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The two-dimensional Green-Naghdi (GN) shallow-water model for surface gravity waves is extended to
incorporate the arbitrary higher-order dispersive effects. The linear dispersion relation for the extended
GN system is then explored in detail. As illustrative examples of approximate model equations, we derive
a higher-order model which is accurate to the fourth power of the dispersion parameter in the case of
a flat bottom topography. Subsequently, the extended GN system presented here is shown to have the
same Hamiltonian structure as that of the original GN system. Last, we demonstrate that Zakharov’s
Hamiltonian formulation of surface gravity waves is equivalent to that of the extended GN system by
rewriting the former system in terms of the momentum density instead of the velocity potential at the
free surface.

1. Introduction
Recently, we extended the Green-Naghdi (GN) shallow-water model equations to incorporate the

arbitrary higher-order dispersive effects while preserving the full nonlinearity (Matsuno (2015)). Here,
we extend it to the two-dimensional (2D) system by making use of a novel asymptotic analysis, and
show that it has the same Hamiltonian structure as that of the original 2D GN system. We consider the
three-dimensional irrotational flow of an incompressible and inviscid fluid of variable depth. The effect of
surface tension is neglected since it has no appreciable influence on the current water wave phenomena.
It can be, however, incorporated in our formulation without difficulty. The governing equation of the
water wave problem is given in terms of the dimensionless variables by

δ2∇2φ+ φzz = 0, −1 + βb < z < εη, (1.1)

ηt + ε∇φ·∇η =
1
δ2
φz, z = εη, (1.2)

φt +
ε

2δ2
{
δ2(∇φ)2 + φ2

z

}
+ η = 0, z = εη, (1.3)

βδ2∇b·∇φ = φz, z = −1 + βb, (1.4)

subjected to the boundary conditions

lim
|x|→∞

∇φ(x, z, t) = 0, lim
|x|→∞

φz(x, z, t) = 0, −1 + βb < z < εη, lim
|x|→∞

η(x, t) = 0. (1.5)

Here, φ = φ(x, z, t) is the velocity potential with x = (x, y) being a vector in the horizontal plane and
z the vertical coordinate pointing upwards, ∇ = (∂/∂x, ∂/∂y) is the 2D gradient operator, η = η(x, t)
is the profile of the free surface, b = b(x) specifies the bottom topography, and the subscripts z and t
appended to φ and η denote partial differentiations.

The dimensional quantities, with tildes, are related to the corresponding dimensionless ones by the
relations x̃ = lx, z̃ = h0z, t̃ = (l/c0)t, η̃ = aη, φ̃ = (gla/c0)φ and b̃ = b0b, where l, h0, a, and b0 denote
a characteristic wavelength, water depth, wave amplitude and bottom profile, respectively. g is the
acceleration due to the gravity, and c0 =

√
gh0 is the long wave phase velocity. There arise the following

three independent dimensionless parameters from the above scalings of the variables:

ε =
a

h0
, δ =

h0

l
, β =

b0
h0
. (1.6)
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The nonlinearity parameter ε characterizes the magnitude of nonlinearity whereas the dispersion param-
eter δ characterizes the dispersion or shallowness, and the parameter β measures the variation of the
bottom topography. What is meant by ”full nonlinearity” is that no restriction is imposed on the mag-
nitude of ε. Actually, ε is assumed to be of order 1 in our analysis. On the other hand, we impose the
condition δ � 1 for the dispersion parameter which features the shallow water model equations.

In §2, we reformulate the water wave problem posed by equations. (1.1)-(1.5) in terms of the total
depth of fluid h and the depth-averaged horizontal velocity ū which will be defined later. The system of
equations thus constructed consists of the exact evolution equation for h and an infinite-order Boussinesq-
type equation for ū. By truncating the latter equation at order δ2n, we obtain the extended GN equations
which are accurate to δ2n, where n is an arbitrary positive integer. We call it the δ2n model hereafter.
The lowest-order approximation n = 1 yields the GN equations. We then derive the linear dispersion
relation for the extended GN system, and investigate its characteristics in detail. In §3, we derive, as
illustrative examples, various approximate model equations which include the 2D δ4 model with a flat
bottom topography and the 2D δ2 model (or the GN model) with an uneven bottom topography. The
1D δ6 model with a flat bottom topography is briefly described. In §4, we show that the extended GN
equations can be formulated as a Hamiltonian form by introducing an appropriate Lie-Poisson bracket
as well as the momentum density in place of ū, and they have the same Hamiltonian structure as that of
the GN equations. In §5, we demonstrate that the extended GN equations are equivalent to Zakharov’s
equations of motion for surface gravity waves. Finally, §6 is devoted to conclusion.

