crystallization time by this way is always too long so 

that it is not easy to control crystallization conditions. The process is simply shown in 

Figure 1-1 (a). 

Figure 1-1 Crystallization processes by (a) in-situ hydrothermal synthesis and (b) 
secondary hydrothermal synthesis. 



(2) Secondary growth 

Nowadays, secondary growth method is becoming a popular method to obtain 

more continuous zeolite membranes and reduce the synthesis time. As Figrue 1-1 (b)

shows, before crystallization, a thin layer of seed crystals is often deposited on the 

surface of supports, and then seeded supports are put into the synthesis solution. The 

most two popular ways of seeding are dip-coating and rub-coating. Secondary growth 

has many prioroties, such as easy operation, and better reproducibility (H. Jiang et al.) 

[30].  

(3) Microwave-assisted method 

Microwave-assisted method is a novel method recently developed. It is easier to 

prepare perfecet zeolite membranes within shorter time. Moreover, membranes 

prepared by microwave heating technique often have narrow particle size distribution 

and small crystals, which has been described by X.C. Xu et al. [31]. Up to date, many 

zeolite membranes have been prepared to this technique, such as SOD (X. Xu et al.) 

[31], MFI (J. Motuzas et al.) [32], A (Y. Han et al.) [33] and SAPOs (T.G. Tsai et al.) 

[34].  

(4) Two-step temperature varying method 

It was said that the nucleation stage at higher temperatures led to an acceleration 

of nucleation followed by the crystallization stage at a lower temperature for the 

control of crystallite size and size distribution.  (S.D. Kim et al. and M. 

Mehdipourghazi et al.) [35, 36] Two-step temperature varying method has been used 

to prepare dense zeolite membranes by changing synthesis temperature during the 

crystallization. It involves a rapid change in tempearature at some point during the 

crystallization process.  (X.L. Zhang et al.) [37] So far, T type (X.L. Zhang et al.) [37] 

and MFI type (C. Kong et al.) [38] zeolite membranes have been prepared by this 

method and applied to gas permeation.  

(5) Vapor phase transport (VPT) technique  

W. Xu et al. first found that a dry aluminosilicate gel could be transformed 

to MFI zeolite by contactwith vapors of ethylenediamine (EDA), triethylamine (Et3N) 

and water  (W. Xu et al.) [39]. Then this technique is useful for synthesizing various 



types of zeolites. M.H. Kim et al. called this method vapor phase transport (VPT) 

(M.H. Kim et al.) [40]. So far, only a few types of zeolite membranes such as NaA 

(Z.L. Cheng et al.) [41], FAU (Z. Cheng et al.) [42], LTA (Y. Ma et al.) [43] and MFI 

(T. Matsufuji et al.) [44] types have been prepared by VPT method successfully. It is 

not difficult to estimate that VPT technique is difficult to operate although it can result 

in high permeation performance. 

(6) Others 

Other synthesis techniques such as heteroepitaxial growth (T. Wakihara et al.) 

[45], ulsed laser ablation (K.J. Balkus et al.) [46], and embedding method (J.E. Lewis 

et al.) [47] applied to zeolite membrane preparations are also reported. 

1.1.2 Application of zeolite membranes 

(1) Pervaporation 

Pervaporation can be regarded as one of the most meaningful applications of 

zeolite membranes. In pervaporation, one liquid mixture is placed in a bottle or a 

module to contact one side of a membrane and the permeated product will be removed 

by lower vapor pressure produced by vacuuming from the other side of membrane.  

Figure 1-2 Schematic diagram of the pervaporation process  

Figure 1-2 shows a schematic of the pervaporation process. A vacuum cold trap 

is used to condense the permeate vapor and gas chromatography is used to analyze the 

composition of melted permeate. The driving force for the mass transport is the 

chemical potential gradient usually prodced by vacuuming across the membrane layer.  



So far, many zeolite membranes have been used in pevaporation or another 

pervaporation process, vapor permeation process (Figure 1-3), such as NaA (Y. 

Morigami et al.) [48], T (R. Zhou et al.) [49], FAU (F. Zhang et al.) [50], CHA (R. 

Zhou et al.) [51], MOR (X. Lin et al.) [52], and SOD (X. Xu et al.) [31]. Besides, NaA 

type zeolite membranes have been commercialized in ethanol purification (S.G. 

Sorenson et al.) [53].  

Figure 1-3 A schematic illustration of vapor permeation 

The pervaporation performance is characterized by parameters calculated by 

equations as follows:  

J = Q/At    (1-1) 

where J is permeation flux, Q is the mass of permeate (g) collected during a 

period of t (h) and A is the effective membrane area in contact with the feed (m2).  

= (yi/yj)/(xi/xj)   (1-2)                                                     

where yi and yj stand for the weight percentages of water and alcohols in the 

permeate, and xi and xj represent stand for the weight percentages of water and 

organics in the feed, respectively. 

Pi(j) = (103 -3) 

where Pi(j) is the permeance (mol·m-2·s-1·Pa-1) of component of i or j. Q is the 

same parameter in Eq. (1). M is the molar mass (g·mol-1) of the correspondence 

ure difference (Pa) across the membrane. 

(2) Gas separation 

  Gas separation has become an important application of membrane technology. T. 



Graham et al. started studying gas permeation performance of zeolite membranes 

systematically [54]. Both of porous and dense membranes can be used to separate gas 

mixtures, and the mechanism of gas permeation for porous membranes is shown in 

Figure 1-4.  

Figure 1-4 Mechanisms for permeation of gases through porous membranes [55].  

Zeolite membranes always separate mixtures by molecular sieving. However, 

when the membranes are not compact and the pore size is larger (100 Å-1000 Å), 

convective flow and Knudsen diffusion dominate the gas permeation process.  

The gas transport process through a zeolite membrane can be summariezed into 

five steps described as follows. (1) adsorption from the bulk phase to the zeolite 

external surface, (2) diffusion from the surface to the inside of the zeolite channels; (3) 

diffusion inside the zeolite channels; (4) diffusion from the zeolite channel to the 

external surface and (5) desorption from the external surface to the gas phase  (N.W. 

Ockwig et al.) [56]. The separation selectivity ( ) of gas mixtures is calculated as this 

equation:     

 = (y1/y2)/(x1/x2) (1-4) 

where y1 and y2 are the mole fractions of components 1 and 2 in permeate side, 

respectively. And x1 and x2 are the mole fractions of components 1 and 2 in feed side, 

respectively. For single gas permeation, ideal selectivity  is the ratio of permeances 

of components 1 and 2. It is worth noting that there is no relationship between the 

permselectivity and the separation factor when strongly adsorbing components are 



involved.  

Many zeolite membranes for gas separation are topics of research interest, and 

popular gas separation aims contain CO2 capture from N2 and CH4 (DDR (S. Himeno 

et al.) [57], MFI (M. Bernal et al.) [58], FAU (Y. Hasegawa et al.) [59] and SAPO-34 

(M.A. Carreon et al.) [60] types), H2 purification from N2, CO2, CH4 and He (NaA (X. 

Xu et al.) [61], Y (K. Kusakabe et al.) [62], MFI (Z. Hong et al.) [63] sand SAPO-34 

(M. Hong et al.) [64], and sodalite (M.J. Vaezi et al.) [65] types). Moreover, isomers 

separation such as butane isomers (T. Matsufuji et al.) [44], xylene isomers (G. 

Xomeritakis et al.) [66] and hexane isomers (G.J. Gump et al.) [67] are also carried 

out through zeolite membranes. 

(3) Ion Exchange 

For a mixed component system, permselectivity is not only dependent on pore 

size, but also the interaction between permeate and channel. As reported by K. 

Kusakabe et al., if a zeolite is ion-exchanged with cations which possess different 

interactions with permeates, this could improve the permselectivities of the membrane

[68]. For example, CO2/N2 separation performance of NaY-type membranes became 

more stable after ion-exchange [68]. In addition, ZSM-5 zeolite membranes became 

more stable after exchanged with H+, Cs+ and so on (K. Aoki et al.) [69]. Moreover, 

pore size of LTA-type zeolite membranes was adjusted to much smaller of 0.30 nm by 

ion exchange. The corresponding gas permeation was affected significantly by using 

different solutions (S. Shirazian et al.) [70]. 

(4) Membrane reactors  

By the early 1980s, membrane technology developed a lot so that many research 

groups started to consider using this technology to control the products during 

chemical reactions. Among the large amouont of membranes, zeolite membrane 

technology also has been used widely. Membranes are usually used as contactor or 

membrane reactor in the application. 



Figure 1-5 Examples of membrane reactors used to change the products of chemical 
reaction in which the membrane separation step is physically separated from the 

chemical reaction step. (a) Removal of the water of reaction from batch esterification 
processes to drive the reaction to completion and (b) removal of hydrogen in the 

dehydrogenation of n-butane. [55] 

Figure 1-5 (a) shows the process when using membranes as contactors. A 

pervaporation membrane is used to shift the equilibrium of the de-esterification 

reaction described by Ó. de la Iglesia et al. [71]. In the esterification reactor mixture, 

there is a catalyst, enzymes, or a cell culture, a membrane is used to separate the 

reaction medium in another chamber from the reaction tank. Bioreactor should be the 

most significant one process to use membrane as a contactor. Recently, common 

chemical separations are becoming hotlights to apply membranes. As a reactor, a 

membrane can preferentially remove one of the components in the reaction so that it 

can realize converting the equilibrium of a chemical reaction. As Figure 1-5 (b) 

shows, a membrane is used to shift the equilibrium of the n-butane dehydrogenation 

reaction described by R.W. Baker et al. [55].   

are also becoming more 

popular such as micro-membrane reactor (X. Tan et al.) [72], functional films (S.G. 



Kim et al.) [73], matrix-mixed-membranes (C. Xue et al.) [74]. 

1.1.3 Modifications of zeolite membranes 

Many methods are being discovered gradually so that zeolite membranes can be 

more perfect. The majority of the techniques are post-treatment methods, such as 

chemical vapor deposition (CVD) [21], catalytic cracking of silane (CCS) [75], 

atomic layer deposition (ALD) [76], coking [77], or ion-exchange [69]. They can 

decrease pore size or fill non-zeolite pores. For example, NaA zeolite membranes on 

modified substrates showed good dyhydration selectivity of 26 in water/methane 

mixture. But after ion-exchange, the permselectivity increased to 37 as described by S. 

Shirazian et al. [78].  

Masuda T. et al have reported a novel way to modify the pore size of zeoltie, 

which can be regarded as the first time to report a modification on zeolite [75]. In that 

study, to improve H2 purification performance, MFI zeolite was treated by 

methyldiethoxysilane (MDES). After catalytically cracking, coke containing Si atoms 

on the active sites was left and the pore size is reduced effectively. SAPO-34 zeolite 

membranes are also modified by this method for H2 separation (M. Hong et al.) [64]. 

A.S. Huang et al. have modified LTA type membranes on functionalized tubes [79]. 

To provide heterogeneous sites for the growth of NaA zeolites on the support surface, 

they used 3-aminopropyltrithoxysilane (APTES) to modify Al2O3 particles deposited 

coarse macroporous tubes. Herein, APTES acts as a cross linker. This method is 

expected to prepare other zeolite membranes on that kind of supports. Moreover, A. 

Huang et al. reported that FAU membranes were also formed on APTES 

functionalized supports without seeding [80]. Such FAU membranes show better H2

separation performance compared to FAU membranes on unmodified supports. 

1.2 Objectives 

A major big challenge of the 21st century is to convert our major energy sources 

by environmental friendly ways. In 2013, the total ethanol production in world was as 



high as 88.70×109 L [81]. As shown in Figure 1-6, A.W. Bhutto et al. have reported 

the ethanol production in the world and main producing countries between 2007 and 

2013 [81]. Anhydrous ethanol is renewable energy. Compared to gasoline, it is has a 

lot of advantages as a clean-burning fuel. However, as K. Santosh et al. reported, 

ethanol-water solution forms a minimum-boiling azeotrope of composition of 89.4 

mol% ethanol and 10.6 mol% water at 78.2 oC and standard atmospheric pressure

[82]. Therefore, it is valuable to produce anhydrous ethanol more efficiently. 

Figure 1-6 World ethanol production. [81]   

It is predicted that as global energy consumption increases, hydrogen is a clean 

and efficient energy and expected to be a potential solution [56]. Besides, as described 

by X.L. Zhang et al., separate CO2 from products of fossil combustion is also 

effective to weaken some environmental problems such as greenhouse effect [37].  

The unique properties of zeolite membranes are well-ordered pore structures, 

molecular sieving effect, and preferential adsorption. Therefore, zeolite membranes 

have great potential to help solve some environmental issues. In this dissertation, 

three kinds of zeolite membranes, sodalite, T type and MFI zeolite membranes, have 

been prepared and applied to three fields mentioned above.  

1.2.1 Sodalite and sodalite (SOD) membranes 

In this dissertation, both of sodalite crystals and sodalite membranes were 

investigated. To prepare sodalite membranes with promising performance, sodalite 



seed properties should be discussed firstly. Therefore, synthesis conditions of sodalite 

were investigated in detail. The sodalite crystals with proper morphology and 

induction ability were used to treat supports by rub-coating. Meanwhile, as J. Jiang et 

al. reported, sodalite has good ion exchange capacity. Thus, sodalite is considered to 

be used in many fields such as optical material [83], hydrogen storage [84], hydrogen 

separation, and catalyst support [85, 86]. Moreover, due to the good hydrophilicity of 

sodalite with a low Si/Al of 1.0, sodalite membranes were prepared and characterized 

to realize the dehydration of ethanol to produce anhydrous ethanol.  

B. Beagley et al. reported that the pore structure of SOD crystals is shown in 

Figure 1-7 [87]. The small structure formed by 4-rings and 6-rings make sodalite 

membranes (0.28 nm) only can let small molecules (He, H2O or H2) to permeate, 

which was demonstrated by S. Münzer et al. and X. Xu et al. [31, 88].  

Figure 1-7 Sodalite cage (left) and sodalite framework (right). [89] 

To date, several groups (i.e., S. Khajavi et al.) prepared SOD membranes on 

surface-polished disks without seeding and applied to dehydration process [90]. 

However, polished flat surface may facilitate a formation of oriented zeoltie 

membranes, which may enhance the intergrowth of crystals so that membranes will be 

less compact. The main goal is to use seeding method to prepare SOD membranes. 

The effects of synthesis temperature and synthesis time on morphology and 

performance of SOD membranes are also studied. 

1.2.2 T-type zeolite membranes 

The Si/Al ratio of zeolite T is 3-4. It shows proper hydrophilic and acid resistant 



abilities as reported by S. Yang et al. and M. Mirfendereski [91, 92]. 

In frameworks of T zeoliote, offeretite and erionite are contained. The 

corresponding structure and pore size are indicated in Figure 1-8 (a), which have 

been reported by J. Bengoa et al. [93]. Zeolite T is made of framework formed by the 

stacking of offretite phase and a small amount of erionite sheets. Y. Cui et al. reported 

that T zeolite framework has proper Al ratio so that zeolite membranes have 

promising CO2 preferential adsorption ability [94]. 

Figure 1-8 Frameworks of (a) offretite and (b) erionite. [95] 

The main goal of this part is to prepare dence zeolite T membranes and apply 

them to CO2 separation process. A series of synthesis conditions are discussed. For 

example, the synthesis temperature and synthesis time on both of the first step and the 

second step. The results are also compared with results in papers. 

1.2.3 Silicalite-1 (Al free MFI) zeolite membranes 

As we know, MFI zeolite has advantages like simple synthesis and the promising 

seperation performance of light hydrocarbons.  

Figure 1-9 shows the structure of MFI zeolites [96]. The straight channel along 

b-axis has an approximate pore diameter of 0.56 nm×0.54 nm, and another channel 



along a-axis has an estimated pore diameter of 0.51 nm×0.55 nm. During the 

transportation, H2 is always fixed in aromatic hydrocarbons by hydrogenation. When 

H2 is used, by-productions such as toluene and methylcyclohexane will appeared. 

Thus, the proper pore size of silicalite-1(Al-free MFI) is favor of H2 permeation. 

Moreover, modification is a good way to increase the compactness of silicalite-1 

membranes. And H2 separation factor from other gases with an acceptable H2 

permeance lose can be achieved. 

Figure 1-9 The framework structure of MFI zeolite. [96] 

The overarching theme of this part is to optimize the synthesis conditions of 

silicalite-1 membranes by discussing synthesis conditions. Focus is placed on the 

effects of crystallization conditions, gel components, seed crystal size and substrates. 

In terms of modifying silicalite-1 membranes, gas permeation performance of 

different single gas pairs were compared and analyzed in detail. 

1.3 Outlines 

(1) Chapter 1  

It introduces the critical background about the subjects dealt in this dissertation. 

The main purposes of all researches are also discussed. Moreover, Chapter 1 also 

provides the overview of membrane technology. Current synthesis methods, 

classifications, applications, separation mechanisms of liquid and gas molecules in 

zeolite membranes and modifications are reviewed. 



(2) Chapter 2  

Sodalite powders are prepared. Synthesis parameters have obvious effects of 

morphology of sodalite crystals. 

(3) Chapter 3 

By using the sodalite crystals prepared in Chapter 2, sodalite membranes are 

prepared. Sodalite membranes are applied to dehydration process in ethanol 

(EtOH)/water and iso-propanol (IPA)/water mixtures. Effects of temperature and feed 

concentration for pervaporation, synthesis time and synthesis temperature are 

discussed. 

(4) Chapter 4 

T-type zeolite membranes are prepared by two-step varying-temperature 

hydrothermal synthesis process. The effects of synthesis parameters for the two steps 

on gas separation performance of T zeolite membranes were studied in detail. 

(5) Chapter 5 

Silicalite-1 zeolite membranes are prepared in fluoride mediate. Effects of 

synthesis conditions such as crystallization time and temperature, silica source, seed 

crystal size and supports are investigated. In addition, effects of gas permeation 

temperature and pressure difference on single gas permeation performance of 

silicalite-1 membranes also have been described. The H2 permeation performance of 

this work is compared with data in papers. 

(6) Chapter 6 

3-aminopropyltriethoxysilane (APTES) was used to modify silicalite-1 

membranes. All single gas permeation performances of membrane before and after 

modification are compared. For different single gas pairs, the effects of measurement 

temperature and pressure difference are compared and discussed. 