2. Derivation of the extended Green-Naghdi equations
2.1. Extended GN system

The GN model is a system of equations for the total depth of fluid h and the depth-averaged (or mean)
horizontal velocity ū = (ū, v̄). The latter variable is defined by

ū =
1
h

∫ εη

−1+βb

∇φ(x, z, t)dz, h = 1 + εη − βb. (2.1)

The horizontal component u = (u, v) and verical component w of the surface velocity are given respec-
tively by

u(x, t) = ∇φ(x, z, t)|z=εη, w(x, t) = φz(x, z, t)|z=εη. (2.2)

First, we derive the equation for h. It follows from (1.1), (1.4) and (2.1) that

w = δ2{−∇·(hū) + εu·∇η}. (2.3)

Substituting (2.3) into (1.2), we obtain the evolution equation for h = h(x, t)

ht + ε∇·(hū) = 0. (2.4)

It is important that (2.4) is an exact equation without any approximation.
The equation for ū can be derived from the equation for u. A direct computation yields

∇ (φt|z=εη) = ut + εwt∇η − εηt∇w. (2.5)

We apply the gradient operator to (1.3) and use (2.5) together with the definition of u and w. This leads
to

ut + εwt∇η +
ε

2
∇u2 + ε

(
−ηt +

1
δ2
w

)
∇w + ∇η = 0. (2.6)

It follows by eliminating the term ∇· (hū) from (2.3) and (2.4) that −ηt+ 1
δ2w = εu·∇η. If we substitute

this expression into the fourth term on the left-hand side of (2.6), we arrive at the evolution equation for
u:

ut + εwt∇η +
ε

2
∇u2 + ε2(u · ∇η)∇w + ∇η = 0. (2.7)
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Now, we introduce the new quantity V by

V = u + εw∇η. (2.8)

It then turns out from (2.7) that the evolution equation for V can be written in the form

Vt − εw∇ηt +
ε

2
∇u2 + ε2(u·∇η)∇w + ∇η = 0. (2.9)

Last, we substitute the relations

−w∇ηt = εw∇(u·∇η) − 1
2δ2

∇w2, ε(u·∇η)w = u·V − u2, (2.10)

which follow from (1.2) and (2.8), respectively, into the corresponding terms in (2.9) to obtain an alter-
native form of the evolution equation for V :

Vt + ε∇
(

u·V − 1
2
u2 − 1

2δ2
w2 +

η

ε

)
= 0. (2.11)

Equation (2.11) represents an exact conservation law for the vector V . To interpret the physical
meaning of V , we introduce the velocity potential evaluated at the free surface

ψ(x, t) = φ(x, εη, t). (2.12)

In view of the definition (2.2) of the surface velocity, the gradient of ψ is found to be

∇ψ = (∇φ+ εφz∇η)|z=εη = u + εw∇η. (2.13)

It immediately follows from (2.12) and (2.13) that

V = ∇ψ, (2.14)

implying that V is equal to the 2D gradient of the velocity potential evaluated at the free surface, and
it lies in the (x, y) plane.

The system of equations (2.4) and (2.7) (or (2.11)) is a consequence deduced from the basic Euler
system (1.1)-(1.4). The extended GN equations are obtained if one can express the variables u, w in
equation (2.7) in terms of h and ū. As will be shown below, this is always possible. Consequently, the
evolution equation for ū can be recast in the form of an infinite-order Boussinesq-type equation

ūt =
∞∑
n=0

δ2nKn, (2.15)

where Kn ∈ R2 are vector functions of h and ∇·ū,∇·ūt as well as the spatial derivatives of these
variables. If one truncates the right-hand side of equation (2.15) at order δ2n, then equation (2.15) yields
the evolution equation for ū which is accurate to δ2n. The special case n = 1 coupled with equation (2.4)
reduces to the original GN equations. In accordance with this fact, we call the system of equations (2.4)
and (2.7) (or (2.11), (2.15)) with h and ū being the dependent variables the extended GN system.

2.2. Expressions of the velocities u, w and V in terms of h and ū
2.2.1. Flat bottom topography

Under the assumption δ2 � 1 which is relevant to the shallow water models, the solution of equation
(1.1) subjected to the boubdary condition (1.4) with b = 0 can be written explicitly in the form of an
infinite series

φ(x, z, t) =
∞∑
n=0

(−1)nδ2n

(2n)!
(z + 1)2n∇2nf, (2.16)

3



where f = f(x, t) is the velocity potential at the fluid bottom. We substitute this expression into (2.1)
and perform the integration with respect to z to obtain

ū = ∇f +
∞∑
n=1

(−1)nδ2nh2n

(2n+ 1)!
∇∇2nf, h = 1 + εη. (2.17)

Using the formula ∇2f = ∇ · (∇f), we can rewrite (2.17) in an alternative form

∇f = ū −
∞∑
n=1

(−1)nδ2nh2n

(2n+ 1)!
∇∇2(n−1)(∇·∇f). (2.18)

To derive the expansion of ∇f in terms of h and ū, we look for the solution in the form of an infinite
series in δ2

∇f = ū +
∞∑
n=1

(−1)nδ2nFn, (2.19)

where Fn ∈ R2 are unknown vector functions to be determined below. Substituting this expression into
(2.18) and comparing the coefficients of δ2n (n = 1, 2, ...) on both sides, we obtain Fn, first three of which
read

F1 = −h
2

6
∇(∇·ū), F2 = − h4

120
∇∇2(∇·ū) +

h2

36
∇∇·{h2∇(∇·ū)},

F3 = − h6

5040
∇∇4(∇·ū) − h2

6
∇(∇·F2) −

h4

120
∇∇2(∇·F1). (2.20)

The series expansions of u, w and V can be derived simply by substituting (2.18) with Fn from (2.20)
into (2.2)and (2.8), respectively. We write them up to order δ4 for later use:

u = ū − δ2

3
h2∇(∇·ū) + δ4

[
− 1

18
h2∇∇·{h2∇(∇·ū)} +

1
30
h4∇∇2(∇·ū)

]
+O(δ6), (2.21)

w = −δ2h∇·ū − δ4

3
h2∇h·∇(∇·ū) +O(δ6), (2.22)

V = ū − δ2

3h
∇(h3∇·ū) − δ4

45h
∇[∇·{h5∇(∇·ū)}] +O(δ6). (2.23)

2.2.2. Uneven bottom topography

The effect of an uneven bottom topography on the propagation characteristics of water waves is
prominent in the coastal zone. Here, we provide the formulas of u, w and V in terms of h, ū and b. In
this case, the solution of the Laplace equation (1.1) subjected to the boundary condition (1.5) can be
written in the form

φ(x, z, t) =
∞∑
n=0

(z + 1 − βb)nφn(x, t), (2.24)

where the orders of unknown functions φn are to be determined. Performing the similar procedure to
that has been done for the flat bottom case, we obtain the approximate expressions of u, w and V in
terms of ū, h and b:

u = ū + δ2
[
−h

2

3
∇(∇·ū) +

β

2
{
h∇(∇b·ū) + (h∇·ū)∇b

}]
+O(δ4), (2.25)

w = δ2(−h∇·ū + β∇b·ū) +O(δ4). (2.26)
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V = ū +
δ2

h

[
−1

3
∇(h3∇·ū) +

β

2
{∇(h2∇b·ū) − h2∇b(∇·ū)} + β2h∇b(∇b·ū)

]
+O(δ4). (2.27)

2.3. Linear dispersion relation for the extended GN system

Here, we show that the exact linear dispersion relation for the current water wave problem can be derived
from the extended GN system, and discuss its structure. We consider the flat bottom case for simplicity.
Linearization of equations (2.4) and (2.7) about the uniform state h = 1 and ū = 0 yields the system of
linear equations for η and ū. Explicitly, ηt + ∇·ū = 0, ut + ∇η = 0. We eliminate the variable η from
this system of equations and obtain the linear wave equation for ū

utt −∇(∇·ū) = 0. (2.28)

In the linear approximation, the expression u corresponding to (2.21) can be written in the form

u = ū +
∞∑
n=1

(−1)nδ2n
{ 1

(2n)!
+
n−1∑
r=0

αn−r
(2r)!

}
∇∇2(n−1)(∇·ū), (2.29)

where αn are unknown constants which are determined by the recursion relation

α1 = −1
6
, αn = − 1

(2n+ 1)!
−
n−1∑
r=1

αn−r
(2r + 1)!