(7) Chapter 7 

A summary of this dissertation and future work are also proposed. 
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Chapter 2 Preparation and characterization of sodalite 

2.1 Introduction 

Zeolites are hydrated aluminosilicate minerals. The group has a limitless 

three-dimensional anion network. And the chemistry of zeolites is based on the 

tetrahedron (TO4), where T = Si, Al or P. Sometimes other heteroatom (such as B, Ca 

and Be) may appear. Zeolites have unique pore structures, large specific surface area 

and tunable pore size [1]. As catalyst, adsorbent, separating agent and ion-exchange 

agent [2-6], zeolites have been applied extensively to petrochemical industry, soil 

improvement, wastewater treatment, metallurgy and pharmaceuticals industry [7-11]. 

Sodalite has a framework consisting of -cages [12]. Sodalite has an effective pore 

size of 0.28 nm, which allows small molecules (H2 or H2O) pass through channels of 

sodalite. Due to the unique structure and properties, sodalite has attracted many 

attentions. Moreover, Berg et al found that sodalite can even be considered as a H2

storage material because of its high H2 adsorption ability [13]. Therefore, exploring 

the synthesis of sodalite is great significance. 

In this work, sodalite was obtained by hydrothermal synthesis. The effects of 

different synthesis parameters, including synthesis time, synthesis temperature, n 

(Na2O/SiO2), n (H2O/SiO2), n (Al2O3/ SiO2) and silica source, have been investigated. 

The effect of seeds on sodalite membrane preparation also has been discussed.

2.2 Experimental 

2.2.1 Chemicals 

Alumina sources were alumina hydroxide (Al(OH)3, 100%, Wako) and sodium 

alumina (n (Al/NaOH) = 0.8, Wako). Sodium source was sodium hydroxide (NaOH, 

97%, Wako), Cl- was provided by sodium chloride (NaCl, 99.99%, Wako), silica 

sources were colloidal silica (Ludox HS-40, Ludox AS-40, Ludox TM-40, 40 w.t.%, 

Aldrich), fumed silica dioxide (98%, Aerosil) and water. 



2.2.2 Synthesis 

All the sodalite crystals with different features were prepared by hydrothermal 

synthesis method which has been applied to zeolite preparation widely [14, 15]. The 

following molar compositions were used: 1.0 SiO2: (0.10-0.60) Al2O3: (0.60-2.00) 

Na2O: (0-0.95) NaCl: (15-35) H2O. The synthesis process was different from the 

typical preparation procedure of sodalite membranes [16-18]. The alkali source was 

prepared by dissolving sodium hydroxide in a turbid solution of alumina hydroxide 

and some water. Then keep heating and stirring the solution until clear. After the clear 

alkali source cooled to ambient temperature, the rest water was supplemented. Finally, 

sodium chloride and silica source were added to the alkali source in sequence while 

stirring and stirred 1 h at room temperature. Then the resulting gel was removed into a 

PTFE-lined autoclave. The hydrothermal synthesis was carried out at 383-473 K for 

0.5-168 h. The products was isolated by centrifugation and washed with water for 

several times until neutral. The powders were dried and saved in an oven at 353 K for 

later experiments. 

2.2.3 Characterization 

All the powder samples were measured by X-ray diffraction (XRD, SHIMADZU 

XRD-6100) with Cu-K were scanned in the range of 2 = 

5o-45o at a scanning rate of 4o/min. Scanning electron microscopy (FE-SEM, JEOL 

JSM 6335F) was used to investigate the morphology and particle size of the powders. 

The crystallite size was obtained from 

D =     (1) 

Where D is the average crystallite size of the crystals, k

(0.89),  is the wavelength of the X-ray beam used (0.154056 nm).  is extra width of 

the diffraction peak, it can be calculated as equation (2): 

=   (2) 

For a diffraction peak, the full width at half maximum is regarded B. And b is the 

width of the instrument, which can be obtained from Jade software. And  is the 



diffraction angle [19].  

2.3 Results and discussion 

2.3.1 Effect of synthesis temperature 

To investigate the effect of crystallization temperature, powders were crystallized 

for 24 h at different temperatures. Figure 2-1 shows the XRD patterns of powders 

prepared at 383 K, 403 K, 423 K and 473 K. The results indicate that pure sodalite 

can be prepared successfully in a large arrange of crystallization temperature. The 

patterns show sharp diffractions at around 2 = 14.21o, 24.27o and 43.33o. These 

typical peaks are originated from the (110), (211) and (411) plane of sodalite [20].  

Figure 2-1 X-ray diffraction patterns of powders prepared at (a) 383 K, (b) 403 K, (c) 
423 K and (d) 473 K for 24 h (roundness indicates the typical peaks of sodalite) 

On the other hand, SEM analysis confirmed the morphologies of as-synthesized 

sodalite and Figure 2-2 gives the corresponding SEM images. It is obviously that the 

sodalite crystals have different morphologies and crystal sizes as the synthesis 

temperature changed. All of the four sodalite samples have a certain amount of small 

particles with a visual size of about 100-200 nm. However, the uniformity was quite 

different. When the synthesis temperature was lower, larger particles always arise. For 

the powder prepared at 423 K (Figure 1-1(c)), even particles with a size about 700 

nm appeared and the particles have sharp edges. It is because low temperature can 



inhibit the evaporation of a solvent, the environment encourage the growth of larger 

and purer crystals. However, a solvent will evaporate faster at higher temperature. 

Crystals will form quickly than at a low temperature because it removes solvent from 

the solution, forcing the crystals to form quickly. Thus, small crystals can be easily 

formed.  

Figure 2-2 The representative SEM images of powders prepared at different 
temperatures: (a) 383 K, (b) 403 K, (c) 423 K and (d) 473 K for 24 h. 

The results here confirmed such explanations well. Figure 1-1(d) shows that 

sodalite obtained at 473 K was more uniform than others, and accompanied particle 

aggregation. The higher temperature of 473 K was in favor of producing uniform 

nanometer sized sodalite. Small sodalite was also prepared from meta-kaolin by Lin et 

al. at high temperature, which can further proof our results [21].  

(b) 

(c) (d) 

(a) 



2.3.2 Effect of crystallization time 

Figure 2-3 shows the XRD patterns of powders synthesized for 0.5-168 h at 423 

K. The patterns indicated that pure sodalite can be prepared for longer than 8 h. To 

begin with, A type and FAU type (X and Y) crystals also occurred. Figure 2-4 showed 

the SEM images of powders prepared at 423 K for 0.5 h, 2 h, 18 h and 144 h, 

respectively.  

Figure 2-3 X-ray diffraction patterns of powders prepared at 423 K for (a) 0.5 h, (b) 2 
h, (c) 18 h and (d) 144 h 

As the synthesis time increased, the powders changed from amorphous to 

nanometer sized sodalite crystals. Figure 2-4(b) also exhibited the intergrowth of 

sodalite and FAU crystals clearly. Combining with related researches [16, 22], it is 

noted that A type and FAU type crystals are common impurity in the synthesis of 

sodalite crystals and sodalite membranes.  

Figure 2-5 shows the curves of the crystallinity as a function of the synthesis 

time at different temperature of 383 K, 403 K, 423 K and 473 K, respectively. It is 

noteworthy that sodalite with 100% crystallinity can be obtained at all four 

temperatures. As can be expected, when the temperature was 473 K, shorter time was 

needed to reach the maximum crystallinity. Compared to the figure on right in Figure 

2-5, the period of pure sodalite crystal growth was relatively longer when the 

crystallization time was 423 K. Therefore, it is more suitable for the following 

analysis.  



Figure 2-4 SEM images of powders prepared at 423 K for (a) 0.5 h, (b) 2 h, (c) 18 h 
and (d) 144 h 

Crystal growth is caused by crystal surface growth through transport process and 

surface processes of atoms or molecules. Both of layer growth and multi-nucleation 

multilayer growth were mentioned by Pablo et al. [23] Thus, we can consider crystal 

particles contain a mount of smaller crystallites. The trend line of crystallite size of 

many samples as a function of synthesis time was shown in Figure 2-5(left). It can be 

seen that nucleation takes place after an induction time, which is corresponding to 

teeny crystallite with a size of 0.8 nm. The crystallite size increased rapidly until the 

crystallinity reached 100% for a longer time. After that, even the synthesis time was 

prolonged to 168 h, the crystallite size hardly changed. 

In consideration of the significant contribution that uniform crystals with high 

crystallinity can make to the applications of uniform defect free sodalite membrane 

preparation, we prepared powders at 473 K for 24 h when other factors were 

(a) (b) 

(d) (c) 



investigated. 

Figure 2-5 Crystallinity and crystallite size of powders prepared at 423 K as a 
function of crystallization time (Figure on left side). And crystallinity of powders 

prepared at 383 K, 403 K and 473 K as a function of crystallization time (Figure on 
right side). 

2.3.3 Effect of n (Na2O/SiO2) 

Figure 2-6 X-ray diffraction patterns of powders obtained with (a) n (Na2O/SiO2) = 
0.8, (b) n (Na2O/SiO2) = 0.96, (c) n (Na2O/SiO2) = 1.2, (d) n (Na2O/SiO2) = 1.4, (e) n 

(Na2O/SiO2) = 2.0 

The value of n (Na2O/SiO2) was considered as a critical factor influencing on 

crystal growth behavior. In this part, different amount of sodium hydroxide was 

dissolved in the solutions. The gel composition was 1.0 SiO2: 0.5 Al2O3: (0.8-2.0) 

Na2O: 0.65 NaCl: 20.5 H2O.  

Figure 2-6 shows the XRD diffraction patterns of the solids obtained after 



hydrothermal synthesis at 473 K for 24 h. When n (Na2O/SiO2) was 0.8, sodalite 

appeared. However, analcime with typical peaks focusing on15.8o, 18.28o, 25.95o and 

30.5o also appeared. When n (Na2O/SiO2) increased, pure sodalite crystals can be 

obtained easily. Moreover, the crystallinity reached to the maximum (Figure 2-7).  

On the other hand, the changing curve of crystallite size as a function of n 

(Na2O/SiO2) behaved differently from Figure 2-5. A peak of the crystallite size arised 

when n (Na2O/SiO2) was 1.2 as shown in Figure 2-7. It is because that increasing 

nucleation and crystal growth rate increased the alkalinity increased, which facilitates 

the growth of crystallite. However, when the alkalinity was much higher, the 

solubility of colloid SiO2 and aluminum hydroxide increased rapidly, large amount of 

nuclei were formed in gels.  

Figure 2-7 Crystallinity and crystallite size of powders prepared at 473 K for 24 h as a 
function of n (Na2O/SiO2). 

Figure 2-8 shows the SEM images of powders prepared different n (Na2O/SiO2) 

varied from 0.8 to 2.0. The rhombic crystals as large as 800 nm marked by a red circle 

indicted the existence of ANA zeolite, which was in accordance with the Figure 2-6(a). 

When the n (Na2O/SiO2) increased to 0.96 and 1.2, the sodalite particles were about 

100 nm and the crystals prepared with n (Na2O/SiO2) of 0.96 still showed edges. As 

the n (Na2O/SiO2) increased to 1.4 and 2.0, the crystals became ball-like particles and 

the particle size was about 50 nm, which demonstrated the variation crystallite size 

showed in Figure 2-7. However crystals obtained under high n (Na2O/SiO2) of 2.0 

were not uniform as showed in Figure 2-8(e). 



Figure 2-8 SEM images of powders prepared with (a) n (Na2O/SiO2) = 0.8, (b) n 
(Na2O/SiO2) = 0.96, (c) n (Na2O/SiO2) = 1.2, (d) n (Na2O/SiO2) = 1.4, (e) n 

(Na2O/SiO2) = 2.0. 

2.3.4 Effect of n (Al2O3/SiO2) 

Lechert, H and Kosanovic et al. have studied the effect of the Si/Al ratio on the 

properties of zeolite crystals, such as A type, mordenite, and faujasite [24, 25]. 

(b) (a) 

(c) (d) 

(e) 



Herein, in the case of sodalite, crystals were synthesized at the n (Al2O3/SiO2) 

values of 0.10, 0.35, 0.40, 0.45, 0.50, 0.55, and 0.60 by adjusting the amount of 

aluminum hydroxide. The XRD patterns (not shown here) indicated that pure sodalite 

can be formed within such a wide range of n (Al2O3/SiO2), which is in accordance 

with the high crystallinity as Figure 2-9 shows. However, the crystallite size was 

affected by n (Al2O3/SiO2) significantly as the curve shown in Figure 2-9.  

Figure 2-9 Crystallinity and crystallite size of powders prepared at 473 K as a 
function of n (Al2O3/SiO2). 

When n (Al2O3/SiO2) changed from 0.10 to 0.40, the crystallite size was larger 

than 70 nm, and it reached the maximum of 98 nm when it was 0.40. As n 

(Al2O3/SiO2) increased, the crystallites even decreased to 32 nm. It can be 

demonstrated by the reason that lower Si4+ concentration in the solutions favors the 

formation of small silicalte species such as double four-member ring (D4R) which is 

similar with the property of NaA zeolite. Therefore, higher n (Al2O3/SiO2) should be 

better for preparing sodalite crystals high crystallinity and stability.  

(a) (b) 



Figure 2-10 SEM images of powders prepared with (a) n (Al2O3/SiO2) = 0.1, (b) n 
(Al2O3/SiO2) = 0.4, and (c) n (Al2O3/SiO2) = 0.6 

Moreover, some SEM images of crystals synthesized with different n (Al2O3/SiO2) 

were shown in Figure 2-10. When the n (Al2O3/SiO2) was 0.10, large amount of 

clusters consisted of ball-like crystals were formed. As n (Al2O3/SiO2) increased to 

0.40, the particles showed hollow sphere shape. After the n (Al2O3/SiO2) increased to 

0.6, sodalite with common morphology was obtained. The results indicated that n 

(Al2O3/SiO2) played an important role in the morphology of sodalite crystals. 

2.3.5 Effect of n (H2O/SiO2) 

Mohammad et al. has found that pure sodalite can be obtained with a wide range 

of water molar content (H2O/SiO2) varied from 140 to 260, and the particle size 

decreased as water molar content increased [18]. In this work, we tried to prepare 

sodalite powders with n (H2O/SiO2) varying from 15 to 35. However, when n 

(H2O/SiO2) increased to 35, ANA crystal phase appeared. The peaks were located at 

the angles showed in Figure 2-11. Even though the values of n (H2O/SiO2) were very 

different from the values as reported, pure sodalite can also prepared successfully. The 

similar n (Na2O/H2O) in this work (0.032-0.064) and the value reported (0.039-0.071) 

may be the main condition for sodalite growth.  

(c) 



Figure 2-11 X-ray diffraction patterns of powders obtained with (a) n (H2O/SiO2) = 15, 
(b) n (H2O/SiO2) = 20.5, (c) n (H2O/SiO2) = 25, (d) n (H2O/SiO2) = 30 and (e) n 

(H2O/SiO2) = 35  

Figure 2-12 Crystallinity and crystallite size of powders prepared at 473 K as a 
function of n (H2O/SiO2).  

As Figure 2-12 showed, the crystallinity of sodalite decreased from 100% to 63.2% 

when water molar concentration increased to 35. From the corresponding curve of 

crystallite size, it can be estimated that when n (H2O/SiO2) was 25, the crystallite size 

of sodalite reached a peak. It was not the same as the results obtained by Mohammad 

et al [18]. It manifested that the same zeolite can perform differently during growth in 

different chemical environments. 

2.3.6 Effect of silica source 

Mintova et al. reported that the final silicalite-1 nanocrystal size was affected by 



the type of silica source used [26]. Li et al. discovered that different type of silica 

source had notable effect on separation performance of as-synthesized CHA 

membranes [27]. Hence, the nature of silica source affects strongly on the growth of 

zeolite. In this work, four kinds of commercial available silica source were used, 

namely AS-40, TM-40, HS-40 and fumed silica. Fumed silica has largest particulate 

specific surface area (380 m2/g) among the four silica sources. The particulate specific 

surface area of TM-40 (140 m2/g) was similar to that of AS-40 (135 m2/g). The proper 

value of HS-40 (220 m2/g) was just smaller than fumed silica. 

Figure 2-13 Crystallinity and crystallite size of powders prepared at 473 K as a 
function of specific surface area of silica source. 

Figure 2-13 presented the crystallinity and crystallite size of sodalite in 

dependent on specific surface area of silica source types. Pure sodalite crystals were 

obtained by using all kinds of silica source. While fumed silica was used, sodalite has 

the smallest crystallite size. As the specific surface area of silica source decreased, 

crystallite size of as-synthesized sodalite increased from 41.4 nm to 79.1 nm. The 

average particle size decreases as silica particle size decreased. Figure 2-13 provided 

a good illustration of it, which is in accordance with the result reported by Meise [28]. 



2.3.7 Effect of seeds on membrane morphology 

Figure 2-14 XRD patterns of membranes prepared with supports coated with sodalite 
crystals prepared at (a) 383 K, (b) 403 K, (c) 423 K, and (d) 448 K for 24 h. 

(Membranes were all synthesis at 448 K for 16 h in a sol with a molar composition of 
1 SiO2: 0.50 Al2O3: 0.96 Na2O: 0.65 NaCl: 500 H2O.)  

(a) (b) 

(c) (d) 



Figure 2-15 SEM images of membranes prepared with supports coated with sodalite 
crystals prepared at (a, b) 383 K, (c, d) 403 K, (e, f) 423 K, and (g, h) 473 K for 24 h. 
(Membranes were all synthesis at 448 K for 16 h in a sol with a molar composition of 

1 SiO2: 0.5 Al2O3: 0.96 Na2O: 0.65 NaCl: 500 H2O.) 

To discuss the effect of seeds on membrane preparation, we attempted to prepare 

sodalite membranes using sodalite crystals prepared at different temperature as shown 

above. The SEM images of seeds were showed in Figure 2-2. Membranes were 

prepared with a molar composition of 1SiO2: 0.5 Al2O3: 0.96 Na2O: 0.65 NaCl: 500 

H2O. And the crystallization was carried out at 448 K for 16 h. Figure 2-14 exhibited 

the XRD patterns of as-synthesized membranes. Pure sodalite membranes can be 

induced successfully except using sodalite crystals prepared at 423 K. When crystals 

prepared at 423 K were used, ANA crystal phase appeared. 

The membrane morphologies were showed by SEM images in Figure 2-15. 

When crystals prepared at 403 K were used, inhomogeneous sodalite membrane was 

formed. On the surface of the membrane, both of cubic crystals with a side length of 

(e) (f) 

(g) (h) 



2 m-5 m and elongate crystals were formed. Pure sodalite membranes with cubic 

crystals can be obtained with seeds prepared at 383 K and 473 K, respectively. 

Especially for membrane prepared with seed synthesized at 473 K, there were no 

obvious cracks while much cracks appeared in membrane prepared with seed 

synthesized at 383 K. Moreover, Figure 2-15(h) showed a thin zeolite layer of 2 m 

was formed on the support. Therefore, sodalite crystals prepared at 473 K will used 

for sodalite membrane preparation in Chapter 3. 



2.4 Conclusions 

The main purpose of this research is to investigate many factors influencing the 

synthesis of sodalite, including synthesis temperature, synthesis time, n (Na2O/SiO2), 

n (H2O/SiO2), n (Al2O3/SiO2) and silica source. From the XRD patterns and SEM 

images, it was concluded that smaller and more uniform sodalite crystal particles were 

produced at higher synthesis temperature (473 K). Pure sodalite crystals were formed 

until the synthesis time was prolonged to 18 h at 423 K. Moreover, n (Na2O/SiO2) was 

effective on the crystallite size of synthesized zeolite and low n (Na2O/SiO2) reduced 

the crystallinity sharply. Herein, sodalite crystals which are as small as 50 nm have 

been synthesized with a high n (Na2O/SiO2) value of 2.0. Besides, higher n (H2O/SiO2) 

decreased the crystallinity of the samples obviously. In addition, n (Al2O3/SiO2) 

affected the crystallite size of synthesized sodalite enormously even though the 

crystallinity was unchanged. Finally, the crystallite size of sodalite was only about 40 

nm when the silica source is fumed silica, showing the positive effects of small silica 

particles on obtaining sodalite with small crystallite size. Uniform sodalite crystals 

prepared at 473 K is better for preparing sodalite membranes with good morphology.
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Chapter 3 Dehydration performance of sodalite membranes 

prepared by secondary growth method 

3.1 Introduction 

Zeolites are crystalline aluminosilicates with well-defined pores and channels of 

molecular size. Intensive research efforts have been made in the last decades to shape 

various kinds of zeolite in thin films. Zeolite membranes have been examined in 

separating liquid mixtures and gaseous mixtures, including water [1], CO2/CH4 [1, 2], 

NH3/H2 [3], isomer separations [1] and other separations [2]. Successful commercial 

application of zeolite membranes is reported with LTA-type and T-type zeolite 

membranes in dehydration [4].

One of the unique properties of zeolite is the variety of zeolitic pore size. Sodalite 

has one of the smallest zeolitic pore size of 0.28 nm [5], allowing only small 

molecules, such as water, helium and hydrogen, penetrate into. Accordingly, 

defect-free sodalite membranes are expected to show significantly high selectivity of 

small molecules. Several attempts have been made to prepare sodalite membranes [6, 

7]. However, single gas permeations of helium and nitrogen through sodalite 

membranes followed Knudsen diffusion mechanism, suggesting a large contribution 

of inter-crystalline pathways [7]. Besides enhancing the inter-crystalline growth, 

removing adsorbed water from zeolitic pores may be a challenge.  

Recently, hydroxyl sodalite membranes synthesized on surface-polished disks are 

reported to show dehydration performance when alcohol/water mixtures were applied 

at 303-473K and 1.6-2.4 MPa [8]. Membranes showed dehydration performance also 

in vapor permeation performed at 398-473K [9]. In these preparation procedures, seed 

crystals were not applied. The polished flat surface may facilitate a formation of 

oriented zeolite membrane, which enhanced the intergrowth of crystals. In this 

research, sodalite membranes were prepared by seed assisted method on non-polished 

tubular supports. Effects of the composition of synthesis solution, synthesis 



temperature and crystallization time on the formation of sodalite membranes were 

studied. Membrane performance was evaluated in pervaporation with ethanol and 

iso-propanol solutions at 348K, 0.1 MPa. Influence of feed compositions was also 

examined.  

3.2 Experimental 

3.2.1 Raw materials 

Porous -alumina tubes (o.d. 12 mm, i.d. 9 mm and length 100 mm with a 

membrane area of 37.68 cm2), with an average pore size of 1.25 m and porosity of 

35.20 %, were used as supports. The surface SEM image was shown in Figure 3-1. 

Colloidal silica (Ludox HS-40, Aldrich), alumina hydroxide (Al(OH)3, 100%, Wako), 

sodium hydroxide (NaOH, 97%, Wako) and sodium chloride (NaCl, 99.99%, Wako) 

were used as silica source, alumina source, sodium source and chloride source, 

respectively. Distilled water was used as the solvent. 

Figure 3-1 The SEM photograph of the alumina support (surface section) 

3.2.2 Synthesis of sodalite seed crystals 

The procedure of preparing sodalite crystals as seed has been described in detail 

in Chapter 2. It can be explained briefly as follows. In typical synthesis, Al(OH)3, 

NaOH and the required distilled water were mixed and heated until the solution 

became apparent. After cooling the solution to room temperature, NaCl and Ludox 



HS-40 colloidal silica were added sequentially and the resulting solution was stirred 

vigorously for 1 h. The final solution had a molar composition of 1.00 SiO2: 0.50 

Al2O3: 0.96 Na2O: 0.65 NaCl: 20.50 H2O. The solution was placed in a sealed 

autoclave with Teflon and treated hydrothermally at 473 K for 24 h in a conventional 

oven. After the particles were rinsed until neutral, the resultant precipitate was dried 

overnight at 353 K before use.  

3.2.3 Preparation of sodalite membranes 

Sodalite membranes were grown by secondary seeded growth. The synthesis gel 

for sodalite membranes had a molar ratio of 1.0 SiO2: 0.50 Al2O3: 0.96 Na2O: 0.65 

NaCl: (30-500) H2O. The tubes with 10 cm length were cleaned with distilled water 

and dried at 353 K over night before use. The reaction solution was prepared as 

follows. Initially, Al(OH)3 was mixed with some water. While the mixture was being 

heated and stirred, NaOH was added. After the mixture became apparent and cooled 

to room temperature, the surplus water was supplemented. After several minutes, 

NaCl was added. Finally, silica source HS-40 was added cautiously, dropwise after 

NaCl was dissolved. The solution will be stirred for 24 h at room temperature. After 

aging, the reaction solution was transferred into a 300 ml autoclave. And then the 

outer side seeded supports were placed vertically into the autoclave. Secondary 

hydrothermal synthesis was carried out at 383~448 K for 4~20 h in a traditional oven 

which was preheated to the desired temperature. After crystallization, the membranes 

were racked from the cooled autoclave, and then washed with water thoroughly until 

the neutral and dried overnight at 353 K. 

3.2.4 Characterization 

X-ray diffraction (XRD, SHIMADZU XRD-6100) with Cu-  radiation was 

used to identify the crystal structures of sodalite crystals and sodalite membranes. 

These spectra were scanned in the range of 2  = 5o-45o at a scanning rate of 4o/min. 

Scanning electron microscopy (FE-SEM, JEOL JSM 6335F) was used to observe the 

morphology and thickness of obtained samples.  



3.2.5 Permeation performance 

3.2.5.1 Pervaporation (PV) 

The membrane performance was firstly determined by using it to dehydrate 

ethanol (EtOH)/water (H2O) and isopropanol (IPA)/water (H2O) mixtures at 348 K by 

pervaporation (PV). The schematic representation of the PV apparatus was shown in 

Figure 3-2. The seeded supports were directly immersed in the feed solution. The 

capacity of each permeation cell was about 140 mL and the effective area of the 

membranes was 23 cm2. The permeated vapor was completely condensed in a trap 

placed in a Dewar Flask cooled to 77 K using liquid nitrogen. The compositions of 

feed and permeate solutions were analyzed by gas chromatography (GC, SHIMADZU 

GC-8A). 

Figure 3-2 Schematic diagram of pervaporation. 

The performance of a membrane in PV is characterized by permeation flux (J), 

selectivity ( ) and permeance (P) calculated by the following equations:  

J = Q/At    (1) 

where Q is the mass of permeate (g) collected during a time interval of t (h) and A 

is the effective membrane area in contact with the feed (m2).  

 = (yi/yj)/(xi/xj)   (2)          

where yi and yj represent the weight fraction of water and alcohols in the permeate, 

and xi and xj represent those of water and organics in the feed, respectively. 



Pi(j) = (103

where Pi(j) is the permeance (mol·m-2·s-1·Pa-1) of component of i or j. Q is the 

same parameter in Eq. (1). M is the molar mass (g·mol-1) of the correspondence 

3.2.5.2 Nanopermporometry 

Adsorption-branch N2/water nanopermporometry data were recorded for sodalite 

membranes at room temperature using the experimental set-up illustrated in Figure

3-3. A sodalite membrane was mounted in a stainless steel module and sealed with 

o-rings. The membrane was dried over night before the measurement. The pressure 

difference was adjusted to 30 kPa. The permeate side was kept at atmospheric 

pressure. N2 gas and water vapor were fed to the membrane via two mass flow 

controllers. One of the N2 streams was saturated with water vapor by bubbling 

through a water bath. The two N2 streams were mixed to arrive at the required relative 

pressure. The total flow rate was measured by a flow meter. Increasing concentrations 

of water vapor was added to the feed and the N2 permeance was continuously 

recorded using a digital flow meter. The basic principle of nanopermporometry is 

based on capillary condensation of vapor and the blocking effect of permeation of a 

non-condensable gas.[10]  

Figure 3-3 Schematic diagram of nanopermporometry. 



In a capillary having a smaller pore size (radius r), vapor condenses at vapor 

pressure p lower than the saturated vapor pressure p0. The capillary radius can be 

estimated by the water vapor pressure in the feed and under a standard saturated 

condition, using the well-known Kelvin equation: 

RT ln(p/p0) = -2 cos     (4) 

where and are molar volume, surface tension and contact angle, 

respectively. 

For the calculation of capillary condensation diameter based on Eq. (4), complete 

wetting, i.e. contact angle = 0, was assumed irrespective of the types of vapors. 

3.3 Results and discussion 

3.3.1 Preparation of sodalite seed crystals 

Formation of a uniform seed layer on the support surface is one of the keys in 

preparing defect-free zeolite membranes via seed-assisted method. Seed crystals 

should be in pure phase to avoid any contamination to the zeolite membrane, for 

impurity often causes defect formation. Synthesis conditions were optimized to form 

pure sodalite crystals in sub-micrometer size. Figure 3-4 (a) shows the morphology 

of the sodalite crystals used as seed in this study. The crystal size was in the range of 

100 to 200 nm. XRD pattern of crystals is shown in Figure 3-4 (b). Typical peaks at 

2 =14.16o, 24.65o, 31.99o and 35.13o associated with sodalite zeolite can be observed 

in this pattern. Impurities are not found from the XRD analysis. 



Figure 3-4 Sodalite powder used as seed: (a) SEM image and (b) XRD pattern

3.3.2 Influence of synthesis conditions on the formation of sodalite membranes  

Membranes synthesized under the same conditions as the seed preparation 

conditions were consisted with loosely packed crystals and very fragile. Crystals 

formed in the synthesis solution seemed to be accumulated on the support. To reduce 

the contribution of crystals formed in the solution to the membrane formation, 

synthesis solutions with higher water contents were investigated.  

Figure 3-5 shows the membrane morphologies prepared from solutions having 

composition of 1.0 SiO2: 0.50 Al2O3: 0.96 Na2O: 0.65 NaCl: x H2O (x = 30, 50, 200 

and 500). Hydrothermal conditions were fixed to 448K for 4 hours. Crystals at the 

surface of sodalite membrane became larger when water content in the solution was 

higher. However, many cracks were found when the synthesis solution was too dilute 

(x = 200 and 500). Some of the cracks were formed throughout the sodalite layer, as 

can be seen in Figure 3-5 (h). The thickness of the sodalite membrane differed to the 

synthesis solution compositions. Membrane prepared from solution with water 

content of x = 50 had thickness of ca. 2-3 m and other membranes had thickness of 

ca. 5 m. As cracks were only found in the latter membranes, crack formation may be 

associated with the membrane thickness. 

Influence of hydrothermal synthesis temperature and time on the membrane 

formation was examined by fixing the solution composition to x = 50. Figure 3-6 (a)

shows the XRD patterns of membranes synthesized at different temperatures. The 

major peaks were corresponding to sodalite crystals [11] and to support for all the 

membranes. Contamination of LTA-type zeolite, having typical peak at 2  = 7.2o, was 

found when membranes were prepared at lower temperatures as 383 K and 403 K. 

LTA-type zeolite is a common impurity phase when preparing sodalite crystals, 

especially at lower temperature or shorter synthesis time [12]. On the contrary, 

impurities were not found when synthesis temperature was over 423 K. 



Figure 3-5 SEM images of membranes prepared from solutions having composition of 
SiO2: 0.50 Al2O3: 0.96 Na2O: 0.65 NaCl: xH2O, x = (a-b) 30, (c-d) 50, (e-f) 200 and 

(g-h) 500. (Hydrothermal conditions were fixed to 450 K for 4 h.) 

(a) (b) 

(d)(c) 

(e) (f) 

(g) (h) 



Figure 3-6 (b) shows the XRD patterns of membranes synthesized for different 

time at a fixed temperature of 448K. Peaks corresponding to sodalite phase were 

observed in all the membranes, however, impurities were found in membranes 

synthesized for 4 hours and 20 hours. Impurity in the membrane synthesized for 4 

hours is P-type zeolite, having typical peaks at 2  = 12.5o, 17.8o and 21.8o. P-type 

zeolite is another common impurities formed together with sodalite as reported by S. 

Khajavi et al. [12]. On the contrary, when the synthesis time was over 20 h, analcime 

(ANA)-type zeolite appeared that has typical peaks at15.81o and 30.54o. This may be 

an indication of transformation of sodalite to ANA phase.

a) b)  

Figure 3-6 a) The XRD patterns of sodalite membranes prepared for 6 h at different 
temperatures: (a) 383 K, (b) 403 K, (c) 423 K, and (d) 448 K, respectively. 

b) The XRD patterns of sodalite membranes prepared at 448 K for (a) 4 h, (b) 6 h, (c) 
12 h and (d) 20 h  

Figure 3-7 shows the SEM images of membranes prepared for different synthesis 

time at 383 K, 423 K and 448 K, respectively. The SEM images were taken with 

membranes after pervaporation tests. Supports were fully covered with crystals in all 

the cases. The findings showed that the morphology of the membranes was closely 

related to crystallization temperature. By comparison, the images clearly revealed that 

the surface morphology of pure sodalite membranes became smoother and the zeolite 

layer was more continuous when synthesis temperature increased. Moreover, the 

morphology of membrane (S-2) was dominated by the impurity of A-type crystal 

phase. 



(g) (h) 

(a) (b) 

(e) (f) 

(d) (c) 



Figure 3-7 SEM images of membranes prepared (a-b) at 383 K for 6 h, (c-d) at 403 K 
for 6 h, (e-f) at 423 K for 6 h, (g-h) at 448 K for 6 h, (i-j) at 448 K for 12 h and (k-l) at 

448 K for 20 h, respectively. 

For membranes prepared at 448 K, continuous layers of ca. 1-5 m were observed 

on the porous supports. Crystals at the surface of the membrane were inter-grown 

each other. The gap between crystals became smaller with prolonging the synthesis 

time from 6 hours to 12 hours. On the contrary, a drastic morphology change was 

observed after 20 hours of synthesis. The surface of the membrane was consisting of 

micron-meter sized crystals. Voids between crystals were clearly observed. The shape 

of crystals were similar to those reported for ANA zeolite [13], which existence was 

observed by XRD. 

(k) (l) 

(i) (j) 



Table 3-1 Synthesis conditions and crystal phases of synthesized membranes.

No. 
Synthesis condition 

Crystal phase 
Temperature (K) Time (h) 

S-1 383 6 SOD, A 
S-2 403 6 SOD, A 
S-3 423 6 SOD 
S-4 448 4 SOD, P 
S-5 448 6 SOD 
S-6 448 12 SOD 
S-7 448 20 SOD, ANA 

Table 3-1 summarizes some of the results showing the influence of hydrothermal 

synthesis conditions on the zeolite phase. Higher synthesis temperature than 423K is 

required for the formation of pure sodalite membranes. As defects in zeolite 

membranes are expected to be reduced with the growth of crystals, prolonging the 

synthesis time is one way to improve the membrane selectivity. However, undesired 

zeolite phase started to appear in this study when the synthesis time was too long. 

Sodalite membranes with impurities observed by XRD were not applicable for PV 

tests due to large defects in the membranes. These results suggested the importance of 

forming sodalite membranes in pure phase. 

3.3.3 Dehydration properties 

Figure 3-8 shows the dehydration performance of a membrane synthesized at 

448K for 12 hours. No other phase than sodalite was observed in the membrane by 

XRD analysis. Steady state of permeation was confirmed at each measurement by 

performing the test for more than 10 hours. Sodalite membrane showed 

water-selectivity with both water/EtOH and water/IPA mixture feeds. Selectivity was 

higher in water/IPA separation than in water/EtOH separation as observed in different 

zeolite membranes[14]. Flux was about one order smaller when compared with the 

flux through zeolite A membrane[14], which might be due to the smaller zeolitic pore 

size of sodalite than zeolite A. Permeation of alcohols suggests a contribution of 

non-zeolitic pore permeation. 



Figure 3-8 Separation factor and feed composition dependence of partial flux of each 
component for (a) EtOH/H2O and (b) IPA/H2O mixtures at 348 K. 

Figure 3-9 Feed composition dependence of water permeance in EtOH/H2O and 
IPA/H2O mixtures at 348 K. 

Figure 3-9 shows the water permeance calculated according to Eq. (3). 

Permeance of water was about half in water/IPA separations than in water/EtOH 

separations. In both cases, permeance of water was constant to the feed composition 

in the concentration ranges studied. S. Khajavi et al. [8] reported different profiles of 

water flux by the type of alcohol in the feed solution; secondary-alcohol drastically 

hindered water flux through sodalite membranes when alcohol concentration was 

above 60-65 mol%. They presumed the cause as a different packing of molecules on 



the surface of the membrane. Such differences in profile of water permeation by the 

type of co-existing alcohol were not observed in this study. Lower operation 

temperature applied in this study facilitates water adsorption and, thus, the different 

adsorption profiles of alcohol to the sodalite surface may not be relevant. 