, n > 2. (2.30)

In order to examine the linear dispersion characteristics of equation (2.28) with u from (2.29), we
assume the solution of the form ū = ū0 ei(k·x−ωt), where ū0 is a 2D constant vector, k is the 2D
wavenumber vector and ω is the angular frequency. We substitute (2.29) into equation (2.28) and find
that the linear dispersion relation takes the form

ω2 =
k2

D(kδ)
, (k = |k|), D(kδ) = 1 +

∞∑
n=1

(kδ)2n
{

1
(2n)!

+
n−1∑
r=0

αn−r
(2r)!

}
. (2.31)

Using (2.30), we can derive the relation D(kδ) = kδ coth kδ which, substituted into (2.31), leads to the
linear dispersion relation for the extended GN system

ω2 =
k

δ
tanh kδ. (2.32)

The above expression coincides perfectly with that derived from the linearized system of equations for
the current water wave problem (1.1)-(1.5).

The δ2n GN model incorporates the dispersive terms of order δ2n. Referring to equations (2.4) and
(2.15), one can write it in the form

ht + ε∇·(hū) = 0, ūt =
n∑

m=0

δ2mKm. (2.33)

To detail the dispersion characteristics of this model, we introduce the function D2n(κ) by

D2n(κ) = 1 +
n∑
r=1

(−1)r−122r

(2r)!
Brκ

2r, Br =
2(2r)!
(2π)2r

∞∑
j=1

1
j2r

, r > 1, (2.34)

where Br are Bernoulli’s numbers. The linear dispersion relation for the δ2n model (2.33) is represented
by

ω2 =
k2

D2n(kδ)
. (2.35)
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Using the inequality for the Bernoulli numbers, we can show that D2n with odd n are positive for all
kδ. More precisely, they have a lower bound 1. As a result, an estimate ω/k 6 1 for kδ > 0 follows.
Consequently, the δ2n models with odd n have a nice property as long as the linear dispersion characteristic
is concerned. Actually, they have smooth dispersion relations without any singularities, and possess an
important feature that the exact linear dispersion relation has, i.e., ω/k =

√
tanh kδ/kδ 6 1 for kδ > 0.

On the other hand, D2n models with even n exhibit single positive zero. For example, the positive zeros
of D4, D8 and D10 are found to be 4.19, 3.63 and 3.33, respectively. An asymptotic analysis shows that
the zero of D2n with even n approaches a constant value π as n tends to infinity. These results imply
that ω from (2.35) has a singularity and becomes pure imaginary for values of kδ exceeding the zero. It
turns out that the δ2n models with even n exhibit an unphysical dispersion characteristic which leads to
the ill-posedness result for the linearized systems of equations, and may cause instabilities in short wave
solutions in practical numerical computations. In accordance with these observations, the δ2n models
with odd n may be more tractable as the practical model equations than the δ2n models with even n.

3. Approximate model equations
3.1. The δ4 model

3.1.1. Derivation of the δ4 model with a flat bottom topography
For the purpose of deriving the δ4 model with a flat bottom topography, we only need the evolution

equation for ū since the equation for h is already at hand, as indicated by equation (2.4). The procedure
for obtaining the equation for ū can be performed straightforwardly. Actually, substituting the expres-
sions (2.21)-(2.23) into equation (2.11) and rearranging terms, we finally arrive at the evolution equation
for ū:

ūt + ε(ū·∇)ū + ∇η = δ2R1 + δ4R2 +O(δ6), (3.1a)

with
R1 =

1
3h

∇
[
h3{∇·ūt + ε(ū·∇)(∇·ū) − ε(∇·ū)2}

]
, (3.1b)

R2 =
1

45h
∇

[
∇·{h5∇(∇·ūt) + εh5(∇2(∇·ū))ū − 5εh5(∇·ū)∇(∇·ū) + ε∇h5 × (ū ×∇(∇·ū))

}
−2εh5{∇(∇·ū)}2

]
− ε

45h

[
∇·{h5∇(∇·ū)}∇(∇·ū) +

h5

2
∇{∇(∇·ū)}2

]
. (3.1c)