Figure 3-10 The XRD patterns of sodalite membrane prepared for 6 h at 448 K: 
(a) before pervaporation, (b) after pervaporation 

(I(110),14.16o/Isupport, 35.2o, before PV = 0.21, I(110), 14.16o/Isupport, 35.2o, after 
PV = 0.19) 

Sodalite membranes showed stable separation performance in each PV test 

condition, measured for 10-20 hours. However, after several runs of PV test with 

washing and drying at 353K in between the measurements, membranes lost selectivity. 

Sodalite membrane prepared from longer synthesis time had better stability, but yet, 

defect formation was suspected after several tests. No other phases than sodalite and 

support alumina were observed by XRD after the membranes got damaged as shown 

in Figure 3-10  = 14.2o) and suppor  = 

35.1o) give an indication of the thickness of the sodalite layer. The values calculated 

from the XRD patterns obtained for the same membrane before and after PV test were 

0.21 and 0.19, respectively. While no significant change was suggested by XRD 

analyses, larger defects than ca. 20 nm were observed by permporometry 

measurement using water and nitrogen in the membrane after PV tests. Small amount 

of solution may have remained in between crystals and triggered defects formation. 

Synthesis conditions and micro-structure of the sodalite membrane requires further 

investigations to improve the membrane property and stability. 



3.4 Conclusions 

Sodalite membranes were synthesized by the secondary growth method on 

-Al2O3 tubular supports. Zeolite A was contaminated into sodalite when the synthesis 

temperature was lower than 403K. Pure sodalite phase can be obtained at higher 

temperature than 423K, however, too short or too long synthesis time resulted in a 

formation of undesired phase. Sodalite membranes having impurities had large 

defects, suggesting the importance of forming sodalite membranes without any 

contamination. Sodalite membranes, without impurities, showed water selectivity in 

water/EtOH and water/IPA mixtures with different alcohol concentrations at 348 K.
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Chapter 4 Preparation of zeolite T membranes by a two-step temperature 

process for CO2 separation 

4.1 Introduction 

Carbon dioxide, one of the major greenhouse gases, has become an important 

global concern over past decades due to the significant and continuous rise in 

atmospheric CO2 concentrations, thus leading to global warming [1, 2]. Therefore, 

controlling and minimizing CO2 emissions and separation and capture of CO2 in 

industry are of great interest from the perspectives of global warming and energy 

production and conservation [3, 4].  

Currently, polymeric membranes are widely developed in the application of CO2

separation due to their relatively high CO2 separation performance, relatively low cost, 

and large-scale production. However, they also have disadvantages of severe 

decomposition, lower selectivity at high temperatures, and a limita

upper bound, which will cause negative reliability in the large-scale application of 

polymeric membrane-based separation processes [3, 5, 6].  

Zeolite T membrane has been developed as a novel membrane material for CO2

separation for the past decade [7, 8]. The effective pore size of zeolite T for 

permeation is 0.36 nm × 0.51 nm [9]. Therefore, N2 and CH4 gas molecules with of 

0.364 and 0.38 nm, respectively, could hardly penetrate through the dense layer of 

zeolite T crystals. However, CO2 gas molecules with a smaller kinetic diameter of 

0.33 nm may permeate through the zeolite T membrane without difficulty. Thus, the 

selective membrane covered with well-intergrown zeolite T crystals is especially 

advantageous in removing CO2 from gas mixtures due to molecular sieving and 

competitive adsorption [10]. Therefore, it has great potential application in the 

permselective separation of CO2 from CH4 and N2 through zeolite T membranes [7]. 

A two-step varying-temperature synthesis procedure, which involves a rapid 

change in temperature at some point during the crystallization process, was 

intensively reported to silicalite-1 and ZSM-5 zeolites, and MFI-type zeolite 



membranes [11-13]. Recently, we prepared zeolite T membranes using a clear 

aluminosilicate solution or a fluoride media and the two-step method [14, 15]. These 

membranes showed high selectivity for water/organic mixture separation by 

pervaporation and high reproducibility. Two-step method leads to shortened 

crystallization time and improved membrane density. But there are no any 

investigations on the gas separation properties such as CO2 separation performance 

through zeolite T membranes in our previous work. Also, there are few reports on 

detailed investigations for the relationship among synthesis conditions of zeolite T 

membrane growth and CO2 separation performance in the literature. 

Herein, thin and well-intergrown zeolite T membranes with high permeation 

performance for CO2 separation were successfully prepared with the two-step 

varying-temperature hydrothermal process. The influence of synthesis parameters 

such as synthesis temperature, crystallization time on membrane growth and CO2

separation performance of zeolite T membranes were investigated systematically. The 

formation mechanism of zeolite T membranes during the two-step method was also 

discussed. The as-synthesized membranes displayed high permeation properties from 

CO2/CH4 and CO2/N2 mixtures. 

4.2 Experimental  

4.2.1 Membrane synthesis.  

Porous -Al2O3 tubes (Nikkato Corp.) 100 mm in length were used as membrane 

supports, which had an outer diameter of 12 mm, a thick wall of 1 mm, an average 

pore size of 1.3 m, and a porosity of about 40%. These tubes were polished with SiC 

sandpaper, washed with deionized water in an ultrasonic bath for 30 min, and then 

dried in an oven at 373 K overnight. Before hydrothermal treatments, the support 

tubes were rub-coated with homemade nanometer sized (about 100 nm) zeolite T 

powder and were dried. Zeolite T powders were prepared with a molar composition of 

SiO2: Al2O3: Na2O: K2O: H2O: (TMA)2O = 1: 0.055 :0.075: 0.025: 11.6: 0.25 at 358 

K for 120 h in an oil bath.  



The detailed preparation procedure of nanosized seeds and seeded support were 

described previously [14]. The aluminosilicate gel was prepared by mixing colloidal 

silica (TM-40, 40 wt % SiO2 suspension in water, Aldrich), Al(OH)3 (Wako Pure 

Chemical), NaOH (Aldrich), KOH (Aldrich), NaF (Aldrich), and de-ionized water 

under vigorous stirring at room temperature for 24 h. The molar composition of the 

resulting synthesis gel was SiO2: Al2O3: (Na2O +K2O): NaF: H2O = 1: 0.05: 0.35: 

0.50: 30 (n(Na)/n(K) = 3/1). Then, the seeded support tubes were vertically placed in 

a stainless steel autoclave filled with the above synthesis solution for membrane 

preparation. 

One-step constant-temperature synthesis method (one-step method) 

After sealing the autoclave, the autoclave was kept in an oven at a constant 

temperature of 353 K (or 423 K) for different periods of time.  

Two-step varying-temperature synthesis method (two-step method)

After sealing the autoclave, the autoclave was kept in an oven and preheated to 

353 K (or 473 K) -

moving into another oven preheated to 398-448 K 

-synthesized membrane 

samples were taken out and washed thoroughly with hot deionized water ( 333 K) for 

2 h to remove excess materials, and then dried at 373 K overnight.  

4.2.2 Gas permeation measurements.  

The gas permeation through the zeolite T membrane was evaluated in a 

membrane permeation system as shown in Figure 4-1. The membrane was mounted 

in a stainless-steel membrane module and sealed with silicone Orings on both ends. 

Feed gases flowed to the outside of the tubular membrane (retentate side), and the 

permeated gases were collected on the inside of the tubular membrane (permeate side). 

Mass flow controllers (MFC) were used to mix pure CO2, CH4, and N2 gases. 

Hydrogen gas was used as the sweep gas on the permeate side. Gas permeating 

through the membrane was led into a MFC detector and an online gas chromatograph 



(GC7100, equipped with a thermal conductivity detector, hydrogen gas as carrier gas) 

to determine the flow rate and component of permeated gases, respectively. The 

pressure in the retentate side was controlled by a back pressure regulator, while that of 

the permeate side was kept at an ambient atmosphere. The effective permeation area 

of the membrane was 18.8 cm2. The operation measurements of mixed-gas 

permeation were conducted with equal molar binary gaseous mixtures (CO2/CH4 or 

CO2/N2, 50/50 mol %) with a total feed flow rate of 300 ml/min and H2 sweep gas of 

400 ml/min under a pressure gradient of 0.1 MPa at 308 K. The gas permeation 

performance of the membrane was evaluated in terms of permeance and selectivity. 

The permeance is related to the transport flux by the driving force across a membrane. 

The selectivity is defined as the ratio of the compositions of components A and B in 

the permeate side relative to the composition ratio of these components in the 

retentate side. The permeance and selectivity were calculated from the following 

equations, respectively:  

       (1) 

 (A/B) = (YA/YB)/(XA/XB)       (2) 

where N is the molar amount of the permeate gas (mol) over a period of time (t, 

ifference of the permeate gas (Pa); S is the effective 

membrane area for permeation (m2 ); and XA, XB, YA, and YB are the mole fractions 

of each component in the retentate and permeate sides, respectively.  

Figure 4-1 Scheme of membrane permeation system for gas separation experiments. 
(1. valve; 2. pressure gauge; 3. mass flow controller; 4. membrane module; 5. back 

pressure regulator) 



4.2.3 Characterization  

The crystal structure of zeolite seeds and as-synthesized membranes were 

characterized by X-ray diffraction (XRD, Ultima IV, Rigaku) with Cu K  radiation at 

40 kV and 40 mA. The morphology and thickness of zeolite membranes were 

observed using a scanning electron microscope (SEM, VEGA3 SBU, Tescan), 

equipped with an energy dispersive X-ray analyzer (EDX, Hitachi S-3400N) for 

composition analysis (e.g., Si/Al ratio) of the zeolite membranes. 

4.3 Results and discussion 

4.3.1 Effects of crystallization temperature and time during the one-step method.  

Figure 4-2 Effect of crystallization time on the CO2 separation performance of zeolite 
T membranes prepared at 423 K by the one step method. 

Figure 4-2 shows the effect of crystallization time on the CO2 separation 

performance of zeolite T membranes prepared at 423 K with a one-step method. 

As shown in Figure 4-2(a), for CO2/CH4 mixtures, the CO2 permeance fluctuated 

slightly with the increasing crystallization time, which ranged from 3.5×10-8

mol·m-2 ·s -1 ·Pa-1 to 5.9×10 8 mol·m-2·s-1·Pa-1. However, the CH4 permeance first 

rapidly decreased with synthesis time until 10 h, then increased sharply when the 

synthesis time was further increased, showing a maximum value of 9.8×10 9

mol·m-2·s-1·Pa-1at 12 h. Thus, the membranes prepared for 6-10 h at 423 K displayed 

good permselectivity ranged from 41 to 47 for CO2/ CH4 mixtures. Similar trends as 



shown in Figure 4-2(a) appeared in the results, as represented in Figure 4-2(b) for 

CO2/N2 mixtures.  

In addition, it should be noted that the membrane prepared for 12 h exhibited 

higher CH4 or N2 permeance and lower CO2 permselectivity of 6-8 in both CO2/CH4

and CO2/N2 mixtures tests. Normally, zeolite membranes would grow more 

continuous and denser with the increasing crystallization time, thus showing good 

permselectivity. However, as shown in Figure 4-3, the surface of this membrane 

prepared for 12 h was covered with randomly oriented rod-like zeolite T crystals, 

while their packing like small floccules about 20 m in thickness was rather loose. 

Therefore, it showed lower CO2 separation performance. The effect of crystallization 

time on CO2 separation performance of zeolite T membranes prepared at 353 K by the 

one-step method was also investigated.  

Figure 4-3 SEM images of zeolite T membrane synthesized at 423 K for 12 h with the 
one-step method: top view (a) and cross-sectional view (b). 

As seen in Figure 4-4, for both CO2/CH4 and CO2/N2 mixture systems, all the gas 

permeances of CO2, CH4, and N2 for these membranes nearly remained constant, and 

the CO2 permselectivity was about 10 with the increasing synthesis time, even though 

the membrane was a prolonged crystallization of 96 h.  

(a) (b) 



Figure 4-4 Effect of crystallization time on the CO2 separation performance of zeolite 
T membranes prepared at 353 K with the one-step method. 

Figures 4-5 and Figure 4-6 show the SEM images and XRD patterns for the 

zeolite membranes synthesized at 423 K for 8 h and at 353 K for 96 h, respectively. 

As illustrated in Figures 4-5, it can be seen that all the seeded support was fully 

covered with zeolite T crystals with random intergrowth. For the membrane prepared 

at 423 K for 8 h, the rod-like crystals with the a particle size over 5 m were grown on 

the outer surface of the support (Figures 4-5(a)), which would influence the CO2

separation performance. And the top thickness of randomly oriented crystal layers was 

approximately 3 m (Figures 4-5(b)). However, it was seen that the support surface 

was covered with smaller ricelike zeolite T particles of less than 1 m in diameter 

(Figures 4-5(c)), and a zeolite layer as thin as 1.5-2 m was observed for the 

membrane prepared at 353 K for 96 h (Figures 4-5(d)). Compared with the 

membrane prepared at 423 K for 8 h, as seen in Figures 4-6, the membrane prepared 

at 353 K displayed weaker characteristic peaks of T-type zeolite while showing the 

stronger typical peaks of Al2O3 support. The XRD results were consistent with the 

surface images of zeolite T layers (Figures 4-5) and CO2 separation performance, 

indicating that the nuclei grew rapidly to form larger zeolite crystals at higher 

crystallization temperatures [11, 16]. The above results suggested that the synthesis 

temperature or crystallization time is one of the most important variable factors, 

which strongly affects the membrane growth and CO2 separation performance.  



Figure 4-5 SEM images of zeolite T membranes synthesized at 423 K for 8 h (a, b) 
and at 353 K for 96 h (c, d) with the one-step method. 

Figure 4-6 XRD patterns of zeolite T membranes synthesized at 423 K for 8 h (a) and 
at 353 K for 96 h (b) with the one-step method. Asterisk represents the patterns of 

-Al2O3 support 

(a) (b) 

(d) (c) 



4.3.2 Effects of synthesis temperature and crystallization time for each step during the 

two-step method 

Table 4-1 Permeation properties of as-synthesized zeolite T membranes with the 
two-step method 

No.

First 
step 

Second 
step 

Permeance 
(mol·m-2·s-1·Pa-1)

(CO2/CH4) 

Permeance 
(mol·m-2·s-1·Pa-1)

(CO2/N2) T 
(K) 

t 
(h) 

T 
(K) 

t 
(h) 

CO2 

(×108) 
CH4 

(×1010) 
CO2 

(×108) 
N2 

(×1010) 

T1 353 4 398 14 2.1 9.2 23 1.8 11.3 16 
T2 353 4 398 18 2.4 17.0 14 1.9 15 13 
T3 353 4 423 8 6.2 7.8 80 5.9 13.7 43 
T4 353 4 423 10 2.3 5.9 39 2.4 10.1 24 
T5 353 4 448 3 4.2 10.3 41 3.8 13.2 29 
T6 353 4 448 4 3.8 20.0 19 3.3 20.0 17 
T7 473 1 423 8 5.2 309.0 2 4.6 261.0 2 
T8 473 2 423 8 5.1 383.0 1 4.7 312.0 2 

In order to investigate the effects of crystallization temperature and synthesis time 

for each step during the two step method, two series of zeolite T membranes were 

synthesized. One is to investigate the effect of synthesis time of the first step at a low 

temperature of 353 K on the membrane crystallization and separation performance by 

keeping the second step at 423 K for 4 h. The other is to explore the effects of 

crystallization temperature and time of the second step at a higher temperature of 

398-448 K on the membrane crystallization and permeation performance by keeping 

the first step at 353 K for 4 h (see Table 4-1). It may provide valuable insights into the 

nucleation and crystallization stages during the two-step method and obtain the best 

membranes with high CO2 permeance and permselectivity under the optimized 

synthesis conditions.  



4.3.2.1 Effect of crystallization time for the first step.  

Figure 4-7 SEM images of as-synthesized membranes prepared at the first step of 353 
K for different crystallization time with the two-step method (the second step at 423 K 

for 4 h). 

Figure 4-7 shows the surface and cross-sectional SEM views of as-synthesized 

zeolite membranes prepared over a crystallization time from 2 to 16 h at a first step of 

353 K with the two-step method. After thermal treatment at 353 K for a certain 

duration and subsequent synthesis at 423 K for 4 h during the two-step method, as 

seen in Figure 4-7, all the as-synthesized membranes were covered with randomly 

oriented small zeolite T crystals with a size less than 1 m. The thickness of the top 

crystal layers increased from about 3.5 to 6 m on increasing the first-step time from 

2 to 16 h. And few zeolite T crystals were grown inside the supports after 8 h. It can 

be found that the XRD patterns of these zeolite membranes (Figure 4-8) were 

consistent with the strong characteristic peaks of the -Al2O3 tube together with those 

of the zeolite T crystals, confirming that the outer surface of the mullite support was 

not fully covered by the zeolite layers. The relative intensity of the main characteristic 



peaks of zeolite T (2 = 7.7°, 13.3°, 20.4°, 23.6°, 24.8°, 28.3°, and 31.4°) increased 

greatly under the synthesis time of the first step.

Figure 4-8 XRD patterns of as-synthesized membranes prepared at the first step of 
353 K for different crystallization time with the two-step method (the second step at 

423 K for 4 h). 

Figure 4-9 shows the CO2 separation performance of these membranes. It 

indicates that the gas permeance mostly decreased with the increasing crystallization 

time of the first step; especially CH4 permeance (Figure 4-9) decreased drastically 

from 2.0×10 9 mol· m-2·s -1·Pa-1 to 3.0×10 10 mol· m-2·s -1·Pa-1 in this work. Generally, 

the membrane grows thicker, and the gas-tightness of the membrane becomes denser, 

thus depressing the permeance of non-adsorbing gas. For further treatment, the 

permselectivity increased and the permeation flux of the membrane decreased, maybe 

because of increasing the membrane thickness and density. The drastic decreasing 

permeance of gaseous mixtures shown in Figure 4-9 is consistent with the previous 

observations of SEM images and XRD spectra (Figures 4-7 and Figure 4-8). The 

selectivity of CO2/CH4 and CO2/N2 first increased with the first-step synthesis time, 

and then decreased sharply when synthesis time further increased to 16 h, resulting in 

a higher value of selectivity obtained at 4 h for the first step. Moreover, the CO2

separation performance during the CO2/ CH4 mixture system was obviously higher 

than that of the CO2/N2 mixtures test, which was consistent with that of previous 

reports [7, 8]. On the basis of above considerations, the more effective crystallization 

time of the first step seems be 4 h at 353 K.  



Figure 4-9 Effect of crystallization time of the first step at 353 K with the two-step 
method on the CO2 separation performance (the second step at 423 K for 4 h). 

4.3.2.2 Effect of synthesis temperature and crystallization time for the second step. 

Table 4-1 shows the permeation performance of zeolite T membranes prepared in 

the second step with different synthesis temperatures from 398 to 448 K by keeping 

the first step at 353 K for 4 h. As seen in Table 4-1, the membranes T1 and T2 

prepared with the second step at 398 K for 14-18 h displayed a lower CO2 permeance 

of 1.8×10 8 mol·m-2·s-1·Pa-1 to 2.4×10 8 mol·m-2·s-1·Pa-1 and a poorer CO2 selectivity 

of about 13-23, respectively.  

Figure 4-10 XRD patterns of as-synthesized membranes: T1 (a), T3 (b), T5 (c), T7 (d), 
and T8 (e). Asterisk represents the patterns of -Al2O3 support 



Figure 4-11 Surface and cross-sectional SEM images of T membranes: T1 (a, b), T3 
 and T8 (g, h). 

(a) (b) 

(d) (c) 

(c (d

(e) (f) 

(g) (h) 



The CH4 and N2 permeance of membrane T2 was about 1.3-1.8 times those of 

membrane T1. Membrane T2 did not become denser with the increasing 

crystallization time prolonged to 18 h. Moreover, for membrane T1, there were 

stronger characteristic peaks of the -Al2O3 support and relatively weaker 

characteristic peaks of zeolite T crystals (Figure 4-10 (a)) and the loose packed 

zeolite T layer covered on the seeded support (Figure 4-11 (a-b)). 

As a result, the membrane T1 showed poor gas permeation properties. Similar 

results were observed for membranes T5 and T6 with the second step at 448 K for 3-4 

h. Although there were also stronger characteristic peaks of support as seen in Figure 

5c, the membrane T5 showed high crystallinity of zeolite T together with preferential 

growth of the (102) direction, and a lot of smaller zeolite T crystals with poorer 

intergrowth were observed in the depths of the seeded supports (Figure 4-11 (e-f)). 

Thus, it also showed poorer CO2 selectivity as seen in Table 1. However, as shown in 

Table 4-1, the membrane T3 prepared with the second step at 423 K for 8 h displayed 

the highest CO2 permeance of 6.2×10 8 mol·m-2·s-1·Pa-1 and CO2 permselectivity of 

80 in CO2/CH4 mixtures compared with other membranes. As shown in Figure 4-11 

(c, d ), a continuous and dense zeolite T layer as thin as 4 m randomly covered the 

support surface. The membrane exhibited much stronger relative intensity of the main 

characte 

The above results repeatedly indicate that synthesis temperature and 

crystallization time are the most important variable factors, which strongly affect the 

zeolite membrane growth and permeation performance [12, 13, 17, 18]. It also 

suggested that it was difficult to control the crystal growth at lower temperature or 

higher temperatures during the second-step and to subsequently form dense zeolite T 

layers on a seeded support surface under such synthesis conditions in this work.  

The effect of crystallization time of the second step at 423 K on the membrane 

crystallization and the permeation performance was also investigated in this work 

(keeping the first step at 353 K for 4 h). After 2 h of hydrothermal treatment during 

the second step, as seen in Figure 4-12, there were weaker characteristic peaks of 

zeolite T while showing the stronger characteristic peaks of support. Loose zeolite T 



crystals could not fully cover all the pores of the support (Figure 4-13), and thus, this 

membrane did not have a separation property (Figure 4-14). After 6 h, although this 

membrane showed the main characteristic peaks of zeolite T, there were also stronger 

characteristic peaks of support. It illustrated that zeolite T layers with random 

intergrowth did not completely cover the pores of the support, showing a relatively 

lower CO2 permeation performance. After 8 h, as described above, the membrane T3 

(Table 4-1) exhibited a continuous zeolite T layer with good intergrowth morphology, 

showing the highest CO2 permeance and separation performance.  

Figure 4-12 XRD patterns of as-synthesized membranes for different crystallization 
times of the second step at 423 K with the two-step method (the first step at 353 K for 

4 h). 

However, for further treatment to 12 h, the membrane showed the oriented zeolite 

T layer with about a thickness of 7 m covered in the depths of the supports, which 

was similar to the membrane T5 as seen in Figure 4-11 (e-f). It was also consistent 

with the XRD results for this membrane, as shown in Figure 4-12. The (102) peaks 

(2 = 24.8°) became obvious and strong in the membrane. Generally, zeolite 

membranes with preferred crystal orientation would exhibit high permeation 

performance. Nevertheless, this membrane prepared over 12 h in this work still 

showed poor CO2 perm-selectivity (Figure 4-14) due to no dense zeolite layer being 

fully covered on the seeded support, as illustrated in Figure 4-13. Further study of the 

influence of zeolite crystal orientation on CO2 separation performance of zeolite T 

membranes is necessary.  



Figure 4-13 Surface and cross-sectional SEM images of membranes prepared for 
different crystallization times of the second step at 423 K by the two-step method (the 

first step at 353 K for 4 h). 



Figure 4-14 Effect of crystallization time of the second step at 423 K with the 
two-step method (the first step at 353 K for 4 h) on the CO2 separation performance. 

4.3.3 Comparison of the synthesis process at higher temperatures for the first step.  

In order to investigate the effect of the synthesis process at higher temperatures 

for the first step, the membranes T7 and T8 (see Table 4-1) were also prepared at 473 

K for the first step and then synthesized at 423 K for 4 h with the two-step method. 

Compared with other zeolite T membranes, as seen in Figure 4-13, it can be seen that 

the peaks (100), (110), and (210) were absent (or very weak) while the (102) peak 

became obvious and the strongest for the membranes T7 and T8. The intensity ratio of 

I(102)/I(100) in zeolite T seeds was as small as 1.1 (see Figure 4-15(b)). 

Figure 4-15 XRD patterns of -Al2O3 support (a), zeolite T crystal (b), support seeded 
with zeolite T (c), zeolite T membrane prepared at 353 K for 4 h (d), and 

as-synthesized membrane T3 (Table 1) with the two-step method (e) 



However, the I(102)/I(100) ratio increased to 12.6 for membrane T7 (Figure 

4-10(d)) and then increased to 36.5 for membrane T8 (Figure 4-10). The length 

direction of the column-like crystals with stronger (h0l) orientation was 

perpendicularly grown onto the support outer surface for membrane T8 (Figure 

4-11(g-h)). This morphology of crystal layers was very similar to that of the 

membrane prepared at 423 K for 12 h during the second step (Figure 4-13) and that 

described in our previous reports [19] which suggests that a higher synthesis 

temperature over 423 K favored the formation of oriented zeolite layers under such 

synthesis conditions. However, the membranes T7 and T8 exhibited a high CO2

permeance of 5.1×10 8 mol·m-2·s-1·Pa-1 to 5.2×10 8 mol·m-2·s-1·Pa-1 and a lower CO2

permselectivity of about 1-2 (see Table 4-1). This crystallization process at higher 

temperatures over 423 K for the first step is not suitable for nucleation (also see SEM 

images in Figure 4-16). Therefore, it seems that this crystallization process at higher 

temperatures for the first step is not favorable to preparing high quality membranes 

for CO2 separation with the two-step method in this work.  

Figure 4-16 Surface-sectional SEM images of as-synthesized membranes at the first 
step of 423 K (a) and 473 K (b) for nucleation, respectively. 

(a) (b) 



(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 



Figure 4-17 Surface and cross-sectional SEM images of as-synthesized membranes 
during the two-step method process: Al2O3 support (a, b), support seeded with zeolite 

T (c, d), zeolite T membrane prepared at 353 K for 4 h (e, f), and as-synthesized 
membrane T3 (Table 1) with the two-step method (g, h). 

4.3.4 Formation mechanism of zeolite T membranes with the two-step method.  

Figures 4-(15, 17, and 18) show the XRD patterns, SEM images, and Si/Al ratios 

(EDX measurements) of zeolite T membranes prepared during each step with the 

two-step method, respectively. Compared to the microstructure characteristic of 

porous Al2O3 support (Figures 4-17 (a-b) and Figures 4-15(a)), the seeded support 

with nanosized seeds displayed the disjunctive layer as thin as approximately 0.2 m 

on the support (Figure 4-17 (c-d)), and only very weak peaks of (210), (002), and 

(214) of zeolite T appeared for the seeded support (Figure 4-15 (c)). After 4 h of 

treatment at 353 K for the first step, many small crystals formed either on the support 

surface or in the interval of the pre-coated seeds layer (Figure 4-17(e)) and the 

membrane became dense with a thickness of about 1.0 m (Figure 4-17(e)). At such a 

moment, Si/Al ratio of this membrane increased from 1.0 of seeded support to 1.6 as 

shown in Figure 4-18. Although the very weak peaks of (100) and (110) were newly 

formed, the characteristic peaks of zeolite T were still very weak (Figure 4-15(d)). It 

demonstrated that large amounts of nuclei could form at low temperatures by seed 

induction [11-13, 20]. Subsequently, these small zeolite T crystals grew into larger 

crystals quickly at higher temperatures, and a continuous and well-intergrown zeolite 

layer was rapidly formed at 423 K for 8 h (Figure 4-17(g)). Moreover, this zeolite T 

membrane was bound firmly to the support with a thickness of about 4 m (Figure 

4-17(h)), and the stronger characteristic peaks of zeolite T were obviously observed 

(Figure 4-15(e)). The Si/Al ratio of this as-synthesized membrane with the two-step 

method increased significantly to 3.8, which was consistent with that of the T-type 

zeolite of (3-4) [9, 21-23]. As mentioned above, the formation process of zeolite T 

membranes prepared with the two-step method can be depicted as follows. In the first 



step, incremental nucleation and maturation of zeolite precursors was carried out at 

low temperature (353 K) by the nanometer sized seed induction, which was deposited 

on the support surface using the rub-coating method. Many new small zeolite T 

crystals and small secondary aggregates were formed among the originally coated 

seeds. Moreover, as described in Chapter 4.3.3, the crystallization process at higher 

temperature over 423 K for the first step is not suitable for nucleation and not for 

preparing high quality membranes for CO2 separation using the two-step method in 

this work. After completion of the nucleation period, subsequently, the second step at 

high temperatures (i.e., 423 K) was carried out to promote the crystallization. Zeolite 

crystal growth over already formed nuclei is much favored to formation of new 

crystallites [20]. Therefore, more and more zeolite T crystals grew quickly, and 

eventually a continuous dense zeolite T membrane formed on the support surface [12]. 

In summary, a lower temperature (i.e., 353 K) favored the smaller size crystallite or 

nucleation, while a higher crystallization temperature (i.e., 423 K) promoted the 

zeolite crystallization under such synthesis conditions in this work [11-13, 20].  

Figure 4-18 The Si/Al ratios of zeolite T seeds, support, and zeolite T membranes 
during the zeolite crystallization procedure with the two-step method. The membranes 

were prepared in the first step at 353 K for 4 h and then in the second step at 423 K 
for 8 h. 

4.3.5 Comparison of membrane separation properties.  

Using the two-step method under optimized conditions, five series of parallel 



tubes of zeolite T membranes were successfully prepared on seeded supports. All the 

samples were characterized by SEM and XRD. It showed that these membranes were 

defect-free and purely crystalline with a typical T-type zeolite structure without other 

zeolite phases (not shown in this work). These membranes showed good 

reproducibility, high CO2 permeance, and relative high CO2/ CH4 permselectivity 

under the same test conditions ((5.7-6.2)×10 8 mol·m-2·s-1·Pa-1 and 68-80, 

respectively). Here, compared with zeolite T membranes and other membranes in the 

literature, the higher CO2 separation performance of the assynthesized zeolite T 

membrane (T3) is clearly demonstrated in Figure 4-19. As seen in Figure 4-19, Cui 

et al. [7, 8] reported that CO2 permeance and maximum permselectivity of their 

zeolite T membranes were 4.6×10 8 mol·m-2·s-1·Pa-1 and 400 using the vacuum 

measurement method for equimolar binary CO2/ CH4 gaseous mixtures at 308 K, 

respectively. In comparison with their membranes, the membrane in this work 

exhibited higher CO2 permeance (6.2×10 8 mol·m-2·s-1·Pa-1) and relatively high CO2 

permselectivity (80) under the same conditions using the sweep gas measurement 

method. In addition, the synthesis time in this study (12 h) was much shorter than that 

of their reports (30 h). Moreover, as shown in Figure 4-19, the zeolite T membranes 

in this work also showed good CO2 permeation performance in the CO2/CH4 and 

CO2/ N2 mixtures systems compared to other zeolite T or other-type membranes [2, 4, 

17, 18]. Of course, it should be noted that it is a complex system to synthesize a 

zeolite membrane that exhibits high separation performance. Many effects or steps 

such as the choice of substrate, synthesis method, seed size, separation measurement 

techniques, etc. would influence the gas separation properties [3]. Sometimes, 

improving membrane permeance is more important than increasing selectivity to 

further reduce the cost of CO2 separation and capture from flue gas when the CO2 

permselectivity is over 50.6 Moreover, the permselectivity of zeolite T membranes 

can be further improved by optimizing the synthesis conditions to improve the 

membrane density for potentially practical applicability, which is currently under 

investigation.  



Figure 4-19 The permeation performance curves with permeance vs selectivity 
through zeolite T membranes in this work and other membranes in the literature. 



4.4 Conclusions 

The well-intergrown zeolite T membranes were successfully synthesized on 

seeded support with the two-step temperature process. The synthesis parameters such 

as synthesis temperature and crystallization time during the two-step durations could 

seriously influence the zeolite T crystal growth and CO2 separation properties. 

Compared with the conventional hydrothermal synthesis at a constant temperature 

(i.e., one-step method), the two-step method is more effective in synthesizing a thin 

and continuous membrane in a short time under optimum synthesis conditions. During 

the two-step method, a lower temperature favored nucleation, while a higher 

crystallization temperature promoted crystallization, thus improving zeolite T crystal 

growth and membrane separation properties. The permeation performance of the 

resulting membranes in this work exhibited high CO2 permeance and relatively high 

permselectivity for CO2 separation from CH4 or N2 gas. It shows great potentially 

practical applicability in CO2 separation and capture from natural gas and exhaust 

gases from power plants and chemical industries if permselectivity of such a 

membrane prepared with the two-step method further improved 
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Chapter 5 Effects of synthesis parameters on properties of silicalite-1 

zeolite membranes 

5.1 Introduction 

Membrane technology is an indispensible way to realize a lot of separation 

processes because its low cost and energy use [1]. Compared to polymeric membranes, 

zeolites have proper pore size and good shape selectivity. Zeolite membranes show 

good thermal stability and chemical endurance. Therefore, the field of zeolite 

membranes has been studied as an intense research in applications of liquid separation, 

gas separation, chemical synthesis and sensor device [1, 2].  

Hydrogen is very clean and efficient energy. During the storage, such as in 

methylcyclohexane-toluene-hydrogen system, H2 is always accompanied with some 

organic molecules such as toluene and methylcyclohexane [3]. Thus, it is an emergent 

task to separate H2 from the mixtures. Many zeolite membranes have been used for H2 

separations, such as NaA type [4], SAPO-34 type [5], sodalite type [6], SSZ-13 type 

[7], and MFI type [8-11].  

Pure silica MFI zeolite membranes with 5.6×5.3 nm straight channels vertical 

(b-oriented) to the porous support have demonstrated very promising separations of 

H2 (0.28 nm) [12] /toluene (0.59 nm) [13] mixture [14]. In this work, silicalite-1 (Al 

free MFI) membranes were prepared in the presence of fluoride. As a mineralizing 

agent, F- can induce larger crystal particles [15] so that fewer crystals will penetrate 

into support channels. So far, few reports are about applying MFI membranes 

prepared in fluoride medium to gas permeation [14, 16, 17]. Herein, effects of 

synthesis parameters on morphology of silicalite-1 membranes prepared with F- were 

investigated, such as synthesis time, synthesis temperature, silica source, seed crystal 

size and supports. Moreover, the as-synthesized silicalite-1 membranes were used to 

single gas permeation, especially for H2 and SF6 (0.55 nm) [18] permeations. Effects 

of gas permeation conditions (measurement temperature and measurement pressure 



difference) also have been discussed. Finally, long-term test was done to evaluate the 

performance stability of the silicalite-1 membranes. 

5.2 Experimental 

5.2.1 Raw materials  

Colloidal silica (Ludox AS-40, HS-40, and TM-40, Aldrich), fumed silica dioxide 

(98%, Aerosil), tetraethyl orthosilicate (TEOS, 98%, Aldrich), tetrapropylammonium 

hydroxide (TPAOH, 20-25% in water, Tokyo kasei), tetrapropylammonium bromide 

(TPABr, 99%, Tokyo kasei), ammonium floride (NH4F, 99.99%, Aldrich), sodium 

hydroxide (NaOH, 97%, Wako) and distilled water were used to prepared silicalite-1 

crystals and silicalite-1 membranes. 

Silicalite-1 membranes were formed on three kinds of supports. The first one is 

called porous -alumina tube (symmetrical Al2O3, o.d. 12 mm, i.d. 9 mm and length 

100 mm with a membrane area of 37.68 cm2), with an average pore size 1.25 m and 

porosity of 35.20 %. The second one is called mullite tube (o.d. 12 mm, i.d. 9 mm and 

length 100 mm with a membrane area of 37.68 cm2), with an average pore size 1.33 

m and porosity of 43%. The third one is called NS-1 tube (o.d. 10 mm, i.d. 7 mm and 

length 100 mm with a membrane area of 31.40 cm2), with an average pore size 0.15 

m and porosity of 35-45 %. 

5.2.2 Synthesis of silicalite-1 crystals 

Silicalite-1 crystals with different particle sizes were prepared. Nanometer-sized 

crystals were prepared without floride. The gel was prepared according to a molar 

composition of TEOS: TPAOH: H2O = 1: 0.36: 20. Firstly, distilled water was added 

into TPAOH. After stirring the solution for 20 min, TEOS was added as a silica source. 