Various reductions are possible for the δ4 model. Indeed, if we neglect the δ4 terms in equation (3.1),
then it reduces to the 2D GN system when coupled with equation (2.4)

ht + ε∇·(hū) = 0, ūt + ε(ū·∇)ū + ∇η =
δ2

3h
∇

[
h3{∇·ūt + ε(ū·∇)(∇·ū) − ε(∇·ū)2}

]
, (3.2)

whereas the δ4 model reduces to the classical 2D Boussinesq system

ht + ε∇·(hū) = 0, ūt + ε(ū·∇)ū + ∇η =
δ2

3
∇(∇·ūt), (3.3)

after neglecting the εδ2 and higher-order terms. On the other hand, the 1D forms of equations (2.4) and
(3.1) become

ht + ε(hū)x = 0, (3.4a)

ūt + εūūx + ηx =
δ2

3h
{
h3(ūxt + εūūxx − εū2

x)
}
x

+
δ4

45h
[{
h5(ūxxt + εūūxxx − 5εūxūxx)

}
x
− 3εh5ū2

xx

]
x

+O(δ6), (3.4b)

which are in agreement with equations (2.5) and (2.21) of Matsuno (2015), respectively.
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3.1.2. Conservation laws
The δ4 model derived here exhibits the following four conservation laws:

M =
∫

R2
(h− 1)dx, (3.5)

P =
∫

R2
hū dx, (3.6)

H =
ε2

2

∫
R2

[
hū2 +

δ2

3
h3(∇·ū)2 − δ4

45
h5{∇(∇·ū)}2 +

1
ε2

(h− 1)2
]

dx, (3.7)

L = ε

∫
R2

[
ū − δ2

3h
∇(h3∇·ū) − δ4

45h
∇

[
∇·{h5∇(∇·ū}]] dx, (3.8)

where we have used the notation
∫

R2 F (x, t)dx =
∫ ∞
−∞

∫ ∞
−∞ F (x, t)dxdy for any function F decreasing

rapidly at infinity. The factors ε2 and ε attached in front of the integral sign in H and L, respectively
are only for convenience. The quantities M,P and H represent the conservation of the mass, momentum
and total energy, respectively, which can be confirmed directly by using equations (2.4) and (3.1). The
fourth conservation law L follows from (2.11) and (2.23). The geometrical interpretation of L has been
discussed in detail in the 1D case. See Remark 6 of Matsuno (2015).

3.2. The GN model with an uneven bottom topography
In accordance with the method developed in §2, let us derive the GN model which takes into account
an uneven bottom topography. Since its derivation is almost parallel to that of the flat bottom case, we
describe only the final result. The evolution equation for ū can be written in the form(

1 +
δ2

h
L(h, b)

)
ūt + ε(ū·∇)ū + ∇η =

εδ2

3h
∇

[
h3{(ū·∇)∇·ū − (∇·ū)2}

]
+ εδ2Q, (3.9a)

with
Q = − β

2h

[
∇{h2ū·∇(∇b·ū)} − h2{ū·∇(∇·ū) − (∇·ū)2}∇b

]
− β2{(ū·∇)2b}∇b, (3.9b)

where L(h, b) is a linear differential operator defined by

L(h, b)f = −1
3
∇(h3∇·f) +

β

2
{∇(h2∇b·f) − h2∇b(∇·f)} + β2h∇b(∇b·f), (3.9c)

for any vector function f ∈ R2. This equation coincides perfectly with that obtained by different methods.
See Green & Naghdi (1976), Miles & Salmon (1985), Bazdenkov et al. (1987), Lannes & Bonneton (2009)
and Lannes (2013).

3.3. Remark
As already demonstrated in §2.3, the δ2n models with even n have singularities in their linear dispersion
relations, although the dispersion characteristics for small values of the dispersion parameter have been
improved considerably when compared with those of the original GN model. The simplest extended GN
model which avoids this undesirable behavior in higher wavenumber is the 1D δ6 model with a flat bottom
topography. Its derivation can be made straightforwardly by means of the procedure developed in this
section.