The final solution was formed after being stirred for 70 min vigorously. The 

crystallization was carried out in a constant temperature oven at 403 K for 48 h. 

On the other hand, crystals with micrometer size were synthesized with fluoride. 

The corresponding molar composition is SiO2: NaOH: TPABr: H2O: NH4F = 1: 0.25: 



0.30: 45: 0.10. The gel was prepared according to follow steps. Firstly, TPAOH was 

added into distilled water under stirring. After about 20 min, NaOH was added and 

stirred until NaOH was dissolved. Then after adding AS-40 slowly, the solution was 

stirred and aged for 23 h. Finally, NH4F was added as a floride mediate and the 

solution was stirred for another 1 h. The solution was then poured into a Teflon sleeve 

and placed in a tightly sealed stainless steel reactor and heated at 413 K for 30 h. 

After crystallization, the resulting solids were then washed with water by a 

centrifuge. The centrifugation was kept for 30 min and the rotated speed was 3500 

rp/min. To achieve a neutral, it is necessary to repeat this centrifugation a minimum of 

two more times. The crystals were then dried and calcined at 773 K for 15 h. The 

heating rate and cooling rate are 0.52 K/min. After calcination, the obtained crystals 

are kept in sealed bottles to be used. 

5.2.3 Preparation of silicalite-1 membranes 

Silicalite-1 membranes formed three kinds of supports were grown by seeding 

method. The synthesis solution has a molar ratio of SiO2: TPAOH: TPABr: NH4F: 

H2O = 1: 0.20: 0.10: 0.10: 500. The tubes were cleaned with distilled water and dried 

at 353 K over night before use. The reaction solution was prepared as follows. Firstly, 

TPAOH was drop wisely added to water. After stirring for 5 min, TPABr was added. 

10 min later, as silica source, silica source was added into water/template mixture 

under stirring. The mixture solution was then stirred for 1 h at room temperature. 

Herein, silicalite-1 membranes were synthesized in fluoride mediate. Thus, NH4F was 

finally added to provide F- and stirred for another 5 min. After finishing the rub 

coating procedure, the seeded supports were dried at 353 K for over 30 min and then 

put vertically into an autoclave. Silicalite-1 membranes were synthesized at (438-468) 

K for (2-16) h. After crystallization, the zeolite coated membranes were washed 

thoroughly with pure water until the pH of the washing liquid became neutral. The 

synthesized membranes were calcined at 773 K for 20 h to remove the organic 

compounds. The calcination heating and cooling rates are 0.26 K/min and 0.39 K/min, 

respectively. All the heat treated membranes will be treated by vacuuming in an oven 



before applied to gas permeation and other characterizations. 

5.2.4 Characterization 

X-ray diffraction (XRD, SHIMADZU XRD-6100) with Cu-  radiation was 

used to identify crystal structures of silicalite-1 crystals and membranes. These 

spectra were scanned in the range of 2  = 5o-45o at a scanning rate of 4o/min.  

Scanning electron microscopy (FE-SEM, JEOL JSM 6335F) was used to observe 

the morphologies and thickness of obtained samples.  

5.2.5 Single gas permeation measurement 

The as-synthesized silicalite-1 membranes were applied to single gas permeation. 

The gas permeation setup has been shown by Cui et al.[19]. The membrane was fixed 

in a stainless steel cell with the zeolite layer facing upstream and was sealed by 

rubbery O-rings and stainless O-rings on both ends. The leakage flow, which came 

from the O-rings, is between 1.25×10-8 mol-2·s-1·Pa-1 and 2.84×10-11 mol-2·s-1·Pa-1 at 

308 K. This leakage flow was negligible compared to the permeation flow through the 

zeolite membranes. 

In the gas permeation equipment, a single gas (He, H2, N2, O2, CO2, CH4 or SF6) 

was fed into the module. And then the gas permeated across the membrane at 

(308-473) K by means of a vacuum method. Prior to gas permeation, all the 

membranes were evacuated for 48 h at 473 K to dehydrate from zeolite pores. Then 

the system was evacuated for 1 h to remove air and other impurities at the given 

temperature. After cutting off the upstream from the vacuum line, a single gas was 

introduced into the upstream side. The pressure on the permeate side was controlled at 

a pressure difference varied from 0.11MPa to 0.40 MPa. This pressure difference was 

the driving force across the membrane. The permeate pressure was measured by a 

pressure transducer after the downstream was cut off from the vacuum line. The ideal 

selectivity of (A/B) ( ideal (A/B)) was the ratio of permeance of gas A and permeance 

of gas B. It should be noted that, because of high permeance, in case of H2 permeation 

tests, permeate side was open to the air with an over pressure at the feed side, and the 



flow rate going through the membrane was measured. 

5.3 Results and discussion 

5.3.1 Silicalite-1 crystal seed 

After hydrothermal synthesis, pure silicalite-1 crystals can be obtained 

successfully as shown in Figure 5-1. 

Figure 5-1 XRD patterns of MFI seeds: (a) seed with small crystal size and (b) seed 
with larger crystal size 

Figure 5-2 SEM images of MFI zeolite with different crystal size (a) 100-200 nm and 
(b) 1-2 m 

(8-10)o and (24-25)o, respectively. The peaks reflect the growth direction of (101), 

(200)&(020), (002), (501), (300) and (133) of silicalite-1-type typical structure [20]. 

(a) (b) 



Moreover, SEM images of seeds are shown in Figure 5-2, respectively. Figure 5-2

(a) shows randomly oriented ball-like small crystals with particle size of (1-2) m and 

Figure 5-2 (b) shows twin crystals with particle size of (100-200) nm. 

5.3.2 Effects of synthesis parameters on gas permeation performance of silicalite-1 

zeolite membranes 

5.3.2.1 Effect of silica source 

Silica sources of TEOS, HS-40, AS-40, fumed SiO2 and TM-40 were used to 

prepare silicalite-1 zeolite membranes on mullite supports. As XRD patterns in 

Figure 5-3 shows, except typical peaks of pure silicalite-1 crystal phase and mullite 

support, there are no impure crystals formed on the supports. According to the XRD 

patterns, the peak intensities were used to calculate the ratio of I(101)/I(sup.), where I(101)

is the intensity of peak located at 7.95o and I(sup.) is the intensity of support peak 

located at 35.1o.  

Figure 5-3 XRD patterns of membranes prepared with different silica source: (a) 
TEOS, (b) HS-40, (c) AS-40, (d) fumed SiO2 and (e) TM-40. 

Figure 5-4 shows that the intensity ratios of membranes prepared by HS-40 (4.8) 

and fumed SiO2 (5.1) are much lower than intensity ratios of other membranes. 

Among the five kinds of silica sources, TM-40 can induce a silicalite-1 membrane 

with a highest I(101)/I(sup.) of 11.2. The SEM images of silicalite-1 membranes prepared 

by different silica sources are shown in Figure 5-5.



Figure 5-4 I(101)/I(sup.) of membranes prepared using different silica sources. 

(a) (b) 

(c) (d) 

(e) (f) 

11 m 

5 m 

8 m 



Figure 5-5 SEM images of MFI membranes prepared with different silica source: (a-b) 
TEOS, (c-d) HS-40, (e-f) AS-40, (g-h) fumed SiO2 and (i-j) TM-40. 

The difference of intensity ratio should be explained by membrane morphology. 

When HS-40 was used, thin coffin-like silicalite-1 crystals covered on the surface of 

support all in a mess (Figure 5-5(c)). Many obvious pin holes appeared and the 

zeolite layer was about 5 m. When fumed SiO2 was used, heterogeneous phase 

appeared. On the surface of support, both twinned inter-grown shape crystals and 

stick-like crystals were formed. Moreover, there is no clear continuous zeolite layer as 

shown by the cross sectional image of Figure 5-5(h). Based on the obvious defects in 

silicalite-1 membranes and the relatively thin membrane thickness, support layer is 

easy to be detected by XRD. Therefore, it is naturally that the intensity of I(101) for this 

membrane will be weak. Besides, the membrane thicknesses of silicalite-1 membranes 

prepared using TEOS, AS-40 and TM-40 are about 11 m, 8 m, and 10 m, 

respectively. Therefore, the intensity ratio increased successively.  

(g) (h) 

(j) (i) 

10 m 

not obvious 



In addition, all the membranes have been applied to H2 and SF6 permeations. The 

results have been list in the Table 5-1.When TEOS was used, H2 permeance of the 

membrane was 9.99×10-7 mol·m-2·s-1·Pa-1 and the ideal selectivity of H2/SF6 was as 

high as 50.0. However, when AS-40 and TM-40 are used, silicalite-1 membranes 

show poor ideal selectivities of H2/SF6 with high H2 permeance. Figure 5-5 (a-b) of 

silicalite-1 membrane prepared with TEOS are in accordance with the good gas 

permeation performance. The crystals grow compactly and the continuous membrane 

layer has been showed by a red double arrow. When AS-40 was used, the 

corresponding silicalite-1 membrane shows a very low H2/SF6 ideal selectivity of 7.8 

and the H2 permeance is higher than membrane prepared with TEOS. While TM-40 

was used, the silicalite-1 membrane shows a high H2 permeance of 1.68×10-6

mol·m-2·s-1·Pa-1 and a relatively lower ideal selectivity of 25.5 for H2/SF6. That results 

maybe because polymeric silica sources(AS-40 and TM-

completely in a diluted solution in this work which has a very low alkalinity [21] even 

though it seems membranes prepared with AS-40 and TM-40 show compact zeolite 

layers. On another hand, it is certain that silicalite-1 membranes using HS-40 and 

fumed SiO2

permeation process.  

Table 5-1 H2 permeation performances of MFI membranes on different supports with 
different silica sources (synthesis: 458 K, 14 h; measurement: 308 K, P = 0.40 MPa) 

No. Support Silica source 
Permeance 

(10-8 mol·m-2·s-1·Pa-1) Ideal 
selectivity 

H2 SF6

SI-1 Mullite TEOS 99.90 2.00 50.0 
SI-2 Mullite HS-40 Leak   
SI-3 Mullite AS-40 55.90 7.20 7.8 
SI-4 Mullite Fumed SiO2 Leak   
SI-5 Mullite TM-40 168.00 6.60 25.5 
SI-6 Sysmmetric -Al2O3 TEOS 14.00 0.09 155.6 
SI-7 NS-1  TEOS 65.00 0.43 151.2 



5.3.2.2 Effect of synthesis temperature 

As shown in Figure 5-6, XRD patterns of membranes synthesized at different 

temperatures indicate that pure silicalite-1 crystals were formed on the four supports. 

Figure 5-6 XRD patterns of membranes synthesized prepared for 14 h at (a) 438 K, (b) 
448 K, (c) 458 K, and (d) 468 K. 

Figure 5-7 Arrhenius plot and ideal selectivity of H2/SF6 of MFI zeolite membranes as 
a function of synthesis temperature. 

The apparent activated energy is shown in Figure 5-7. Figure 5-8 presents SEM 

images of silicalite-1 membranes prepared at different temperatures. Based on the 

images, membrane thicknesses were judged as 8 m, 10 m, 11 m and 12 m for 

membranes prepared at 438 K, 448 K, 458 K and 468 K, respectively. The apparent 

activation energy (Ea) of H2 permeation can be calculated to be 310 kJ/mol which is 

much higher than other silicalite-1 membranes [12]. Moreover, as synthesis 



temperature increased ideal (H2/SF6) has a maximum of 50 when synthesis 

temperature is 458 K. However, even though the membrane layer became a little 

thicker at higher temperature, the H2 permeance was not affected, instead, it increased 

slightly. That maybe because of some crystals formed in support pores of membranes 

prepared at lower temperature as marked by red circles in Figure 5-8. 

(c) (d) 

(e) (f) 

10 m

11 m

8 m

(a) (b) 



 Figure 5-8 SEM images of MFI membranes prepared for 14 h at (a, b) 438 K, (c, d) 
448 K, (e, f) 458 K, and (g, h) 468 K. 

It is clearly that silicalite-1 crystal size is about 4-6 m for membranes prepared 

at 438 K and 448 K. However, membranes prepared at 458 K and 468 K show a 

crystal size larger than 10 m. It is easy to draw a conclusion that higher H2

permeance can be obtained at higher synthesis temperature. Figure 5-9 shows the 

effects of synthesis temperature on film orientation. Obviously, the predominant 

growth direction is that of (101) located at 2  = 7.95 o, especially for membrane 

prepared at 438 K. Orientation of (200) located at 2  = 8.9 o became stronger at higher 

temperature. Figure 5-8 shows that the crystal shapes are different. Flat plates 

dominant the crystal shape of membrane synthesized at 438 K. As temperature 

increased, crystals became thicker and longer which should be due to the stronger 

direction of (200). 

Figure 5-9 I(101)/I(200)&(020) of MFI zeolite membranes as a function of synthesis 

(g) (h) 

12 m



temperature.

5.3.2.3 Effect of synthesis time and seeds with different crystal size 

As described in Chapter 5.3.1, silicalite-1 crystals with particle size of (1-2) m 

and (100-200) nm were obtained successfully. Herein, the two kinds of seeds were 

used to prepare membranes for (2-16) h. Figure 5-10 shows that all the membranes 

obtained are pure silicalite-1 zeolite membranes. When larger particles were used, as 

Figure 5-10 (left) shows, typical peaks of silicalite-1 membrane prepared for 2 h are 

very weak especially at 2 = (10-25)o.  

Figure 5-10 XRD patterns of membranes prepared for different periods: (a) 2 h, (b) 8 
h, (c) 14 h and (d) 16 h. (left: using seed with larger particle size, right: using seed 

with smaller particle size.) 

Herein, both the two seeds have been used to prepare silicalite-1 membranes for 

(2- -1 membranes without impurities. Figure 5-10 

shows they have silicalite-1 typical peaks. Figure 5-10 indicates that synthesis time 

increased, twin peaks appeared at 2 = 8.9o when micrometer-sized seed was used 

whereas twin peaks never appeared when nanometer-sized seed was used. 



Figure 5-11 I(002)/I(101) of MFI zeolite membranes as a function of synthesis time. 

Figure 5-12 Membrane thickness as a function of synthesis time for membranes 
prepared using seeds with different particle sizes.  

In the meantime, as shown in Figure 5-11 and Figure 5-12, both of intensity ratio 

of I(002)/I(101) and membrane thickness increased as synthesis time increased. The 

membrane thickness can be obtained from the SEM images exhibited in Figure 5-13 

and Figure 5-14. And the membrane layer growth rate decreased as synthesis time 

increased due the reduction of nutrition in solution. Figure 5-11 indicates that the 

I(002)/I(101) ratios of most membranes prepared with smaller seed are stronger than the 

ratios of membranes using larger seed. Moreover, Figure 5-10 also indicates the 

growth of (002) orientation in silicalite-1 membranes using smaller seed crystals.    

Membrane cystal morphologies in Figure 5-13 and Figure 5-14 are in 

accordance with these phenomena. When larger seed crystals were used, silicalite-1 



membranes were formed by twin crystals. The crystals in membrane layer show no 

good uniformity. In addition, when smaller seed crystals were used, silicalite-1 

memrbanes were formed by uniform flat and long coffin-like crystals, which is 

affected by (002) orientation. Crystals became thicker and longer for a longer time. 

The membrane layer is also more uniform. 

Besides, as synthesis time increased from 2 h to 16 h, membranes prepared with 

both seeds became thicker gradually. To be noticed, membranes prepared with smaller 

seed crystals are thicker than membranes using larger seed crystals. The difference is 

because of the faster crystallization in small seed layer [22].  

On the other hand, it is obvious that conspicuous pinholes have been eliminated a 

lot as crystallization time increased and the membrane thickness increased as well, 

which can be demonstrated by Figure 5-15. Figure 5-15 (a) shows that all the 

membranes have promising H2 permeance higher than 5.90 × 10-7 mol·m-2·s-1·Pa-1. H2

permeance became lower as synthesis time increased to 6 h but changed little after a 

longer synthesis time. SF6 permeation also behaved similarly. Figure 5-15 (b) shows 

the ideal (H2/SF6) of the membranes. When synthesis time was 2 h, membrane using 

large seed was leak. When synthesis time increased to 4 h and 6 h, ideal (H2/SF6) of 

membranes increased, especially using smaller seed. In accordance to gas permeance 

hehavior, ideal (H2/SF6) also almost kept stable after a longer crystallization period. 
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Figure 5-13 SEM images of mullite support seeded with micrometer-sized crystals 
and MFI membranes prepared at 458 K for (a, b) 2h, (c, d) 4h, (e, f) 6 h, (g, h) 8 h, (i, 

j) 12 h,(k, l) 14 h and (m, n) 16 h. 
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Figure 5-14 SEM images of mullite support seeded with nanometer-sized crystals 
and MFI membranes prepared at 458 K for (a, b) 2h, (c, d) 4h, (e, f) 6 h, (g, h) 8 h, (i, 

j) 12 h,(k, l) 14 h and (m, n) 16 h. 

Besides, c-axis facilitates H2 permeance of MFI membranes [23, 24]. The actual 

membrane thicknesses of the membranes are not very different. Therefore, it can be 

estimated the strong (002) orientation also made contribution to high H2 permeances 

of silicalite-1 membranes prepared with smaller seed. In addition, when smaller seed 

was used, membranes show better ideal (H2/SF6), which should be due to the 

compactness of silicalite-1 membranes. Seeded smaller supports always have fewer 

gaps between crsytals, which favors of crystal growth on supports. 

13.5 m 

14 m 

(k) (l) 

(m) (n) 



Figure 5-15 (a) H2 and SF6 single gas permeance and (b) ideal selectivities of H2/SF6

as a function of synthesis time for silicalite-1 membranes prepared with seeds with 
different particle sizes. (Closed symbols: using larger seed crystals, open symbols: 

using smaller seed crystals,  and  : H2 permeance,  and  : SF6 permeance) 

5.3.2.4 Effect of support 

Figure 5-16 XRD patterns of silicalite-1 membranes prepared on different supports: (a) 
mullite, (b) symmetric -Al2O3 support and (c) NS-1 support. 