The evolution equation for ū which extends equation (3.4b) to order δ6 can now be written in the
form

ūt + εūūx + ηx =
δ2

3h
{
h3(ūxt + εūūxx − εū2

x)
}
x

+
δ4

45h
[{
h5(ūxxt + εūūxxx − 5εūxūxx)

}
x
− 3εh5ū2

xx

]
x
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+
δ6

945h

[
{h7(2ūxxxxt + 2εūūxxxxx − 14εūxūxxxx − 30εūxxūxxx)}x

+{h6hx(14ūxxxt + 14εūūxxxx − 112εūxūxxx + 42εū2
xx)}x

+{h5(hhx)x(7ūxxt + 7εūūxxx − 63εūxūxx)}x + ε{10h7ū2
xxx − 35h5(hhx)xū2

xx}
]
x
. (3.10)

The linear dispersion relation for the system of equations (3.4a) and (3.10) is then given by

ω2 =
k2

1 + 1
3 (kδ)2 − 1

45 (kδ)4 + 2
945 (kδ)6

. (3.11)

Obviously, the singularity does not occur in ω for arbitrary values of kδ, as opposed to the δ4 model.
This ensures the well-posedness of the system of linearized equations for the model. Various features of
the δ6 model are worth studying in comparison with those of the δ4 model, as well as those of the δ2 (or
GN) model.

4. Hamiltonian structure
4.1. Hamiltonian

In this section, we show that the 2D extended GN system derived in §2 can be formulated as a Hamiltonian
form. First, recall that the basic Euler system of equations (1.1)-(1.4) conserves the total energy (or
Hamiltonian) H which is the sum of the kinetic energy K and the potential energy U :

H = K + U =
ε2

2

∫
R2

[∫ εη

−1+βb

{
(∇φ)2 +

1
δ2
φ2
z

}
dz

]
dx +

ε2

2

∫
R2
η2dx. (4.1)

Using (1.1) and (1.4), this Hamiltonian can be put into a simple form

H =
ε2

2

∫
R2

[
hū·∇ψ +

1
ε2

(h− 1 + βb)2
]

dx, (4.2)

Inserting the expression of ∇ψ(= V ) from (2.27) into (4.2), we obtain a series expansion of H in powers
of δ2

H = ε2
∞∑
n=0

δ2nHn, (4.3a)

with the first two of Hn being given by

H0 =
1
2

∫
R2

[
hū2 +

1
ε2

(h− 1 + βb)2
]

dx, H1 =
1
6

∫
R2

[
h3(∇·ū)2−3βh2(∇b·ū)∇·ū+3β2h(∇b·ū)2

]
dx.

(4.3b)

4.2. Momentum density
In formulating the extended GN system as a Hamiltonian form, it is crucial to introduce the momentum
density m. It is given by the following relation

εm =
δH

δū
, (4.4)

where the operator δ/δū is the variational derivative defined by

∂

∂ε
H(ū + εw)

∣∣
ε=0

=
∫

R2

δH

δū
·w dx, (4.5)
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for arbitrary vector function w ∈ R2. As seen from (4.3) and its higher-order analog, the integrand of
K is quadratic in ū, and hence K obeys the scaling law K(εū, h, b) = ε2K(ū, h, b). This leads, after
introducing m from (4.4), to the relation K = ε

2

∫
R2 m·ū dx, so that H is expressed compactly as

H =
1
2

∫
R2

[εm·ū + (h− 1 + βb)2] dx. (4.6)

Comparing (4.2) and (4.6), we obtain the key relation which connects the variable ∇ψ with the momentum
density m:

m = εh∇ψ. (4.7)

Note that the kinetic energy obeys the scaling law K(εm, h, b) = ε2K(m, h, b), and hence K =
1
2

∫
R2 δH/δm · mdx. This expression must be equal to K = ε

2

∫
R2 m·ū dx, giving the dual relation to

(4.7)

εū =
δH

δm
. (4.8)

4.3. Evolution equation for the momentum density

To derive the evolution equation for the momentum density m, we first compute the variational derivative
of H with respect to h. It is given by

δH

δh
= ε2

(
1
2
u2 +

w2

2δ2
− u·ū + hw∇·ū − βw∇b·ū

)
+ h− 1 + βb. (4.9)

Now, we proceed to derive the evolution equation for m. We start from the evolution equation for V
from (2.11). After a few manipulations using (2.4) and (4.7), we obtain

mt + ε∇(ū·m) + ε(∇·ū)m +
ε

h
{(∇h·ū)m − (ū·m)∇h} + h∇

(
δH

δh

)
= 0. (4.10)

Furthermore, if we divide (4.10) by h and use (2.4), we can write it in the form of local conservation law(m

h

)
t
+ ∇

(
εū·m
h

+
δH

δh

)
= 0. (4.11)

4.4. Hamiltonian formulation

In this section, we demonstrate that the 2D extended GN system can be formulated as a Hamiltonian
system. To this end, we introduce the noncanonical Lie-Poisson bracket between any pair of smooth
functional F and G

{F,G} = −
∫

R2

 2∑
i,j=1

δF

δmi
(mj∂i + ∂jmi)

δG

δmj
+ h

δF

δm
·∇δG

δh
+
δF

δh
∇·

(
h
δG

δm

)dx, (4.12)

where we have put m = (m1,m2) and ∂1 = ∂/∂x, ∂2 = ∂/∂y. Note that the partial derivatives ∂i (i = 1, 2)
operate on all terms they multiply to the right. Then, our main result is given by the following theorem.

Theorem 1. The 2D extended GN system (2.4) and (2.11) (or equivalently, (4.10)) can be written
in the form of Hamilton’s equations

ht = {h,H}, (4.13a)

mi,t = {mi,H}, (i = 1, 2). (4.13b)
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We recall that the bracket (4.12) has been introduced by Holm (1988) to formulate the 2D GN
equations as a Hamiltonian system. Combining this fact with Theorem 1, we conclude that the extended
GN system has the same Hamiltonian structure as that of the GN system. Hence, its truncated version
like the δ2n model shares the same property.

5. Relation to Zakharov’s Hamiltonian formulation
5.1. Zakharov’s formulation

Zakharov (1968) (see also Zakharov & Kuznetsov (1997)) showed that the water wave problem (1.1)-(1.5)
permits a canonical Hamiltonian formulation. Specifically, the equations of motion for the variables h
and ∇ψ are written in the form

ht = −1
ε
∇· δH

δ∇ψ
, ∇ψt = −1

ε
∇δH

δh
, (5.1)

{F,G} = −1
ε

∫
R2

[
δF

δh

(
∇· δG

δ∇ψ

)
−

(
∇· δF

δ∇ψ

)
δG

δh

]
dx, (5.2)

ht = {h,H}, ∇ψt = {∇ψ,H}. (5.3)

5.2. Transformation of the Zakharov system to the extended GN system
Here, we establish the following theorem.

Theorem 2. Zakharov’s system of equations (5.3) is equivalent to the extended GN system (4.13).

This theorem follows by rewriting the Zakharov system in terms of the variable m in place of ∇ψ
while h remains the common variable for both systems. The proof can be performed by using the relations

δF

δh

∣∣∣∣
∇ψ

=
δF

δh

∣∣∣∣
m

+
1
h

δF

δm

∣∣∣∣
h

·m,
δF

δ∇ψ

∣∣∣∣
h

= εh
δF

δm

∣∣∣∣
h

, (5.4)

δH

δh

∣∣∣∣
∇ψ

=
δH

δh

∣∣∣∣
m

+
εū·m
h

,
δH

δ∇ψ

∣∣∣∣
h

= ε2hū. (5.5)

6. Conclusion

In this paper, we have developed a systematic procedure for extending the 2D GN model to include
higher-order dispersive effects while preserving full nonlinearity of the original GN model, and presented
various model equations for both flat and uneven bottom topographies. A detailed analysis of the
linearized system of equations for the extended GN models reveals that the linear dispersion relation
for the δ2n model coincides with the exact linear dispersion relation for the water wave problem up to
order δ2n for small values of the dispersion parameter. For odd n, the dispersion relations have a nice
property in the sense that they exhibit no singularities for all values of the dispersion parameter. It
turns out that the corresponding model equations are linearly well-posed. When n is even, however, the
dispersion relations were found to exhibit a singularity, indicating the possibility of instabilities in short
wave solutions. Although the value of the dispersion parameter at which the singularity occurs is greater
than π and hence it is beyond the range of applicability of the extended GN models, they may not be
appropriate to use as the basis for practical applications to real water wave phenomena. Hence, in order
to verify the validity of the models, the rigorous mathematical justification is necessary for the formal
derivation of the models, and it will become an important issue to be pursued in a future work.

We have demonstrated that the extended GN equations have the same Hamiltonian structure as
that of the GN equations. In the process, we have introduced the momentum density in place of the
depth-averaged horizontal velocity, and found a key relation which connects the momentum density with
the gradient of the surface potential. Last, the equivalence of the extended GN system and Zakharov’s
Hamiltonian system was also proved whereby the key relation mentioned above played the central role.
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