The XRD patterns of membranes formed on mullite support, symmetric -Al2O3

support and NS-1 support have been showed in Figure 5-16. It indicates that it is easy 

to obtain pure silicalite-1 membranes with the current conditions. Figure 5-13 (a-b), 

Figure 5-17 (a-b) and Figure 5-17 (e-f) are SEM images of seeded mullite support, 

symmetric -Al2O3 support and NS-1 support, respectively. Many seed crystals can be 

seen in support pores in Figure 5-17 (b) so that many silicalite-1 zeolite crystals 

formed inside support channels as marked by red circle in Figure 5-17(d). 
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Figure 5-17 SEM images of (a-b) seeded mullite support, (c-d) silicalite-1 membrane 
on mullite support, (e-f) seeded -Al2O3 support, (g-h) silicalite-1 membrane on 
-Al2O3 support, (i-j) seeded NS-1support and (k-l) silicalite-1 membrane on NS-1 

support, respectively.  

Moreover, silicalite-1 membrane on -Al2O3 is about 14 m. However, there are 

no crystals penetrating into the NS-1 support pore after seeding because of the 

sufficient small pore size of NS-1 support as showed in Figure 5-17 (f). Besides the 

membrane layer on NS-1 support is just about 5 m. As Table 5-1 shows, one 

silicalite-1 membrane on NS-1 support shows ideal (H2/SF6) and H2 permeance of 

151.2 and 6.5×10-7 mol·m-2·s-1·Pa-1, respectively. Due to the thick membrane layer, 

H2 permeance of silicalite-1 membrane on symmetric -Al2O3 is lower, and one 

membrane shows H2 permeance of 1.4 ×10-7 mol·m-2·s-1·Pa-1 and the ideal (H2/SF6) of 

155.6. In additon, more gas permeation results of membranes on three supports using 

two seeds show H2 permeation performance differently. The results can be seen in 

Figure 5-18. Smaller seed can improve membrane compactness and membranes on 

5 m

(i) (j) 

(k) (l) 



mullite can show much higher H2 permeance, which is more important for 

commerciallzation. 

Figure 5-18 H2 permeance of silicalite-1 membrane formed on different supports gas 
as a function of ideal (H2/SF6) (0.40 MPa, 308 K) 

5.3.3 Gas permeation performance of silicalite-1 membranes on mullite support 

5.3.3.1 Effect of measurement temperature 

Herein, 7 kinds of single gases were used. Figure 5-19 shows the all single gases 

permeation performance of the membrane as a function of gas molecular kinetic 

diameter at a temperature varied from 308 K to 473 K. The pressure difference was 

fixed on 0.40 MPa.  

Figure 5-19 Single gas permeation performance of silicalite-1 membrane formed on 
mullite support as a function of molecular kinetic diameter of every single gas (  = 

0.40 MPa). 



When the measurement temperature is low (308 K), H2 permeance is 9.99×10-7

mol·m-2·s-1·Pa-1 and the ideal (H2/SF6) is 50.0. However, when the measurement 

temperature is as high as 473 K, the H2 permeance decreased to 4.9×10-7

mol·m-2·s-1·Pa-1 and the ideal (H2/SF6) also decreased to 20.7. Moreover, other single 

gases also show higher permeances than the results of membrane measured at higher 

temperature.  

Figure 5-20 H2 and SF6 single gas permeation performance as a function of 
measurement temperature. (  = 0.40 MPa). 

Because SF6 moves fast at higher temperature [25] , SF6 permeance increased 

from 2.0 ×10-7 mol·m-2·s-1·Pa-1 to 2.3×10-7 mol·m-2·s-1·Pa-1 as temperature increased 

as shown in Figure 5-20. However, H2 permeance decreased so that permselectivity 

of H2 and SF6 decreased from 51 to 21.  

5.3.3.2 Effect of measurement pressure difference 

Figure 5-21 H2 and SF6 single gas permeation performance as a function of 
measurement pressure difference. (Temperature is 308 K). 



Figure 5-21 shows the result of H2 and SF6 permeation as a function of pressure 

difference. Although at lower pressure difference, the gas permeation performance is 

better [25], both of H2 and SF6 permeation here this principle. It may 

be due to the effect of some inter-crystal pores. 

5.3.3.3 Long-term stability 

The silicalite-1 membrane on mullite was applied to a long-term stability 

measurement. The membrane was kept in the air at room temperature before every 

measurement. And before measurement, membrane was vacuumed in the module fore 

over 12 h. 

Figure 5-22 Long-term stability of H2 and SF6 permeation performance of silicalite-1 
membrane on mullite support (308 K, P = 0.40 MPa) 

Figure 5-22 shows the result of H2 and SF6 permeation performance. When the 

save time was less than 203 d, H2 permeance just reduced from 9.99×10-7

mol·m-2·s-1·Pa-1 to 7.05×10-7 mol·m-2·s-1·Pa-1. After 203 d, the silicalite-1 membrane 

can still show a high H2 permeance of 5.40×10-7 mol·m-2·s-1·Pa-1. Besides, the ideal 

(H2/SF6) varied between 58.2 and 42.2. The results demonstrate that silicalite-1 

membranes in this work have good gas permeation stability. 

5.3.4 Comparison 

In Table 5-2, H2 and SF6 permeances silicalite-1 membranes in this work are 

compared with data in papers. The measurement conditions are also list in the table. 



The H2 permeances vary from 3.05×10-7 mol·m-2·s-1·Pa-1 to 0.93×10-7

mol·m-2·s-1·Pa-1 and the SF6 permeances vary from 4.4×10-8 mol·m-2·s-1·Pa-1 to 

3.1×10-10 mol·m-2·s-1·Pa-1. The ideal selectivity ranges from 6.7 up to 165. It is 

obviously that H2 permeance of membranes in this work is comparable with H2

permeance of most silicalite-1 membranes in papers. Compared with data in papers, 

both of silicalite-1 membranes formed on mullite and NS-1 supports own high H2

permeance and ideal selectivity of H2/SF6. On the other hand, gas permeation 

measurement method seems have obvious effect on H2 permeation performance of 

silicalite-1 membranes. 

Table 5-2 Comparison of H2 and SF6 permeances and ideal selectivity for silicalite-1 
membranes in this work with reported data of silicalite-1 membranes 

Measurement 
method 

Support 

Measurement 
conditions 

Permeance 
(10-8 mol·m-2·s-1·Pa-1) ideal F- 

mediate 
Ref. 

P 
(MPa) 

T 
(K) 

H2 SF6

Vacuum SSSa 0.20 378 9.3 0.031 300 No [26] 
Vacuum SSSb 0.20 298 23.6 0.56 42.2 No [25] 
PDa SSSb 0.10 298 43.0 0.84 51 No [27] 
PDa -Al2O3

c 0.08 298 2190 130 17 No [28] 
PDa SSSc 0.06 473 10.0 1.50 6.7 No [29] 
PDa -Al2O3

d 0.12 323 256.0 4.40 58.1 No [30] 
PDa -Al2O3

d 0.12 323 305.0 3.80 80.4 No [30] 
Sweep gas -Al2O3

c 0.10 300 23.2 0.14 165 No [31] 
Sweep gas -Al2O3

c 0.10 300 19.6 0.13 150 No [31] 
Sweep gas YZe 0.10 300 36.9 2.88 13 No [31] 
Sweep gas YZe 0.10 300 9.81 0.118 83 No [31] 
/ -Al2O3

d 0.10 323 73.6 2.57 28.6 No [32] 
/ -Al2O3

d 0.12 323 120 1.42 84.8 No [33] 
Vacuum Mullitef 0.40 308 99.90 2.00 50 Yes This work 
Vacuum -Al2O3

d 0.40 308 14.00 0.09 155.6 Yes This work 
Vacuum NS-1d 0.40 308 65.00 0.43 151.2 Yes This work 

PDa: pressure difference method, SSSa: stainless steel tube, SSSb: stainless steel No disc, -Al2O3
c 

disk, -Al2O3
d tube (NS-1: asymmetric -Al2O3 tube), YZe: YZ- -alumina-supported (yttria-doped 

zirconia) disc, Mullitef: Mullite tube. 



5.4 Conclusions 

Pure silicalite-1 membranes have been prepared at different conditons. The 

variation of silica sources influences the morphology of silicalite-1 membranes 

significantly. TEOS can induce silicalite-1 membranes with continuous membrane 

layer and best single gas permeation performance. Crystal shapes are different when 

HS-40 and fumed SiO2 were used. It resulted in poor gas permeation performances. 

Cystallization temperature affected the membrane thickness. Silicalite-1 

membranes prepared at higher temperature show higher H2 permeance.  

Membranes prepared with smaller seed show stronger (002) orientation. When 

synthesis increased from 2 h to 6 h, H2 permeance of membranes reduced, but 

membranes became denser. When the gas permeation measurement temperature is 

308 K and pressure difference is 0.40 MPa, better results can be obtained.  

Using mullite and NS-1 tubes, silicalite-1 membranes prepared at 185 oC for 14 h 

show high H2 permeance of 9.99×10-7 mol·m-2·s-1·Pa-1 and 6.52×10-7 mol·m-2·s-1·Pa-1, 

respectively. And the ideal (H2/SF6) are 50 and 151.2, respectively. The results are 

comparable to data in papers. Silicalite-1 membrane in this work can show good 

stability for H2 permeation. 
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Chapter 6 Gas permeation performance of silicalite-1 zeolite 

membranes modified by 3-aminopropyltriethoxysilane 

6.1 Introduction 

Hydrogen is a clean fuel and used widely [1]. Before using H2, 

methylcyclohexane-toluene-hydrogen system is often used to realize H2 storage [2]. 

Thus, many researchers have investigated H2 purification from larger gas molecules, 

such as SF6 (0.55 nm) [3] which is a little larger than toluene (0.59 nm) [4].  

K. Oda et al. obtained H2/SF6 permselectivity of around 104 and H2 permeance of 

1.3×10-6 mol·m-2·s-1·Pa-1 by using a amorphous silica membrane at 573 K [5]. K. 

Akamatsu et al. also prepared an amorphous silica membrane and obtained H2

permeance of 1.20×10-6 mol·m-2·s-1·Pa-1 and the permselectivity of H2/SF6 was as 

high as 15000 [6]. On the other hand, R. D. Noble et al. measured silicalite-1zeolite 

membranes at 298 K and the permselectivity of H2/SF6 was 136 [7]. M. Noack et al. 

prepared silicalite-1 membranes on stainless steel discs and they obtained H2

permeance and H2/SF6 permselectivity of 2.36×10-7 mol·m-2·s-1·Pa-1 and 42.2, 

respectively. Q.Y. Zhao et al. reported their MFI membrane has a H2 permeance and 

permselectivity of H2/SF6 of 1.64×10-6 mol·m-2·s-1·Pa-1 and 71, respectively [7].  

So far, many modification ways have been used to improve compactness of 

zeolite membranes. B-ZSM-5 and SAPO-34 membranes were silylated by the 

catalytic cracking deposition (CCD) of methydiethoxysilane [8]. DDR membranes 

have been modified by chemical vapor deposition (CVD) [9]. And H2/CO2

permselectivity was improved from 2.6 to 32.7 at 823 K. Silicalite-1 membranes were 

modified by surface modification which calcined TEOS in pores. H2/n-C4H10

permselectivity increased a lot [10]. After modifying supports with 

3-aminopropyltriethoxysilane (APTES), separation factors of H2/CH4, H2/N2, 

H2/O2 and H2/CO2 of LTA membranes were improved significantly [11]. The H2

permeance can be as high as 3.0×10-7 mol·m-2·s-1·Pa-1. Moreover, by treating supports 



with APTES, FAU membranes showed H2 permeance and separation factor of H2/CO2

of 4.0×10-7 mol·m-2·s-1·Pa-1 and 6.5, respectively [12]. Silicalite-1 membranes also 

have ever been prepared on APTES modified supports. N2 permeance was reduced 

effectively [13].  

In this work, as-synthesized silicalite-1 membrane surface was modified with 

APTES to reduce existing defects. It is an easy way to improve permselectivity of H2

other gases. Effects of different measurement conditions were investigated. The gas 

permeation performances of unmodified and modified silicalite-1 membranes were 

compared in detail. 

6.2 Experimental  

6.2.1 Raw materials 

Tetraethyl orthosilicate (TEOS, 98%, Aldrich), tetrapropylammonium hydroxide 

(TPAOH, 20-25% in water, Tokyo kasei), tetrapropylammonium bromide (TPABr, 

99%, Tokyo kasei), ammonium floride (NH4F, 99.99%, Aldrich), sodium hydroxide 

(NaOH, 97%, Wako) and distilled water were used to prepare silicalite-1 crystals and 

silicalite-1 membranes. 

Silicalite-1 membranes were formed on NS-1 support. NS-1 tube (o.d. 10 mm, i.d. 

7 mm and length 100 mm with a membrane area of 31.40 cm2) has an average pore 

size 0.15 m and porosity of 35-45 %. 

6.2.2 Membrane preparation 

The synthesis process of silicalite-1 seed has been described in detail in Chapter 

5. The synthesis solution for membranes has a molar ratio of SiO2: TPAOH: TPABr: 

NH4F: H2O = 1: 0.20: 0.10: 0.10: 500. The tubes were cleaned with distilled water 

and dried at 353 K over night before use. The reaction solution was prepared as 

follows. Firstly, TPAOH was drop wisely added to water. After stirring for 5 min, 

TPABr was added. 10 min later, as silica source, TEOS was added into water/template 

mixture under stirring. In this work, silicalite-1 membranes were synthesized in 



fluoride mediate.After stiiring for 1 h, NH4F was finally added to provide F-. After the 

rub coated with micrometer sized crystals, supports were dried at 353 K for over 30 

min and then put vertically into an autoclave. Silicalite-1 membranes were 

synthesized at 458 K for 14 h. After crystallization, the membranes were washed 

thoroughly until neutral. The synthesized membranes were calcined at 773 K for 20 h 

to remove the organic compounds. The calcination heating and cooling rates are 0.26

K/min and 0.39 K/min, respectively. 

6.2.3 Membrane modification 

As-synthesized silicalite-1 membrane was treated with APTES (0.6 mM in 10 mL 

toluene) at 383 K for 3 h under influx, leading to APTES monolayer deposited on the 

membrane surface. The mechanism was shown in Figure 6-1. Figure 6-1(a) shows 

the ideal modification between APTES and crystal surface. Figure 6-2(b) shows the 

reaction between APTES and APTES, which can fabricate a net topology on 

membrane layer in this work. The modification setup is shown in Figure 6-2. After 

modification, the membrane was washed with toluene to remove the successive 

APTES.  

Figure 6-1 Schematic diagram for modification of silicalite-1 membrane by using 
3-aminopropyltriethoxysilane (APTES): (a) APTES reacts with surface silanol group 

of silicalite-1 crystal and (b) APTES react with surface silanol group of APTES 



Figure 6-2 Setup of modification process.  

6.2.4 Characterization 

X-ray diffraction (XRD, SHIMADZU XRD-6100) with Cu-  radiation was 

used to identify crystal structures of silicalite-1 crystals and membranes. These 

spectra were scanned in the range of 2  = 5-45o at a scanning rate of 4o/min.  

Scanning electron microscopy (FE-SEM, JEOL JSM 6335F) was used to observe 

the morphologies and thickness of obtained samples.  

6.2.5 Single gas permeation  

The as-synthesized silicalite-1 membranes were applied to single gas permeation. 

The gas permeation setup has been shown by Cui et al. [14]. The process is the same 

as described in Chapter 5.2.5. 

6.2.6 Nanopermporometry 

The process is the same as described in Chapter 3.2.5.2.

6.3 Results and discussion 

6.3.1 Reproducibility of single gas permeation performance of silicalite-1 membranes  

Four silicalite-1 membranes have been prepared on NS-1 supports and the 

performances have been shown in Table 6-1. Three membranes have promising H2

permeance and ideal selecitivity of H2/SF6. However, one membrane (S-4) shows a 

highest H2 permeance but a poor ideal selecitivity of H2/SF6. As Chapter 5 described, 



there is almost no crystal formed inside NS-1 support and the membrane layer is thin. 

Therefore, we attempted to apply that membrane to modification using APTES to 

reduce pinholes as shown in Figure 6-2. Modified membrane was also applied to gas 

permeation. 

Table 6-1 Reproducibility of single gas permeation performance of silicalite-1 
membranes on NS-1 supports (308 K, P = 0.40 MPa) 

No. 
Permeance (10-8 mol·m-2·s-1·Pa-1) 

ideal 

H2 SF6

SI-7 65.20 0.43 151.6 

SI-8 52.40 0.67 78.2 

SI-9 151.00 2.28 66.2 

SI-10 200.00 7.43 26.9 

6.3.2 Morphologies of silicalite-1 membrane before and after modification. 

Figure 6-4(a-b) shows the typical SEM images of silicalite-1 zeolite membrane 

before modification. The SEM images indicate that the silicalite-1 zeolite membrane 

with a thickness of about 4.5 m is made of coffin-like silicalite-1 crystals and the 

crystal size is about 10 m. Some small pinholes can be found easily as marked by red 

circles in Figure 6-4(a).  

(a) 

4.5 m

(b) 



Figure 6-4 Typical SEM images of the MFI zeolite membrane: (a-b) before 
modification and (c-d) after modification. 

A. Huang et al. have found that the ethoxy groups of APTES react with surface 

hydroxy groups of the support  [11]. In this work, APTES was used to react with the 

surface hydroxyl groups of silicalite-1 zeolite crystals so that a net-like layer can be 

formed on the surface of the membrane. Figure 6-4(c-d) shows the SEM images of 

the modified silicalite-1 membrane. Figure 6-4(c) indicates an amorphous layer is 

covering over the zeolite. Figure 6-4(d) shows no changes in the area of cross section. 

Figure 6-5 shows that there is no obvious diversification in the case of XRD pattern 

after modification. 

Figure 6-5 XRD patterns of the MFI zeolite membrane: (a) before modification and (b) 
after modification. 

(c) (d) 

(a) 

(b) 



6.3.3 Single gas permeation performance of silicalite-1 membranes  

6.3.3.1 All single gases permeation performance under different temperatures 

Single gases were measured (He, H2, CO2, O2, N2, CH4 and SF6) at (308~473) K 

under 0.10 MPa. Figure 6-6 presents the results for modified membrane at the three 

selected temperatures in comparison with the results obtained before modification. 

Figure 6-6 Single gas permeance as function of molecular kinetic diameter in the MFI 
zeolite membrane (a) before and (b) after modification. ( P = 0.40 MPa) 

Unmodified membrane shows poor permselectivity below the Knudsen factors 

for H2 over the other gases except for SF6 under the temperature arrange. The 

modification caused an obvious decrease in permeance for all the gas molecules, 

especially for O2, N2, CH4 and SF6 whose permeances decreased more than 90% of 

the previous results. 

It was also observed that, the permselectivity for H2 and He of the modified 

silicalite-1 membrane behaved oppositely. Before modification, H2 has larger 

permeance than He. Because the dominant Knudsen diffusion mechanism by which 

the lighter H2 has greater . [15]. Thus, He decreased less than H2 although 

He permeance was still lower than H2 permeance, and the ideal selectivity of He/H2

became close to Knudsen diffusion. When the pressure difference was 0.10 MPa and 

the temperature was 308 K, ideal (He/H2) increased from 0.37 to 0.47 and the 

Knudsen diffusion coefficient was 0.71. 

(a) (b) 



Even though both of CO2 and H2 permeances reduced, the ideal (H2/CO2) was the 

same, and it is 0.8. The carbon dioxide adsorption capacity was dramatically in 

creased by the modification  [16]. 

6.3.3.2 The relationship of the change between H2 and He permeation 

The energy production by nuclear reactions is a very popular research topic in 

recent decades. Tritium recovery is an important task among the researches [17]. The 

obtained permeances of H2 and He and the ideal (H2/He) were presented in Figure 6-7

and Figure 6-8, respectively. H2 still permeates more after modification. Before 

modification. The ideal (H2/He) decreased from 2.7 to 1.8 when temperature increased 

from 308 K to 473 K. Meanwhile, for the modified membrane, the ideal (H2/He) 

increased from 1.7 to 2.4 at the same conditions. The appearing of small peaks of H2

and He permeance revealed the competition between the adsorption and translation 

diffusion as temperature increased [18]. In terms of the effect of pressure difference 

on H2 and He permeation performance, Figure 6-8 shows the changes. For the 

unmodified silicalite-1 zeolite membrane, both of H2 and He permeance increased 

slightly, but the ideal (H2/He) decreased a little from 2.7 to 2.4. After modification, the 

He permance become consistent with H2 permeance. 

Figure 6-7 Comparison of the relationship between H2 and He permeation 
performance in a function of temperature through the MFI zeolite membrane before 

 = 0.11 MPa). 



Figure 6-8 Comparison of the relationship between H2 and He permeation 
performance in a function of pressure difference through the MFI zeolite membrane 

before and after modification (T = 308 K). 

6.3.3.3 The relationship of the change between H2 and N2 permeation 

As Figure 6-9 shows, before modification, both of H2 and N2 permeances 

decreased as temperature increased, which is similar as reported by Alshebani et. al. 

[19]. However, results for modified membrane are very different. N2 permeance 

decreased a lot. There are turning points at 373 K for both of permeance and ideal 

(H2/N2). Based on modification, N2 permeance decreased a lot so that the ideal (H2/N2) 

increased to values higher than Knudsen diffusion coefficient 3.7. Moreover, ideal 

(H2/N2) varied from 7.2 to 10.9.  

Figure 6-9 Comparison of the relationship between H2 and N2 permeation 
performance in a function of temperature through the MFI zeolite membrane before 

 = 0.11 MPa). 



As pressure difference changed, Figure 6-10 shows no obvious effect on N2

permeance. After modification, ideal (H2/N2) increased to 4 times and varied slightly 

from 8.1 to 9.1. However, the unmodified silicalite-1 membrane has ideal (H2/N2) 

changing from 1.7 to 2.0. 

Figure 6-10 Comparison of the relationship between H2 and N2 permeation 
performance in a function of pressure difference through the MFI zeolite membrane 

before and after modification (T = 308 K). 

6.3.3.4 The relationship of the change between H2 and CH4 permeation 

It is a meaningful task to separate the H2 and CH4 in coal gas. Figure 6-11 and 

Figure 6-12 shows the effects of temperature and pressure difference. Before 

modification, H2 and CH4 permeance of the silicalite-1 zeolite membrane decreased 

sharply. Although H2 is the smallest molecule because the adsorption of CO2 and 

CH4 is stronger than that of H2, especially at low temperatures  [20], the CH4

pemeance is similar as H2 permeance. To be noted, the ideal (H2/CH4) is just 0.91, 

which means the CH4 permeance is higher than H2 permeance.  

After modification, both of H2 and CH4 permeance decreased. Because of the 

reducing permeation pore size in membrane, CH4 behaved much poor permeation 

ability so that the ideal (H2/CH4) increased to higher than Knudsen diffusion 

coefficient (2.8) and varied from 6.4 to 10.1. Besides, there is a common phenomenon 

of the ideal (H2/CH4) as temperature changed. That is there is a slight max with 

temperature. 



Figure 6-11 Comparison of the relationship between H2 and CH4 permeation 
performance in a function of temperature through the MFI zeolite membrane before 

 = 0.11 MPa). 

Figure 6-12 Comparison of the relationship between H2 and CH4 permeation 
performance in a function of pressure difference through the MFI zeolite membrane 

before and after modification (T = 308 K). 

As can be seen in Figure 6-12, CH4 permeance of modified silicalite-1 membrane 

decreased a little with increasing pressure difference, which is consistent with the 

results discovered by J. C. Poshustaand et al. [21]. In addition, ideal (H2/CH4) 

increased from 7.3 to 9.2 as pressure difference increased. 



6.3.3.5 The relationship of the change between H2 and CO2 permeation 

Figure 6-13 Comparison of the relationship between H2 and CO2 permeation 
performance in a function of temperature through the MFI zeolite membrane before 

 = 0.11 MPa). 

The comparison of CO2 and H2 permeance in Figure 6-13 indicates that CO2

permeance is higher than H2 because CO2 has stronger adsorption than H2 in 

silicalite-1 crystals [20]. But the ideal (H2/CO2) increased little because of the weaker 

adsorption ability of CO2. However, CO2 permeance decreased more after 

modification. Thus, ideal (H2/CO2) just increased from 0.8 to 1.3 as temperature 

increased. Figure 6-14 shows single gas (CO2 or H2) permeation under varying 

pressure difference at 308 K. 

The H2 permeance is not affected by pressure difference because H2 permeance 

is modelled assuming surface diffusion in the Henry regime in the zeolite pores  [22]. 

In contrast to the H2 permeance, the CO2 permeance decreased obviously as the 

pressure difference increased. Gas saturation in zeolite may be the reason for CO2

permeance decrease. Saturation happened at both the feed side and permeate, which 

leads to a low concentration gradient in the zeolite and a low driving force. Despite 

the small change of CO2 and H2 permeance, the ideal (H2/CO2) increased a little after 

modification. 



Figure 6-14 Comparison of the relationship between H2 and CO2 permeation 
performance in a function of pressure difference through the MFI zeolite membrane 

before and after modification (T = 308 K). 

6.3.3.6 The relationship of the change between H2 and SF6 permeation 

In this work, the H2 and SF6 permeations were measured on the silicalite-1 

membrane before and after modification at 308 K, 373 K and 473 K with a pressure 

difference of 0.11 MPa. Mobility of both H2 and SF6 will increase as temperature 

increase especially for SF6 with larger molecular size [23]. It is clearly that 
ideal(H2/SF6) is higher at lower temperature for membrane before and after 

modification as shown in Figure 6-15. After modification, ideal (H2/SF6) decreased 

significantly from 647 to 124 as temperature increased from 308 K to 473 K. 

Meanwhile, H2 permeance decreased from 1.9×10-6 mol·m-2·s-1·Pa-1 to 2.5×10-7

mol·m-2·s-1·Pa-1 at 308 K. In this work, vacuum method was used for gas permeation. 

The feed side and permeate side volumes are known precisely. Therefore, the single 

gas permeances is determined by increasing pressure in a known permeate side 

volume [24]. 



Figure 6-15 Comparison of the relationship between H2 and SF6 permeation 
performance in a function of temperature through the MFI zeolite membrane before 

 = 0.11 MPa). 

Figure 6-16 shows the single gas permeance as a function of pressure difference. 

All of the gas permeances increased as pressure difference increased. ideal (H2/SF6) 

for modified membrane decreased from 647 to 609 under higher pressure difference. 

E. R. Geus et al. demonstrated that for microporous membranes such as zeolite 

membranes, the interplay of adsorption and diffusion effects play a very important 

role in permeation behavior [25] as described by the Maxwell-Stefan equations for 

both single component and mixture permeation [26-28]. Under higher pressure 

difference, gas permeance decreased because of limite pore volume and lower driving 

force, which verifies the change of H2 and SF6 permeance in this work [23].   

Figure 6-16 Comparison of the relationship between H2 and SF6 permeation 
performance in a function of pressure difference through the MFI zeolite membrane 

before and after modification (T = 308 K). 



6.3.3.7 The relationship of the change between CO2 and CH4 permeation 

Methane is commonly used as a fuel, especially for heating. However, CO2

always accompanies with natural gas. The existence of CO2 will do harm to methane 

ultilization, but also to the transportation equipments [29]. Therefore, we used the 

silicalite-1 membrane for CO2 and CH4 permeation in this work. As Figure 6-17

shows, due to the stronger CO2 and CH4 adsorptions than H2 in silicalite-1 crystals, the 

unmodified silicalite-1 membrane shows a little lower ideal (CO2/CH4) (1.2) than 
ideal(CO2/H2) (1.3) at 308 K with a pressure difference of 0.11 MPa. However, the 

modified membrane shows a much higher ideal (CO2/CH4) of 9.2 at the same gas 

permeation conditions while the ideal (CO2/H2) is still 1.3. This ideal (CO2/CH4) is 

much higher than Knudsen diffusion coefficient of 0.6, which should own to the 

modification. In addition, both CO2 and CH4 permeance decreased over the 

investigated arrange (308-473 K). CO2 and CH4 permeances of modified silicalite-1 

membrane varied from 3.1×10-7 mol·m-2·s-1·Pa-1 to 1.4×10-7 mol·m-2·s-1·Pa-1 and from 

3.4×10-8 mol·m-2·s-1·Pa-1 to 2.7×10-8 mol·m-2·s-1·Pa-1, respectively.  

Figure 6-17 Comparison of the relationship between CO2 and CH4 permeation 
performance in a function of temperature through the MFI zeolite membrane before 

Figure 6-18 shows results as a function of pressure difference at 308 K. Both 

CO2 and CH4 permeance decreased with increasing pressure difference. The results 

are in a good agreement with results reported by W. J. W. Bakker et al. [30], A. J. 

Burggraaf et al [31]. and W. D. Zhu et al [32]. The ideal (CO2/CH4) of modified 



silicalite-1 membrane decreased from 9.2 to 7.3 with an increase in feed pressure at 

308 K. Meanwhile, the ideal (CO2/CH4) of unmodified silicalite-1 membrane 

decreased from 1.2 to 1.0.  

Figure 6-18 Comparison of the relationship between CO2 and CH4 permeation 
performance in a function of pressure difference through the MFI zeolite membrane 

before and after modification (T = 308 K). 

6.3.3.8 The relationship of the change between CO2 and N2 permeation 

Figure 6-19 and Figure 6-20 show the results of modified and unmodified 

silicalite-1 membranes depended on temperature and pressure difference using CO2

and N2.  

Figure 6-19 Comparison of the relationship between CO2 and N2 permeation 
performance in a function of temperature through the MFI zeolite membrane before 

 = 0.11 MPa). 



When the temperature was 308 K and pressure difference was 0.11 MPa, CO2

permeance decreased from 2.5×10-6 mol·m-2·s-1·Pa-1 3.1×10-7 mol·m-2·s-1·Pa-1, and N2

permeance decreased from 1.1×10-6 mol·m-2·s-1·Pa-1 to 3.1×10-8 mol·m-2·s-1·Pa-1, 

respectively. The ideal (CO2/N2) also has a maximum with a lower pressure difference 

at lower temperature. For the unmodified silicalite-1 membrane, CO2 and N2

pposite directions as pressure difference 

increased at low temperature of 308 K, which was mentioned by K. Makrodimitris et 

al. [33]. In that report, they simulated silicalite as a perfect, fully siliceous 

crystalsilicalite crystal  [33]. But the unmodified membrane here should have 

inter-crystal pores which may lead to a different result. After modification, the 

membrane shows a higher ideal (CO2/N2) of 10.23 which is only 2.33 before 

modification, which is due to the modification.  

Figure 6-20 Comparison of the relationship between CO2 and N2 permeation 
performance in a function of pressure difference through the MFI zeolite membrane 

before and after modification (T = 308 K). 

6.3.4 Stability of the modified silicalite-1 membrane 

Long-term stability of H2 and SF6 permeation performances of modified 

membrane has been discussed and exhibited in Figure 6-21. H2 and SF6 single 

permeations were measured at 308 K with a pressure difference of 0.11 MPa. The 

modified membrane shows a stable H2 permeance and SF6 permeance for a period as 

long as 120 h. During the test, H2 permeance varied around 2.5×10-7 mol·m-2·s-1·Pa-1 

while the ideal (H2/SF6) varied around 635. It can be concluded that after modification, 



silicalite-1 membrane has a good long-term stability for H2 permeance as well as high 
ideal (H2/SF6). Compared to data in Table 5-2 in Chapter 5, ideal (H2/SF6) of 

silicalite-1 membrane here are relatively high.  

Figure 6-21 Long-term stability of H2 and SF6 permeation performance through 
modified MFI membrane within 120 h. 

6.3.5 Nanopermporometry results of the silicalite-1 membrane 

Figure 6-22 Time course for N2 permeance for MFI membrane before and after 
modification. (H2O, 308 K) 

Figure 6-22 shows the time course of N2 permeance of silicalite-1 membrane 

before and after modification at 308 K. The permeance of N2 in the dry state was kept 

for a period to check the steady state. After the N2 permeance became a constant value, 

water was introduced into the feed side. P/Ps increased from 0.11 to 0.51 and even 



0.72 according to the time indicated by arrows in the figure. After increasing the 

vapor pressure, the N2 permeance decreased gradually and reached a steady value. 

The N2 permeance of unmodified silicalite-1 membrane reached a constant earlier 

than value of modified membrane because of the high permeance. On contrast, the N2

permeance of modified silicalite-1 membrane decreased a lot and kept constant with a 

lower water concentration. It is the water blocking effect of N2 permeation decreased 

N2 permeance [34]. But modified membrane haver smaller permeation pores 

decreased by net toplogy layer, which made N2 permeance decreased more quickly. 



6.4 Conclusions 

By using modification with APTES, defects in membrane layer were eliminated 

significantly. The nanopermporometry result indicated that silicalite-1 membrane has 

a better quality after modification. The modification process had dramatic effects on 

the single gas permeation performance of silicalite-1 membrane. The modification 

increased ideal selecitivity of H2/SF6 from 26.9 to 647. Meanwhile, H2 permeance is 

2.5×10-7 mol·m-2·s-1·Pa-1 which is comparable to data of silicalite-1 membranes in 

papers. Moreover, the ideal selectivities of H2/N2, H2/CH4, CO2/CH4, and CO2/N2 also 

increased to higher than the corresponding Knudsen diffusion factors. The modified 

silicalite-1 membrane shows stable H2 permeation ability. 
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Chapter 7 Conclusions and future works 

7.1 Conclusions 

In this dissertation, we explored the synthesis and permeation applications of 

zeolite membranes. SOD membranes were prepared by secondary growth by seeded 

with uniform and small sodalite crystals. T-type zeolite membranes are prepared with 

two-step varying-temperature hydrothermal synthesis process. The effects of 

conditions on the first and second steps were discussed in detail, such as synthesis 

time and synthesis temperature. The preparation and permeation performance of 

silicalite-1 have been discussed. 

  Our first objective in this regard was to demonstrate the ability to control 

microstructure of sodalite membranes. As seed for sodalite membranes, preparation of 

sodalite crystals were discussed and optimized in Chapter 2. The issue for ethanol 

dewatering was addressed in Chapter 3. Dense sodalite membrane with thin layer 

was formed on -Al2O3 support by seeding method. The thickness of the sodalite 

membrane was affected by water concentration in precursor. The crystallinity and 

compactness of sodalite membranes are determined by both synthesis time and 

synthesis temperature. Lower temperature result in impure sodalite membranes and 

longer synthesis time leads to appearance of ANA crystal phase. Also, pervaporation 

operator conditions were controlled to evaluate water selectivity of sodalite 

membranes. Lower temperature is favor of higher PV performance. And the 

membrane showed stable permeation state in both of ethanol/water and 

iso-propanol/water mixtures for 10-20 h at 75 oC.  

As shown in Chapter 4, the second objective of this study is to develop a new 

synthesis method named two-step varying-temperature hydrothermal synthesis 

process  to improve CO2 separation performance of T-type zeolite membranes. 

Compared with the conventional synthesis method at a constant temperature, the 

two-step method is more effective in synthesizing a thin and continuous membrane in 



a short time under optimum synthesis conditions. During the two-step method, a 

lower temperature favored nucleation, while a higher crystallization temperature 

promoted crystallization, thus improving zeolite T crystal growth and membrane 

separation properties.  

The third objective of this research (Chapter 5) was to study the effect of 

synthesis condition on permeation performances of H2 and other single gases through 

silicalite-1 membranes and using modification to improve membrane performance. By 

using different silica sources, silicalite-1 membrane showed very different 

morphology and single gas permeation behavior. Silicalite-1 membranes using smaller 

particles showed stronger (002) orientation. 

To further improve the performance of silicalite-1 membrane, modification with 

APTES was applied to a silicalite-1 membrane in Chapter 6. After modification, 

ideal selectivity of H2/SF6 increased dramatically and H2 permeance decreased.  



7.2 Future works 

(1) Silica sodalite is a good H2 storage material because of its high H2 adsorption 

capacity. If very stable sodalite can be prepared, it will be very promising to apply 

sodalite membranes in H2 separation. Moreover, all-silica (or high silica) sodalite has 

strong hydrophobicity, good stability and proper pore structure for H2 permeation. It is 

worth to explore all-silica (or high silica) sodalite membranes for H2 separation. 

Non-aqueous systems such as ethylene glycol and tetramethylammonium can be 

considered as precursor solvents. 

(2) Seed crystal size has an obvious effect on morphology and gas permeation 

performance of silicalite-1 membranes. If the composition of precursor solution can 

be changed systematicly, it is possible to analyze the effect of crystal size with more 

controllable microstructure and obtain more promising H2 permeation performance. 

(3) Other modification ways can be used for silicalite-1 membranes. For example, 

deposite a SiO2 amophous layer on membrane surface by sol-gel methods.  
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